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Abstract

Structured data modeled as graphs arise in many application
domains, such as computer vision, bioinformatics, and social
network mining. One interesting problem for graph-type data
is quantifying their similarities based on the connectivity struc-
ture and attribute information. Graph kernels, which are pos-
itive definite functions on graphs, are powerful similarity mea-
sures, in the sense that they make various kernel-based learning
algorithms, for example, clustering, classification, and regres-
sion, applicable to structured data.

A real-world example:

Figure 1: A 3-D model of a Linear D-fructose.

Challenges for designing graph kernels

(i) The graph kernels should satisfy the isomorphism-invariant
property, while being informative on the topological structure
difference.
(ii) The graph kernels should integrate both graph structure
and node attribute information.
(iii) The graph kernels should be scalable to large graphs.

Our solution:
We introduce a new node structural role descriptor, the return
probability feature (RPF) of random walks. With the RPF,
we can embed attributed graphs into a Hilbert space. After
that, we naturally obtain our return probability-based graph
kernels (“RetGK”). Employing the approximate feature maps
technique, we represent each graph with a multi-dimensional
tensor and design a family of computationally efficient graphs
kernels.

Return Probability Feature

Given a graph G, let PG be the transition probability matrix. We assign each
node vi an S-dimensional feature [1], which describes the “structural role” of
vi,

~pi = [P 1
G(i, i),P 2

G(i, i), ...,P S
G(i, i)]T , (1)

where P s
G(i, i), s = 1, 2, ..., S, is the return probability of a s-step random

walk starting from vi. Now each graph is represented by a set of feature
vectors in RS: RPFSG = {~p1, ~p2, ..., ~pn}.

Properties of Return Probability Feature

(Isomorphism-invariant). Let G and H be two isomorphic graphs.
Then, ∀S = 1, 2, ...,∞, RPFSG = RPFSH.
(Multi-resolution). P s

G(i, i) reflects the interaction between node vi
and the subgraph involving vi.If s increases, the subgraph becomes larger.
(Informativeness). Given two graphs G andH of n nodes, let τ be
the permuatation map. Let {(λk, ~ψk)}nk=1 and {(µk, ~ϕk)}nk=1 be eigenpairs
of PG and PH, respectively. Let τ : {1, 2, ..., n} → {1, 2, ..., n} be a
permutation map. If RPFnG = RPFnH, then,
1 RPFSG = RPFSH, ∀S = n + 1, n + 2, ...,∞;
2 {λ1, λ2, ..., λn} = {µ1, µ2, ..., µn};
3 If the eigenvalues sorted by their magnitudes satisfy:
|λ1| > |λ2| > ... > |λm| > 0, |λm+1| = ... = |λn| = 0, then we have that
| ~ψk(i)| = | ~ϕk(τ (i))|, ∀vi ∈ VG, ∀k = 1, 2, ...,m.

An illustrative example:

(a) (b)
Figure 2: (a) Toy Graph G; (b) The s-step return probability of the nodes C1,
C2 and C3 in the toy graph, s = 1, 2, ..., 200. The nested figure is a close-up
view of the rectangular region.
Observations: (i). Since C1 and C2 share the similar neighbourhoods at
larger scales, their return probability values are close until the eighth step.
Because C3 plays a very different structural role from C1 and C2, its return
probabilities values deviate from those of C1 and C2 in early steps.
(ii). When the random walk step s approaches infinity, the return probability
P s
G(i, i) will not change much and will converge to the stationary probability.

Hilbert Space Embeddings of Graphs.

Graphs may have many types of attributes, which can be obtained by phys-
ical measurements. Let A1,A2, ...,AL be their attribute domains. When
combined with RPF, an attributed graph can be represented by the set
{(~pi, a1

i , ..., a
L
i )}ni=1 ⊆ A0×A1×...×AL, whereA0 := RS is the RPF domain.

The set representation forms an empirical distribution µ = 1
n

∑n
i=1 δ(~pi,a1

i ,...,a
L
i )

on A = ×Ll=0Al, which can be embedded into a reproducing kernel Hilbert
space (RKHS) by kernel mean embedding [2].
Let kl, l = 0, 1, ..., L be a kernel on Al. Then we can define a
kernel on A through the tensor product of kernels, i.e., k = ⊗Ll=0kl,
k
[
(~p, a1, a2, ..., aL), (~q, b1, b2, ..., bL)

]
= k0(~p, ~q) ∏L

l=1 kl(al, bl). Therefore,
given a graph G, we can embed it into a Hilbert space reproduced by k,

G→ µG→ mG, and mG =
∫
A
φdµG = 1

n

n∑
i=1
φ(pi, a1

i , ..., a
L
i ). (2)

Graph Kernels(I). Given two graphs G and H , let mG and mH be the
corresponding embeddings. Then, the following functions are positive definite
graph kernels.

K1(G,H) = (c + 〈mG,mH〉H)d, c ≥ 0, d ∈ N, (3a)
K2(G,H) = exp(−γ‖mG −mH‖pH), γ > 0, 0 < p ≤ 2, (3b)

where 〈mG,mH〉H = 1
nGnH

~1TnGKGH
~1nH, MMD(µG, µH) = ( 1

n2
G

~1TnGKGG
~1nG +

1
n2
H

~1TnHKHH
~1nH − 2

nGnH
~1TnGKGH

~1nH)1
2 (maximum mean discrepancy), and

KGG, KGH, and KHH are kernel matrices induced by k.

Approximate Hilbert Space Embeddings of Graphs.

To accelerate the speed of computing graph kernel, we employ the approxi-
mate explicit feature maps [3]. For a kernel kl on the attribute domain Al,
l = 0, 1, ..., L, we find an explicit map φ̂ : Al → RDl, so that
∀a, b ∈ Al, 〈φ̂(a), φ̂(b)〉 = k̂l(a, b), and k̂l(a, b)→ kl(a, b) as Dl →∞. (4)

Tensor Representation of Attributed Graphs.

Let G be an attributed graph, and let {(~pi, a1
i , a

2
i , ..., a

L
i )}nGi=1 be its set

representation. Then the approximate explicit graph embeddings, m̂G is a
tensor in RD0×D1×...×DL, and can be written as

m̂G = 1
nG

nG∑
i=1
φ̂0(~pi) ◦ φ̂1(a1

i) ◦ ... ◦ φ̂L(aLi ). (5)

Graph Kernels(II). The following functions are positive definite graph
kernels defined on G × G.

K̂1(G,H) =
[
c + vec(m̂G)Tvec(m̂H)

]d
, c ≥ 0, d ∈ N, (6a)

K̂2(G,H) = exp(−γ‖vec(m̂G)− vec(m̂H)‖p2), γ > 0, 0 < p ≤ 2.. (6b)

Experimental Results

Table 1: Classification results (in %) for non-attributed graph datasets
Datasets WL GK DGK PSCN RetGKI RetGKII
COLLAB 74.8(0.2) 72.8(0.3) 73.1(0.3) 72.6(2.2) 81.0(0.3) 80.6(0.3)

IMDB-BINARY 70.8(0.5) 65.9(1.0) 67.0(0.6) 71.0(2.3) 71.9(1.0) 72.3(0.6)
IMDB-MULTI 49.8(0.5) 43.9(0.4) 44.6(0.5) 45.2(2.8) 47.7(0.3) 48.7(0.6)

REDDIT-BINARY 68.2(0.2) 77.3(0.2) 78.0(0.4) 86.3(1.6) 92.6(0.3) 91.6(0.2)
REDDIT-MULTI(5K) 51.2(0.3) 41.0(0.2) 41.3(0.2) 49.1(0.7) 56.1(0.5) 55.3(0.3)
REDDIT-MULTI(12K) 32.6(0.3) 31.8(0.1) 32.2(0.1) 41.3(0.4) 48.7(0.2) 47.1(0.3)

Total time 2h3m – – – 48h14m 17m14s

Table 2: Classification results (in %) for graph datasets with discrete attributes
Datasets WL CSM DGCNN DGK PSCN RetGKI RetGKII

ENZYMES 53.4(0.9) 60.4(1.6) – 53.4(0.9) – 60.4(0.8) 59.1(1.1)
PROTEINS 71.2(0.8) – 75.5(0.9) 75.7(0.5) 75.0(2.5) 75.8(0.6) 75.2(0.3)
MUTAG 84.4(1.5) 85.4(1.2) 85.8(1.7) 87.4(2.7) 89.0(4.4) 90.3(1.1) 90.1(1.0)

DD 78.6(0.4) – 79.4(0.9) – 76.2(2.6) 81.6(0.3) 81.0(0.5)
NCI1 85.4(0.3) – 74.4(0.5) 80.3(0.5) 76.3(1.7) 84.5(0.2) 83.5(0.2)

PTC-FM 55.2(2.3) 63.8(1.0) – – – 62.3(1.0) 63.9(1.3)
PTC-FR 63.9(1.4) 65.5(1.4) – – – 66.7(1.4) 67.8(1.1)
PTC-MM 60.6(1.1) 63.3(1.7) – – – 65.6(1.1) 67.9(1.4)
PTC-MR 55.4(1.5) 58.1(1.6) 58.6(2.5) 60.1(2.6) 62.3(5.7) 62.5(1.6) 62.1(1.5)
Total time 2m27s – – – – 38m4s 49.9s

Table 3: Classification results (in %) for graph datasets with both discrete and
continuous attributes

Datasets GIK CSM RetGKI RetGKII
ENZYMES 71.7(0.8) 69.8(0.7) 72.2(0.8) 70.6(0.7)
PROTEINS 76.1(0.3) – 78.0(0.3) 77.3(0.5)

BZR – 79.4(1.2) 86.4(1.2) 87.1(0.7)
COX2 – 74.4(1.7) 80.1(0.9) 81.4(0.6)
DHFR – 79.9(1.1) 81.5(0.9) 82.5(0.8)

Total time – – 4m17s 2m51s

Observation: In most cases, our graph kernel RetGKII outper-
forms the state-of-the-art methods in both classification accuracy
and computational efficiency.
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