Given a graph \(G \), let \(P_t \) be the transition probability matrix. We assign each node \(v \) an \(n \)-dimensional feature vector \(\mathbf{p}_v \), which describes the "structural role" of \(v \),

\[
\mathbf{p}_v = [P_t(v, i), P_t(v, i'), \ldots, P_t(v, i^{(n-1)})],
\]

where \(P_t(v, i) = \sum_j P_t(i, j) P_t(j, i) \), is the return probability of a \(t \)-step random walk starting from \(v \). Here, each graph is represented by a set of feature vectors in \(\mathbb{R}^n \) as \(\mathbf{P}_{G} = \{ \mathbf{p}_v \} \).

Properties of Return Probability Feature

(1) Isomorphism-invariant.
(2) Multi-resolution.
(3) Permutation map.
(4) Information.

Given two graphs \(G \) and \(H \) of \(n \) nodes, let \(x \) be the permutation map. Fix \((\mathbf{p}_v, \mathbf{p}_w) \) be a pair of \(\mathbf{p}_v \) and \(\mathbf{p}_w \) respectively. \(x \) is a permutation map if \(P_t(x(i), j) = P_t(i, x(j)) \); then, the return probability feature is invariant under such a permutation map.

An illustrative example:

\[
\begin{align*}
G &= \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}, \\
H &= \begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}.
\end{align*}
\]

Figure 2: (a) Toy Graph \(G \); (b) The \(2 \)-step return probability of the nodes \(C_1 \) and \(C_2 \) in the toy graph, \(s = 2, \ldots, 200 \). The nested figure is a close-up view of the region of interest.

Observations: (i) Since \(C_1 \) and \(C_2 \) share the same neighborhoods at larger scales, their return probability values are close until the eighth step. Because \(C_1 \) plays a more different structural role from \(C_2 \) here, its return probability values deviate from those of \(C_1 \) and \(C_2 \) in early steps.
(ii) When the random walk steps approach infinity, the return probability \(P_t(i, i') \) will not change much and will converge to the stationary probability.