A broken filter: Prefrontal functional connectivity abnormalities in schizophrenia during working memory interference

Alan Anticevic a,b,c,⁎, Grega Repovs d, John H. Krystal a,b,c, Deanna M. Barch e

a Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06511, USA
b NIAAA Center for the Translational Neuroscience of Alcoholism, New Haven, CT 06519, USA
c Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA
d Department of Psychology, University of Ljubljana, Ljubljana, Slovenia
e Departments of Psychology, Psychiatry and Radiology, Washington University in St. Louis, St. Louis, MO 63130, USA

A R T I C L E I N F O
Article history:
Received 14 February 2012
Received in revised form 2 July 2012
Accepted 5 July 2012
Available online 3 August 2012

Keywords:
Schizophrenia
DLPFC, amygdala, thalamus
fMRI
Functional connectivity
Working memory
Distraction

A B S T R A C T
Characterizing working memory (WM) abnormalities represents a fundamental challenge in schizophrenia research given the impact of cognitive deficits on life outcome in patients. In prior work we demonstrated that dorsolateral prefrontal cortex (DLPFC) activation was related to successful distracter resistance during WM in healthy controls, but not in schizophrenia. Although understanding the impact of regional functional deficits is critical, functional connectivity abnormalities among nodes within WM networks may constitute a final common pathway for WM impairment. Therefore, this study tested the hypothesis that schizophrenia is associated with functional connectivity abnormalities within DLPFC networks during distraction conditions in WM. 28 patients and 24 controls completed a delayed non-verbal WM task that included transient visual distraction during the WM maintenance phase. We computed DLPFC whole-brain task-based functional connectivity (tb-fcMRI) specifically during the maintenance phase in the presence or absence of distraction. Results revealed that patients failed to modulate tb-fcMRI during distracter presentation in both cortical and sub-cortical regions. Specifically, controls demonstrated reductions in tb-fcMRI between DLPFC and the extended amygdala when distraction was present. Conversely, patients failed to demonstrate a change in coupling with the amygdala, but showed greater connectivity with medio-dorsal thalamus. While controls showed more positive coupling between DLPFC and other prefrontal cortical regions during distracter presentation, patients failed to exhibit such a modulation. Taken together, these findings support the notion that observed distracter resistance deficit involves a breakdown in coupling between DLPFC and distributed regions, encompassing both subcortical (thalamic/limbic) and control region connectivity.

Published by Elsevier B.V.

1. Introduction

Cognitive impairments associated with schizophrenia compromise social and vocational function and are not effectively treated by available therapies (Cornblatt et al., 1999; Niendam et al., 2003; Green, 2006). Impairments in working memory (WM), the temporary storage and manipulation of information held ‘on-line’ in the service of some goal (Jonides et al., 2008), are prominent in schizophrenia (Elvevag and Goldberg, 2000). WM deficits are present prior to the onset of illness and in medication-free individuals in their first episode of illness (Delawalla et al., 2006).

Schizophrenia is associated with deficits in component processes of WM (Lee and Park, 2005), but how breakdowns in distinct aspects of WM function may contribute to the overall profile of impairment in this illness remains unclear. WM can be broken down into distinct temporal components: i) encoding of information in WM, ii) maintenance of information in WM including protection against decay and distraction; and iii) retrieval and manipulation of memoranda when needed (Baddeley and Hitch, 1974; Baddeley, 2000; Jonides et al., 2008). Studies of schizophrenia have focused particularly on WM encoding and maintenance deficits (Lee and Park, 2005; Johnson et al., 2006; Driesen et al., 2008; Schlösser et al., 2008). However, while there is a rich behavioral literature showing sensory gating problems in patients (Geyer et al., 2001; Turetsky et al., 2007), less work has been done to understand neural mechanisms underlying deficits in ‘protection’ of WM stores against disruption by distractors in schizophrenia.

In a recent investigation, we identified a dorsal-lateral prefrontal cortex (DLPFC) region centered on the medial frontal gyrus that healthy subjects engaged specifically when distractors appeared during delayed WM (Anticevic et al., 2011c). Furthermore, there was a significant relationship between the degree of DLPFC activation in response to distraction and successful WM performance in healthy
2.1. Subjects

Typically involved in cognitive control.

We recruited 28 patients and 24 demographically matched healthy controls. All subjects underwent clinical interviewing and diagnostics by a Master’s level clinician using the Structured Clinical Interview for DSM-IV-TR (First et al., 2002). Inclusion criteria were as follows: i) lifetime history of Axis I psychiatric disorder (past or present) with neurological symptoms or disrupted consciousness or history of neurological disorders. Patients were receiving a stable level of medication for a period of at least 2 weeks; we converted all medication dosages to chlorpromazine equivalents (Woods, 2003; Bazire, 2005) and verified that medication dosage did not alter reported effects (for additional covariate analyses see Supplement). At the time of assessment patients did not present with co-morbid axis I diagnoses. Groups were well-matched across demographic criteria (handedness, gender, age, parental education, and parental socioeconomic status) except on standard measures of verbal and non-verbal IQ (Wechsler, 1997) (Table 1) (although differences in IQ did not alter reported effects, see Supplement & Discussion for treatment of IQ differences).

2.2. fMRI acquisition and stimuli

Images were acquired using a 3 T Tim-TRIO scanner at Washington University. Functional images were acquired using an asymmetric spin-echo, echo-planar sequence maximally sensitive to blood-oxygenation-level-dependent (BOLD) contrast (T2*) (repetition time [TR] = 2200 ms, echo time [TE] = 27 ms, field of view [FOV] = 256 mm, flip = 90°, voxel size = 4 × 4 × 4 mm). Structural images were acquired using a sagittal MP-RAGE 3D T1-weighted sequence (TR = 2400 ms, TE = 3.16 ms, flip = 8°; voxel size = 1 mm3). The task is described comprehensively elsewhere (Anticevic et al., 2010a, 2011c) (Fig. 1, see Supplement for more detail). Briefly, subjects completed 24 trials (three 5.09-min runs) to estimate distracter-free maintenance activity and 72 trials (six 7.44-min runs) with one of the following distracters presented during the delay period: a) negative images; b) neutral images; and c) task-related geometric shapes (these distracters resembled the memoranda). For the purpose of the current analyses, we collapsed across distracter types given prior results indicating that

![DISTRACTION](image-url)

Fig. 1. Task Design. Overall task design is shown. For the purposes of the present investigation we collapsed across different distracter conditions (see Method) since patients were more distracted than controls across all distracter types irrespective of distracter condition (Anticevic et al., 2011c). Complete details regarding the task were described previously (Anticevic et al., 2011b, 2011c). We also provide additional task details and considerations in the Supplement.

Table 1

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Controls Mean</th>
<th>Patients Mean</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (in years)</td>
<td>37.18</td>
<td>36.39</td>
<td>0.31</td>
</tr>
<tr>
<td>Gender (% male)</td>
<td>74</td>
<td>0.34</td>
<td>0.759</td>
</tr>
<tr>
<td>Paternal education (in years)</td>
<td>12.70</td>
<td>13.26</td>
<td>0.90</td>
</tr>
<tr>
<td>Education matching</td>
<td>1.46</td>
<td>2.61</td>
<td>0.370</td>
</tr>
<tr>
<td>Paternal education (in years)</td>
<td>12.48</td>
<td>13.50</td>
<td>1.42</td>
</tr>
<tr>
<td>Education matching</td>
<td>1.53</td>
<td>3.07</td>
<td>0.162</td>
</tr>
<tr>
<td>Paternal SES</td>
<td>21.59</td>
<td>26.59</td>
<td>1.67</td>
</tr>
<tr>
<td>Education matching</td>
<td>8.92</td>
<td>10.73</td>
<td>0.100</td>
</tr>
<tr>
<td>Patient’s education (in years)</td>
<td>17.27</td>
<td>25.24</td>
<td>2.51</td>
</tr>
<tr>
<td>IQ Matching</td>
<td>5.58</td>
<td>11.88</td>
<td>0.015</td>
</tr>
<tr>
<td>IQ Performance</td>
<td>100.00</td>
<td>13.04</td>
<td>3.50</td>
</tr>
<tr>
<td>IQ Verbal</td>
<td>115.45</td>
<td>14.08</td>
<td>0.001</td>
</tr>
<tr>
<td>Medication (CPZ equivalents)</td>
<td>–</td>
<td>101.82</td>
<td>3.30</td>
</tr>
<tr>
<td>Mean SANS Global Item Score</td>
<td>–</td>
<td>548.63</td>
<td>–</td>
</tr>
<tr>
<td>Mean SANS Global Item Score</td>
<td>–</td>
<td>563.63</td>
<td>–</td>
</tr>
<tr>
<td>Mean SAPS Global Item Score</td>
<td>–</td>
<td>1.91</td>
<td>–</td>
</tr>
<tr>
<td>Mean SAPS Global Item Score</td>
<td>–</td>
<td>1.21</td>
<td>–</td>
</tr>
<tr>
<td>Mean IQ Performance</td>
<td>–</td>
<td>2.50</td>
<td>–</td>
</tr>
<tr>
<td>Mean IQ Verbal</td>
<td>–</td>
<td>0.78</td>
<td>–</td>
</tr>
<tr>
<td>Disorganization</td>
<td>–</td>
<td>5.48</td>
<td>–</td>
</tr>
<tr>
<td>Disorganization</td>
<td>–</td>
<td>2.71</td>
<td>–</td>
</tr>
<tr>
<td>Paternal SES</td>
<td>–</td>
<td>10.43</td>
<td>–</td>
</tr>
<tr>
<td>Paternal SES</td>
<td>–</td>
<td>3.53</td>
<td>–</td>
</tr>
<tr>
<td>Paternal SES</td>
<td>–</td>
<td>4.28</td>
<td>–</td>
</tr>
<tr>
<td>Paternal SES</td>
<td>–</td>
<td>3.53</td>
<td>–</td>
</tr>
<tr>
<td>Paternal SES</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Demographics. Positive symptoms were the sum of global scores for hallucinations and delusions; negative symptoms were the sum of global scores for alogia, anhedonia, avolition, affect flattening, and attentional impairment; and disorganization symptoms were the sum of global scores for bizarre behavior, positive thought disorder, and inappropriate affect. SAPS, scale for assessment of positive symptoms; SANS, scale for the assessment of negative symptoms; CPZ, chlorpromazine; SES, socioeconomic status.
patients were more distracted relative to controls irrespective of distractor category (Anticevic et al., 2011c) (for details on behavioral results and task design choices see Supplement).

2.3. fMRI preprocessing

Preprocessing included: i) slice-time correction; ii) first 5 images removed to reach steady state tissue magnetization; iii) odd/even slice intensity differences removed due to interpolated acquisition; iv) rigid body motion correction and inspection (5 patients and 1 control were excluded given excessive motion) (Ojemann et al., 1997); v) intensity normalization to a whole brain mode value of 1,000 without bias or gain field correction; vi) registration of structural images to a template image in the Talairach coordinate system (12-parameter affine transform) (Talairach and Tournoux, 1988); vii) co-registration of BOLD images to the structural image with re-sampling to 3 mm³ (Ojemann et al., 1997; Buckner et al., 2004). There were no significant group differences in SNR across all BOLD runs [t(44) = 0.08, p = 0.93, NS].

2.4. Task-based functional connectivity (tb-fcMRI) analyses

To remove possible sources of spurious correlations (Fox et al., 2005; Anticevic Anticevic et al., 2010a, 2010b) additional preprocessing was conducted: i) spatial smoothing by 6-mm FWHM Gaussian filter; ii) high-pass filtering (> 0.009 Hz) to remove low frequencies and scanner drift; iii) removal of motion correction parameters, ventricle, deep white matter, and global mean (GMS) signals and their first derivatives using a general linear model framework. All subsequent tb-fcMRI analyses were conducted on the residual signal. We acknowledge that GMS removal can possibly induce some negative relationships (Murphy et al., 2009). However, competing evidence illustrates that this pre-processing step is critical for optimizing fcMRI specificity (Fox et al., 2009) and is widely used (Biswal et al., 2010). Nevertheless, both groups underwent identical preprocessing. Thus, observed differences cannot be driven by GMS removal. However, we acknowledge that this can possibly complicate interpretation of obtained results.

Next, to examine tb-fcMRI, we followed an approach used in our previously published studies (Anticevic et al., 2010a, 2010b). Briefly, we computed the average BOLD signal value related to distracter for each subject and computing their correlation with each voxel in the brain. We ascertained group-level statistical significance by converting individual correlation maps to Fisher–Z maps and computing voxel-wise 2nd-level statistics (analysis details are outlined in the results section). Given no a priori predictions with regard to connectivity differences as a function of performance or speed we combined correct and incorrect trials to maximize power. All reported foci met whole-brain type-I error family-wise error correction as determined via AlphaSim [p < 0.01 and z > 37] contiguously active voxels, estimated 6 mm smoothness and 5000 simulations within a whole-brain mask (Cox, 1996).

3. Results

We hypothesized two major patterns of results: i) ‘over-connectivity’ between DLPC and ‘bottom up’ regions; and ii) ‘under-connectivity’ between DLPC and cortical areas typically involved in cognitive control. To test these hypothesized differences we computed a Diagnosis (patients vs. controls) × Distraction (WM trials with distraction vs. no distraction) interaction using voxel-wise Fisher’s Z values as the dependent variable. We report regions showing a significant Diagnosis × Distraction interaction (i.e. differential connectivity patterns across groups as a function of task condition). All reported t-tests are two-tailed.

Fig. 2. tb-fcMRI time-point selection approach. We illustrate the tb-fcMRI analysis strategy using the slow event-related design. This approach closely follows our previously published work (Anticevic et al., 2010b). The bottom panel shows the time series across the entire experiment. The initial time series marked in green indicates trials with no distraction, followed by trials with distraction marked in red. The middle panel focuses on a sub-set of the trials to more closely illustrate the time-point selection strategy. The vertical bars mark the corresponding ‘middle’ portion of each trial where activity is sampled by averaging across two frames following the onset of distraction. The top panel illustrates how these frames are concatenated into a time-series representing distracter-related signal across all trials. All tb-fcMRI analyses are performed on these extracted time courses, which reflect variation in peak response – as indicated by obtained correlation coefficients shown in corners of each top panel. This analytic strategy largely circumvents the concern that correlations are being driven by overall task response.
3.1. Group connectivity differences in subcortical regions

The ANOVA results revealed 3 subcortical regions exhibiting a significant interaction. One region was localized around the left paralimbic cortex proximal to the amygdaloid complex (Fig. 3a). The other two areas were localized around the bilateral medio-dorsal thalamus (Fig. 3b). For the extended amygdala region, controls showed more negative tb-fcMRI with DLPFC in response to distraction \(t(23) = 2.33, p < .03 \) but patients failed to show this connectivity modulation \(t(23) = 0.57, p = 57, \) NS. For the thalamic region, the pattern was consistent across both hemispheres; therefore, we collapsed results bilaterally. The source of the interaction was driven by ‘over-connectivity’ between thalamic regions and DLPFC for patients, specifically in response to distraction \(t(23) = 2.23, p = .04 \). Conversely, control subjects exhibited no modulation of DLPFC-thalamic connectivity as a function of distraction \(t(23) = 0.38, p = .7, \) NS. Furthermore, patients showed significantly greater DLPFC-thalamic connectivity than controls in the distraction condition \(t(52) = 4.5, p < .001 \), but not in the no-distraction condition \(t(52) = 1.38, p = .17, \) NS. These findings reveal that patients exhibit DLPFC-thalamic ‘over-connectivity’, but fail to show a task-induced change in connectivity between DLPFC and the region proximal to the amygdala.

3.2. Group connectivity differences in cortical regions

The ANOVA analysis identified three additional cortical regions exhibiting a significant Diagnosis \(\times \) Distraction interaction (Fig. 4). Two of the foci were localized around right prefrontal cortex (inferior frontal gyrus/Brodmann’s Area 47 – Fig. 4a; Inferior-middle frontal gyrus/Brodmann’s Area 44 – Fig. 4b), whereas another region was centered on left parietal lobe (Brodmann’s Area 39 – Fig. 4c). The source of the interaction for the prefrontal regions was similar: for both foci control subjects exhibited a significant connectivity increase with DLPFC in response to distraction \([I F G - t(23) = 2.97, p < .007; M F G - t(23) = 1.86, p < .08, \) trend], whereas patients failed to show such a modulation \([I F G - t(23) = 0.34, p = .73, \) NS; \(M F G - t(23) = 0.76, p = .46, \) NS]. The pattern of results for the parietal region was somewhat different: control subjects showed a significant reduction of a negative correlation with DLPFC in response to distraction \(t(23) = 2.18, p < .04 \). That is, in the absence of distraction, the correlation between DLPFC-parietal cortex activity was negative, but this relationship became less negative in response to distraction. In contrast, patients failed to show a modulation of this negative correlation \(t(23) = 0.18, p = 0.85, \) NS. Taken together, present results indicate that patients do not modulate DLPFC cortical connectivity following WM interference, whereas control subjects show a clear task-dependent change between DLPFC and prefrontal/parietal cortical regions.

4. Discussion

We directly examined deficits in functional connectivity of a key control region – DLPFC – previously associated with WM deficits in schizophrenia. We demonstrated that, when presented with distraction while maintaining information in WM, patients exhibited a failure to modulate DLPFC-amygdala connectivity and showed greater connectivity between the DLPFC and thalamus as compared to controls. These results are consistent with the hypothesis that in schizophrenia a distributed DLPFC network involved in both “bottom up”
and “top down” processes may contribute to the increased interference susceptibility during WM.

4.1. Aberrant DLPFC connectivity with cortical vs. subcortical circuits

We observed a clear difference in the pattern of DLPFC connectivity impairments in schizophrenia best described as DLPFC ‘over-connectivity’ with subcortical regions, but ‘under-connectivity’ with prefrontal and parietal regions. This suggests that during WM interference, patients may exhibit ‘dysconnectivity’ between DLPFC and other control regions in prefrontal cortex, but also aberrant communication with limbic circuits — both connectivity abnormalities demonstrated in other task contexts in schizophrenia (Fornito et al., 2011).

A particularly compelling finding was ‘over-connectivity’ in patients, specifically following distraction, between DLPFC and medio-dorsal thalamus. This finding is in accord with a body of preclinical and post-mortem evidence suggesting breakdowns in DLPFC-thalamic gating in psychosis (Cronenwett and Cernansky, 2010). Furthermore, this result is in line with the predictions of the thalamic filter model proposed by Carlsson and colleagues (Carlsson and Carlson, 1990a, b; Carlsson et al., 2001). The model postulates that in schizophrenia there exists a breakdown in cortical glutamatergic control of the striato-thalamic filtering of sensory information. When functioning properly this mechanism is postulated to protect the cortex from excessive thalamic sensory drive, fostering a selection of purposeful behavioral programs (e.g., WM), a process compromised in schizophrenia (Carlsson and Carlson, 1995b). Present findings are in support of excessive cortical-thalamic drive and highlight that such abnormalities in schizophrenia may be particularly manifest when interference protection is required.

One aspect of present results that complicates this interpretation is that controls did not exhibit a significant reduction of DLPFC-thalamic connectivity in response to distraction. It is possible that the actual lack of DLPFC-thalamic connectivity modulation in controls is indicative of ‘successful’ gating. Another possibility is that the amount of distraction in the present study was not robust enough to modulate DLPFC-thalamic connectivity in healthy controls, but affected patients. If so, prospective studies should examine whether there is a parametric change of DLPFC-thalamus connectivity as a function of stronger WM interference.

We observed clear reductions in DLPFC-amygdala tb-fcMRI in controls during distraction; but patients failed to exhibit this downward modulation of DPPFC-amygdala tb-fcMRI. This finding is consistent with the hypothesis suggesting disruptions in fronto-limbic circuits in psychosis (Williams et al., 2007; Hopftman et al., 2009; Dichter et al., 2010). Perhaps, in the face of interference of cognitive operations, healthy individuals down-regulate amygdala circuitry, which may minimize the degree to which salient information is able to interfere with the contents of WM (Pessoa, 2008). This possibility is consistent with disruptive effects of amygdala activation on PFC activity during WM (Anticevic et al., 2010a; Yun et al., 2010) and this lack of modulation may contribute to persisting WM deficits in schizophrenia. That is, there may be a breakdown in such prefrontally-mediated task-dependent modulation of extended amygdala signals in schizophrenia — a deficit that may contribute to aberrant attributions of salience (Kapur, 2003).

A less intuitive pattern of findings was observed for DLPFC-parietal connectivity, whereby patients exhibited more negative coupling between DLPFC and the parietal node irrespective of task condition, but controls showed less negative connectivity during distraction (see Fig. 4 and Supplement). One possibility is that this pattern could reflect a compensatory mechanism on part of the patients by suppressing signals in regions that control participants may not need to regulate during distraction. More work is needed to fully elucidate this pattern. For instance, to more fully characterize the functional significance of detected changes future work may want to examine intra-regional connectivity (e.g., regional homogeneity) in the nodes of interest as well as repeat the connectivity analysis by seeding identified regions.

4.2. Role of DLPFC in interference resolution deficits in schizophrenia

Deficits in DLPFC function in schizophrenia have typically been associated with abnormalities in information maintenance and/or manipulation during WM (Glahn et al., 2005). However, these findings suggest that DLPFC computations may be involved in protection of WM stores from external interference via modulation of distributed neural circuits. Indeed, findings from basic cognitive neuroscience (Sakai et al., 2002) and biophysically realistic computational models (Fredrik et al., 2009) raise the possibility that aspects of lateral PFC may operate in a broader way to protect WM from outside interference and that information maintenance may rely on regions other than DLPFC.

Our results focus exclusively on interference effects during WM maintenance. However, behavioral results from a recent study by Hahn and colleagues (Hahn et al., 2010) show that interference problems in schizophrenia — in the context of WM — may operate across stages. They showed that, in contrast to controls, patients were unable to override pre-potent bottom-up visual distraction during WM encoding and bias their attention away from such interference. In fact, individuals with schizophrenia more robustly encoded items that co-occurred with salient distractors, whereas controls successfully filtered such distraction (Hahn et al., 2010). It remains unclear whether DLPFC operates by protecting WM during encoding and whether such abnormalities would resemble present observations.

We examined functional connectivity differences in response to interference — that is, once distraction appeared. However, interference resolution during cognitive operations may depend on a combination of ‘preparatory’ and ‘reactive’ control signals. It remains unclear whether distinct abnormalities in preparatory and reactive control exist in schizophrenia — possibly reliant on unique neural circuits — that interactively compromise WM in this illness (Fletcher, 2011). Consistent with the role of prefrontal cortex in both processes, McNab & Klingberg have demonstrated the importance of prefrontal activation in ‘gating’ subcortical signals during WM prior to the onset of distraction in healthy adults (McNab and Klingberg, 2008). It will be important for future task-based and connectivity studies to ascertain whether lateral prefrontal cortex exhibits deficits across both preparatory and reactive control in schizophrenia.

4.3. Limitations

Patients in this sample were medicated. Thus, it cannot be ruled out that medication effects may be driving some observed effects, especially considering that D2 receptors in the striatum gate information flow through the thalamus (Carlsson et al., 2001). To examine this possibility we converted current medication levels to neuroleptic equivalents, which however did not explain observed effects. Nevertheless, due to long-term effects of various medications received over the course of the illness, it will be important to replicate these findings in un-medicated, at-risk or 1st degree relatives of patients with schizophrenia. Another limitation is that we did not find any relationships with individual differences in symptom severity (see Supplement). It may be possible that reported results constitute a trait or a marker for disease risk, but do not necessarily scale with reported symptoms. However, because our sample size was not powered for subtle individual difference tests, we cannot fully rule out statistical power issues. Additionally, history of substance abuse in the patient group may have impacted present findings (while likely limited by requiring sobriety for past 6 months). Thus, given the heterogeneity of the patient group future studies with 1st episode patients and more homogenous samples will be necessary to replicate the specificity of present findings to schizophrenia diagnosis. We took great care...
to match the groups on educational achievement. Nevertheless, cognitive deficits are prevalent in schizophrenia and often confounded with this diagnosis (Reichenberg and Harvey, 2007), therefore, it is also critical to verify present findings with samples that are more carefully matched on IQ profiles. Notably, in the present experimental task we ensured between-group performance matching during distracter-free trials (for reasons described previously (Anticevic et al., 2011c)). Therefore, despite differences in cognitive ability, present results cannot be attributed purely to performance confounds (see Supplement for detailed covariate analyses). Lastly, in our tb-fcMRI approach is reliant on the number of time points across which the correlation is estimated and therefore is a limitation that should be considered as it can impact the strength of the tb-fcMRI estimate.

4.4. Conclusion

Present findings demonstrate that schizophrenia is associated with DLPFC connectivity abnormalities during WM maintenance, specifically when faced with distraction. These differences were evident in cortical ‘control’ regions and subcortical ‘bottom-up’ regions. Taken together, present results offer evidence consistent with the hypothesis that a distributed network may be contributing to WM filtering deficits in schizophrenia, extending beyond lateral PFC.

Role of funding source

This research was supported by the McDonnell Center for Systems Neuroscience at Washington University in St. Louis. The funding source had no further role in the current study with regard to data collection, data analysis and interpretation of findings or in manuscript preparation and the submission decision.

Contributors

AA & DMB conceptualized and designed the study. AA collected the data. AA and GR performed data analyses. AA examined and interpreted the results in consultation with DMB and JHK. AA wrote the first draft of the manuscript, which all co-authors commented on and edited.

Conflict of Interest

John H. Krystal, MD 2012 financial disclosure. Note: the individual consultant agreements listed below are less than $10,000 per year.

Consultant

Ailing Capital, LLC
Astellas Pharma Global Development, Inc.
AstraZeneca Pharmaceuticals
Biocortech
Brinshall & Nicolini, Inc.
Easton Associates
Gilead Sciences, Inc.
GlassSmithKline
Jansen Pharmaceuticals
Lundbeck Research USA
Medivation, Inc.
Merz Pharmaceuticals
MK Medical Communications
F. Hoffmann-La Roche Ltd
Sage Therapeutics, Inc.
SK Holdings Co., Ltd.
Sunovion Pharmaceuticals, Inc.
Takeda Industries
Teva Pharmaceutical Industries, Ltd.

Scientific Advisory Board

Abbott Laboratories
Bristol-Myers Squibb
CHDI Foundation, Inc.
Eisai, Inc.
Eli Lilly and Co.
Forest Laboratories, Inc.
Loboda Research Corporation
Mmenseone Pharmaceuticals, Inc.
Naurex, Inc.
Pfizer Pharmaceuticals
Shire Pharmaceuticals
StratNeuro Research Program at Karolinska Institute (International Advisory Board)

Board of Directors

Coalition for Translational Research in Alcohol and Substance Use Disorders

President

American College of Neuropsychopharmacology

Income greater than $10,000

Editorial Board

Editor - Biological Psychiatry

Employment

Yale University School of Medicine

VA CT Healthcare System

Patents and inventions

2) I am a co-inventor with Dr. Gerard Sanacora on a filed patent application by Yale University related to targeting the glutamatergic system for the treatment of neuropsychiatric disorders (PCTWO0510805S1).

3) Intranasal administration of ketamine to treat depression (pending)

Acknowledgements

We thank John Murray for useful discussions regarding present results. We thank the Washington University CONTE Center staff for assistance with recruitment and diagnostics. We also thank two anonymous Reviewers for their constructing and insightful feedback.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.schres.2012.07.007.

References

Andreasen, N.C., 1983a. The scale for the assessment of negative symptoms (SANS). University of Iowa, Iowa City.

Andreasen, N.C., 1983b. The scale for the assessment of positive symptoms (SAPS). University of Iowa, Iowa City.

Buckner, R.L., Head, D., Parker, J., Fotenos, A.F., Marcus, D., Morris, J.C., Snyder, A.Z., 1990b. Schizophrenia: a subcortical neurotransmitter imbal-

Buckner, R.L., Head, D., Parker, J., Fotenos, A.F., Marcus, D., Morris, J.C., Snyder, A.Z., 1990b. Schizophrenia: a subcortical neurotransmitter imbal-

