Psychotic-like experiences (PLEs) are nonclinical schizophrenia-spectrum symptoms that include perceptual abnormalities and mild delusional thoughts. They commonly occur in children (~10% of children and adolescents) and are considered a dimensional, transdiagnostic marker of significant psychopathology risk (e.g., odds ratio ~3), including conversion to adult psychotic disorders in some children (1,2). Indeed, supporting the potential validity of PLEs as markers of psychopathology and psychosis-specific risk, PLEs are associated with a range of risk factors (e.g., family history of psychotic disorders, developmental milestone delays, cognition, and neural correlates) within the Adolescent Brain Cognitive Development (ABCD) Study (3–5). The adverse mental health prognosis of children with PLEs, even beyond those who eventually develop schizophrenia, has inspired efforts to improve our understanding of PLE etiology to ultimately facilitate advances in prevention and treatment.

Building on twin work documenting the moderate heritability of PLEs, genome-wide association studies (GWASs) have shown that PLEs are highly polygenic, much like other complex behavioral and biological phenotypes (6). Results from well-powered discovery GWASs may be projected onto individuals in an independent sample by averaging common variants weighted by GWAS effect size and number of risk alleles present across the genome to generate polygenic scores (PGSs) that represent an individual’s genomic predisposition for the discovery GWAS phenotype (7). Initial evidence suggested null associations between schizophrenia PGS and adolescent PLEs during adolescence and adulthood (e.g., ages 15–19 years) [(13), although see (14)] and predicted psychosis conversion in
individuals at risk for psychosis (15). Further, other work has found associations between later-life PLEs and both schizophrenia and mood disorder PGSs (6).

This study examined associations between childhood PLEs and several PGSs associated with risk for psychopathology (e.g., psychosis), including scores that may be putatively associated with PLEs through neural or behavior mechanisms (e.g., inflammation, birth weight). In addition to PLEs being related to schizophrenia risk, associations between PLEs and general psychopathology (6,16) suggest that genomic vulnerability to broad-spectrum psychopathology may confer risk for PLEs in childhood. Further, clues from epidemiological studies linking psychosis spectrum symptoms to low birth weight (17), inflammation (18), and reduced educational attainment (EDU) [i.e., a measure of both cognitive functioning and noncognitive factors, including risk taking and household income, considered risk factors for psychosis (19,20)] (21) raise the possibility that polygenic propensity for these phenotypes may correlate with PLEs independently or through their phenotypic expression. PGSs for birth weight and inflammation may provide important insights regarding associations between genetic liability for early developmental environmental insults and PLEs. Finally, emerging evidence linking PLEs to lower global brain volume (22) and evidence of brain volume indirectly linking risk factors to PLEs in the ABCD Study (23) provide a basis for the possibility that brain structure may indirectly link genomic risk to PLE expression (24).

This study examined data from non-Hispanic children of European ancestries (n = 4650; aged 9–10 years) who completed the baseline session of the ABCD Study. We tested whether PLEs are associated with genomic liability to schizophrenia, psychiatric cross-disorder risk, PLEs, EDU, birth weight, and inflammation (i.e., C-reactive protein) in school-age children. As childhood PLEs represent potential harbingers of adult psychopathology, it is critical to understand whether, as expected, polygenic liability estimates derived from GWASs of adult phenotypes are associated with their expression in childhood, whether these associations with PGSs vary according to PLE severity, and whether variability in brain structure and behavior indirectly link polygenic vulnerability to the expression of PLEs in children.

METHODS AND MATERIALS

Participants

A sample of 11,875 individuals was obtained from the ABCD Study (data release 2.0.1; see Acknowledgments), a large-scale ongoing longitudinal study of children recruited from 22 research sites across the United States (25). The ABCD Study aimed to explore factors associated with development of both healthy behaviors and mental health challenges and to utilize a multistage probability sample of eligible youth (see the Supplement for study-wide exclusion criteria and power analysis), selecting a stratified probability sample of schools across the United States designed to capture demographic diversity (26–28). Participants who did not pass quality control metrics and those who were not of European ancestries were removed, leaving a final analytic sample of 4650 (46.8% female; mean age = 9.93 ± 0.63 [range = 9.00–10.92] years) (Figure S1 for sample overlap with European ancestry reference population). Additionally, a sample of individuals with African ancestries was used in exploratory analyses (n = 1201) (see the Supplement). Caregivers provided written informed consent and all children provided assent.

Measures

Psychotic-like Experiences. Participants completed the Prodromal Questionnaire-Brief Child Version (PQ-BC), a 21-item questionnaire previously validated for use with school-age children using the ABCD Study sample (4,5), which asks about the occurrence of PLEs (e.g., unusual thought content, perceptual abnormalities) in the past month. All PQ-BC questions were read to participants by research assistants. The dimensional total score was used to measure PLEs. Total scores index the full dimension of PLEs, including more normative PLEs, although individuals endorsing at least one PLE generally show greater impairment than those endorsing no PLEs (Table S1). To address the large number of 0 PLE values (44.6% of the sample) and obtain a more clinically relevant PLE metric, we also formed three groups based on PLE endorsement: group 1, reporting 0 PLEs (n = 2076); group 2, reporting ≥1 PLE but no significant distress associated with PLEs (n = 1601); and group 3, reporting ≥1 PLE with significant distress (i.e., rating a PLE ≥ 3 on a 5-point scale of distress; n = 972) (Table 1).

Proximal EDU, Birth Weight, and Cross-disorder PGS Behaviors. Total cognition composite scores assessed using the National Institutes of Health Toolbox Cognitive Battery (29), caregiver-reported child birth weight (see the Supplement for birth complications and gestational age), and a general psychopathology factor (30) created using the Child Behavior Checklist (31) served as proximal behavioral measures of EDU, birth weight, and cross-disorder PGS, respectively.

Brain Structure. T1- and T2-weighted structural scans (1 mm isotropic) were acquired using 3T scanners (either Siemens, General Electric, or Phillips) with 32-channel head coils (Supplement). The following structural magnetic resonance imaging (MRI) metrics were examined: global: intracranial, total cortical, and total subcortical volume; total surface area; and total cortical thickness; regional: 34 Desikan cortical regions for surface area, thickness, and volume and 23 Free-Surfer segmentation subcortical volume regions (32).

Polygenic Scores. Summary statistics from the most well-powered discovery GWASs of schizophrenia (N = 69,369 cases + 236,642 controls) (33), cross-disorder (N = 232,964 cases) (34) anorexia nervosa, attention-deficit/hyperactivity disorder, autism spectrum disorder, bipolar disorder, major depressive disorder, obsessive-compulsive disorder, schizophrenia, and Tourette syndrome) + 494,162 controls (16), PLEs (N = 127,966) (6), EDU (N = 766,345) (see the Supplement for executive functioning PGS; results generally consistent) (34), birth weight (N = 321,223) (35), and inflammation (N = 469,856) (http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=30710) were used to generate PGSs (n = 6) within the ABCD Study dataset. Summary statistics from a schizophrenia GWAS study with individuals of African ancestries were used...
<table>
<thead>
<tr>
<th>Variable</th>
<th>No PLEs (n = 4546)</th>
<th>≥ 1 PLE but No Significant Endorsement (n = 3914)</th>
<th>≥ 1 PLE & Significantly Distressing PLEs (n = 972)</th>
<th>Total Sample (n = 4650)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birth weight (kg)</td>
<td>2.548 ± 0.627</td>
<td>2.551 ± 0.627</td>
<td>2.555 ± 0.627</td>
<td>2.553 ± 0.627</td>
</tr>
<tr>
<td>Global Brain Metrics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total cortical thickness (mm)</td>
<td>1.907 ± 0.089</td>
<td>1.907 ± 0.089</td>
<td>1.907 ± 0.089</td>
<td>1.907 ± 0.089</td>
</tr>
<tr>
<td>Total intracranial volume (mm³)</td>
<td>6.147 ± 10³</td>
<td>6.147 ± 10³</td>
<td>6.147 ± 10³</td>
<td>6.147 ± 10³</td>
</tr>
<tr>
<td>Total cortical volume (mm³)</td>
<td>1.550 ± 10³</td>
<td>1.550 ± 10³</td>
<td>1.550 ± 10³</td>
<td>1.550 ± 10³</td>
</tr>
<tr>
<td>Global Psychopathology Scores</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General psychopathology scores (n = 3120)</td>
<td>114.525 ± 22.962</td>
<td>114.525 ± 22.962</td>
<td>114.525 ± 22.962</td>
<td>114.525 ± 22.962</td>
</tr>
<tr>
<td>Psychotic-like Experiences and Polygenic Liability</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Event-related potential (μV)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
for our exploratory analyses (Supplement) (36).1 PGSSs were generated using polygenic risk scores–continuous shrinkage (37), which uses a Bayesian regression framework to include all single nucleotide polymorphisms in PGS calculations by placing a continuous shrinkage prior on single nucleotide polymorphism effect sizes; simulation studies show that polygenic risk scores–continuous shrinkage outperforms other PGS methods (37). Analyses using traditional \(p \) value clumping and thresholding produced results consistent with polygenic risk scores–continuous shrinkage (Tables S2 and S3).

Statistical Analyses

Continuous predictor and outcome variables were Winsorized to \(\pm 3 \) SD to minimize the influence of extreme values. Analyses nested data with random intercepts for site (\(n = 22 \)) and family (\(n = 3874; \) siblings \(n = 616 \)). The following covariates were included in all analyses: age, sex (Table S4 for results stratified by sex), genotyping batch, and the first 10 ancestrally informative principal components (described in the Supplement) (Table S5 for associations with PLEs). We used ComBat harmonization (https://github.com/ncullen93/ neuroCombat), with age and sex added as biological covariates to the design matrix, to estimate and remove scanner model effects from MRI measures. Financial adversity and highest parental/caregiver education were included as additional covariates in supplemental analyses (Supplement), because these variables are proxies of socioeconomic status (38) and therefore important predictors in risk for psychopathology and cognitive functioning.

First, we used hierarchical linear models to estimate associations between schizophrenia, PLE, cross-disorder, EDU, birth weight, and inflammation PGSSs and each PLE metric (i.e., dimensional total score and binary significance distressing PLEs) as outcomes. Benjamini–Hochberg false discovery rate (FDR) correction was used to account for the six PGSSs tested.2 For cross-disorder, birth weight, and EDU, post hoc hierarchical linear models examined models including measured behaviors most proximal to the PGS to examine the extent to which available measured outcomes proximal to PGSSs accounted for these associations (e.g., the extent to which cognition accounted for the association between EDU PGSS and PLEs).

Second, we estimated associations between reported PLEs and MRI-derived brain structure phenotypes. FDR was used to adjust for multiple testing of 5 global MRI metrics (e.g., total cortical thickness), 102 regional metrics (i.e., 34 each for bilateral [averaged across hemispheres] cortical thickness, cortical surface area, and cortical volume), and 23 tests for bilateral subcortical volumes (e.g., hippocampal volume), for a total of 130 FDR corrections for each PLE metric. Any significant regional association with PLEs was followed up with post hoc testing for lateral (i.e., right, left) associations.

Third, we estimated associations between PGSSs and brain structure phenotypes associated with reported PLEs. Subsequently, we examined whether any brain structure and PGS-proximal behavioral phenotypes (e.g., cognition) indirectly linked PGSSs to reported PLEs using a series of mediation analyses.

Default settings were used to conduct hierarchical linear models for total PLEs (i.e.,) and hierarchical logistic regressions for significantly distressing PLEs (glmFDR) using the lme4 package (33). MuMIn was used to calculate pseudo-\(R^2 \), with results comparing pseudo-\(R^2 \) for models with and without the predictor of interest (e.g., PGSSs) converted to a percentage to create a %\(\Delta R^2 \). The lavaan package (39) was used to conduct mediation analyses, with models incorporating clustering and bootstrapping commands.

RESULTS

PGSSs and PLEs

In our sample (\(n = 4650 \)), 55.33% (\(n = 2573 \)) of children endorsed at least one reported PLE and 20.90% (\(n = 972 \)) endorsed at least one significantly distressing PLE. Total PLEs were associated with higher cross-disorder and lower EDU PGSSs (all %\(\Delta R^2 \)'s > 0.20%), but not schizophrenia, PLE, or birth weight PGSSs (all %\(\Delta R^2 \)'s < 0.12%) (Table 2 and Figure 1A), but not birth weight or inflammation PGSSs (all %\(\Delta R^2 \)'s < 0.018; all \(p \) values > .22). All associations remained similar when accounting for financial adversity and parental/caregiver education (Table S6) or when computing PGSSs using a traditional clustering and thresholding approach (Tables S2 and S3) (see the Supplement for executive functioning PGSS results).

Comparing PLE groups (i.e., no PLEs, PLEs without significant distress, significantly distressing PLEs) generally revealed a pattern of results suggesting a gradient of severity (Supplement) (Table 1); those reporting significantly distressing PLEs showed the greatest divergence from those without PLEs on PGSSs, brain structure, and behavior, while those reporting PLEs not associated with significant distress were intermediary between these two groups (Table S1).

Consideration of Proximal PGS Behaviors

Measured cognition was negatively associated with total PLEs and endorsement of significantly distressing PLEs positively associated with EDU PGSS (\(r = -0.131; \) all \(p \) values < 2.00 \(\times 10^{-16} \); %\(\Delta R^2 \)'s \(\approx 1.55\% \)) (Table S7 and Figures S2 and S3). Cognitive performance accounted for 32.3% to 32.8% of the association between EDU PGSS and PLE metrics (Table S8), although associations between EDU PGSS and reported PLE
Table 2. Associations Between PLEs and Both PGs and Structural Neural Metrics

<table>
<thead>
<tr>
<th>Metric</th>
<th>Total PLEs</th>
<th>Significant Distress Group</th>
<th>OR (95% CI)</th>
<th>β</th>
<th>t</th>
<th>p</th>
<th>p_{FDR}</th>
<th>%ΔR^2</th>
<th>OR (95% CI)</th>
<th>β</th>
<th>Z</th>
<th>p</th>
<th>p_{FDR}</th>
<th>%ΔR^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGs</td>
<td></td>
</tr>
<tr>
<td>Schizophrenia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$4.17 \times 10^6 ; [–9.35 \times 10^4 ; to ; 9.27 \times 10^4]$</td>
<td>0.023</td>
<td>1.598</td>
<td>.11</td>
<td>.17</td>
<td>.052%</td>
<td>$1.130 ; (1.050 ; to ; 1.220)_{FDR}$</td>
<td>0.043</td>
<td>3.166</td>
<td>.002</td>
<td>.01</td>
<td>.216%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Educational attainment</td>
<td>$–2.76 \times 10^8 ; [3.74 \times 10^6 ; to ; –1.79 \times 10^7]$</td>
<td>$–0.081$</td>
<td>$–5.561$</td>
<td>2.85×10^{-5}</td>
<td>1.71×10^{-7}</td>
<td>.660%</td>
<td>$0.825 ; (0.766 ; to ; 0.890)_{FDR}$</td>
<td>$–0.072$</td>
<td>$–4.988$</td>
<td>6.00×10^{-7}</td>
<td>3.65×10^{-6}</td>
<td>.587%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLEs</td>
<td>$6.21 \times 10^5 ; [–6.93 \times 10^5 ; to ; 1.94 \times 10^5]$</td>
<td>0.013</td>
<td>0.925</td>
<td>.36</td>
<td>.36</td>
<td>.019%</td>
<td>$1.090 ; (1.010 ; to ; 1.170)_{FDR}$</td>
<td>0.032</td>
<td>2.259</td>
<td>.02</td>
<td>.03</td>
<td>.120%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cross-disorder</td>
<td>$1.67 \times 10^9 ; [6.18 \times 10^8 ; to ; 2.73 \times 10^9]$</td>
<td>0.045</td>
<td>3.099</td>
<td>.002</td>
<td>.006</td>
<td>.020%</td>
<td>$1.190 ; (1.110 ; to ; 1.290)_{FDR}$</td>
<td>0.066</td>
<td>4.600</td>
<td>4.23×10^{-6}</td>
<td>1.27×10^{-5}</td>
<td>.505%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Birth weight</td>
<td>$–5.17 \times 10^7 ; [–1.57 \times 10^6 ; to ; 5.40 \times 10^5]$</td>
<td>$–0.014$</td>
<td>$–0.96$</td>
<td>.34</td>
<td>.36</td>
<td>.021%</td>
<td>$0.954 ; (0.885 ; to ; 1.030)$</td>
<td>$–0.016$</td>
<td>$–1.23$</td>
<td>.22</td>
<td>.22</td>
<td>.037%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflammation</td>
<td>$8.62 \times 10^6 ; [5.54 \times 10^6 ; to ; 1.68 \times 10^6]$</td>
<td>0.031</td>
<td>2.12</td>
<td>.03</td>
<td>.06</td>
<td>.092%</td>
<td>$1.050 ; (0.973 ; to ; 1.130)$</td>
<td>0.018</td>
<td>1.228</td>
<td>.22</td>
<td>.22</td>
<td>.036%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neural Metrics</td>
<td></td>
</tr>
<tr>
<td>Global Metrics</td>
<td></td>
</tr>
<tr>
<td>Intracranial volume</td>
<td>$–1.56 \times 10^{-6} ; [–2.36 \times 10^{-6} ; to ; –7.59 \times 10^{-7}]$</td>
<td>$–0.065$</td>
<td>$–3.815$</td>
<td>1.38×10^{-4}</td>
<td>5.98×10^{-3}</td>
<td>.332%</td>
<td>$0.841 ; (0.770 ; to ; 0.919)_{FDR}$</td>
<td>$–0.063$</td>
<td>$–3.851$</td>
<td>1.18×10^{-4}</td>
<td>5.11×10^{-3}</td>
<td>.371%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total cortical volume</td>
<td>$–4.12 \times 10^{-6} ; [–6.06 \times 10^{-6} ; to ; –2.18 \times 10^{-6}]$</td>
<td>$–0.068$</td>
<td>$–4.169$</td>
<td>3.12×10^{-5}</td>
<td>4.06×10^{-3}</td>
<td>.388%</td>
<td>$0.845 ; (0.776 ; to ; 0.920)_{FDR}$</td>
<td>$–0.062$</td>
<td>$–3.898$</td>
<td>9.72×10^{-5}</td>
<td>5.11×10^{-3}</td>
<td>.370%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total subcortical volume</td>
<td>$–3.93 \times 10^{-5} ; [–6.09 \times 10^{-5} ; to ; –1.76 \times 10^{-5}]$</td>
<td>$–0.058$</td>
<td>$–3.555$</td>
<td>3.82×10^{-4}</td>
<td>1.24×10^{-2}</td>
<td>.291%</td>
<td>$0.823 ; (0.756 ; to ; 0.895)_{FDR}$</td>
<td>$–0.071$</td>
<td>$–4.519$</td>
<td>6.21×10^{-6}</td>
<td>8.07×10^{-4}</td>
<td>.503%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total cortical thickness</td>
<td>$–0.908 ; (–1.918 ; to ; 0.105)$</td>
<td>$–0.026$</td>
<td>$–1.760$</td>
<td>.08</td>
<td>.42</td>
<td>.085%</td>
<td>$0.936 ; (0.868 ; to ; 1.009)$</td>
<td>$–0.024$</td>
<td>$–1.723$</td>
<td>.08</td>
<td>.50</td>
<td>.079%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total surface area</td>
<td>$–1.22 \times 10^{-5} ; [–1.85 \times 10^{-5} ; to ; –5.97 \times 10^{-6}]$</td>
<td>$–0.065$</td>
<td>$–3.824$</td>
<td>1.33×10^{-4}</td>
<td>5.98×10^{-3}</td>
<td>.330%</td>
<td>$0.847 ; (0.777 ; to ; 0.924)_{FDR}$</td>
<td>$–0.061$</td>
<td>$–3.727$</td>
<td>1.94×10^{-4}</td>
<td>6.31×10^{-3}</td>
<td>.343%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regional Metrics</td>
<td></td>
</tr>
<tr>
<td>Average inferior parietal</td>
<td>$–1.270 ; (–2.040 ; to ; –0.492)_{FDR}$</td>
<td>$–0.048$</td>
<td>$–3.206$</td>
<td>1.35×10^{-3}</td>
<td>.04</td>
<td>.226%</td>
<td>$0.926 ; (0.853 ; to ; 1.000)$</td>
<td>$–0.027$</td>
<td>$–1.810$</td>
<td>.07</td>
<td>.50</td>
<td>.078%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>thickness</td>
<td>$–1.150 ; (–1.880 ; to ; –0.432)_{FDR}$</td>
<td>$–0.047$</td>
<td>$–3.131$</td>
<td>1.76×10^{-3}</td>
<td>.214%</td>
<td>$0.927 ; (0.854 ; to ; 1.007)$</td>
<td>$–0.027$</td>
<td>$–1.798$</td>
<td>.07</td>
<td>.077%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tests are two-tailed. All PGs (i.e., schizophrenia, educational attainment, cross-disorder, PLE) results remained consistent with accounting for financial adversity and parental education, %ΔR^2, percentage change in marginal proportion of variance explained, calculated as the difference in pseudo-R^2 between the current model vs. a model excluding the predictor of interest, converted to a percentage; CI, confidence interval; FDR, false discovery rate–corrected; OR, odds ratio; PGs, polygenic scores; PLEs, psychotic-like experiences.

Values were adjusted for age, sex, study site, and diagnosis status.

*P$_{FDR} < .05$ models.
metrics remained, even when considering cognition (|β|s > 0.047; p values < .002; %ΔR²’s ≥ 0.58%) (Table S9). The general psychopathology factor was positively associated with total PLEs, endorsement of significantly distressing PLEs, and cross-disorder PGS (all |β|s ≥ 0.055, all p values ≤ .002, %ΔR²’s > 0.29%) (Table S7 and Figures S2 and S3). General psychopathology accounted for 11.3% to 17.8% of the association between cross-disorder PGS and reported PLEs, although associations between cross-disorder PGS with reported PLEs remained, even when considering general psychopathology (total PLEs: |β| = 0.034, p = .048, ΔR² = 0.24%; significantly distressing PLEs: |β| = 0.056, p = .002, %ΔR² = 0.72%) (Table S9). Although PLEs were not significantly associated with birth weight PGS (Table 1), reported birth weight was associated with PLEs and birth weight PGS (|β|s ≥ 0.047; all p values ≤ .003; %ΔR²’s > 0.25%) (Table S7 and Figure S2).

PLEs and Brain Structure

Global Metrics. Greater reported PLEs (both total and endorsement of significantly distressing PLEs) were associated with lower intracranial volume, total cortical volume, total subcortical volume, and total surface area (all |β|s > 0.058; all p values < 3.82 × 10⁻⁴; all p_FDRs < 1.24 × 10⁻³; all %ΔR²’s > 0.29%) (Table 2 and Figure 1B) but not cortical thickness (all |β|s < 0.026, all p values > .08).

Regional Metrics. When examining individual structural MRI regions for volume, surface area, and thickness, greater total PLEs were associated with lower bilateral (p_FDR = .04) and right inferior parietal cortical thickness (both |β|s > 0.047; both p values < 1.76 × 10⁻³; both %ΔR²’s > 0.21%) (Table 2 and Figure 1B). No other individual structural MRI regions passed FDR correction (Tables S10–S13).

Mediation Analyses

Educational Attainment PGS. EDU PGS was positively associated with all brain structure phenotypes linked to reported PLEs (i.e., intracranial volume, total cortical volume, total subcortical volume, total cortical surface area; all |β|s > 0.069, all p values < 4.28 × 10⁻⁷) (Table 3), except inferior parietal cortical thickness (all |β|s < 0.027, all p values > .08). A series of individual mediational models examined whether each brain structure phenotype associated with both EDU PGS and PLEs (i.e., intracranial volume, total cortical volume, total subcortical volume, total cortical surface area) indirectly linked EDU PGS to total PLEs alongside cognitive performance in parallel. There was evidence consistent with all volume metrics partially mediating the association between EDU PGS and total PLEs (all indirect effect [path a*b] bias-corrected 95% confidence intervals [CIs] within ~0.012 to ~0.001; proportion mediated: 3.33%–8.79%) (Figure 2A–C). Specifically, evidence was consistent with lower educational attainment PGS being associated with reduced volumes, which were, in turn, associated with higher PLEs. There was no evidence consistent with total surface area indirectly linking EDU PGS to total PLEs (indirect effect 95% CI, −0.004 to 0.002).

There was also evidence consistent with cognition uniquely partially mediating the association between EDU PGS and total PLEs in each model (all within 95% CI −0.038 to −0.020; proportion mediated: 28.57%–32.22%) (Figure 2). Specifically,
Psychotic-like Experiences and Polygenic Liability

Table 3. Associations Between PGSs and Structural Neural Metrics

<table>
<thead>
<tr>
<th>Metric</th>
<th>b (95% CI)</th>
<th>%ΔR²</th>
<th>p</th>
<th>%ΔR²</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Structural Metrics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intracranial volume</td>
<td>1.27 (1.01 to 1.53)</td>
<td>0.090</td>
<td>6.908</td>
<td>0.010</td>
<td>2.21 (1.69 to 2.90)</td>
</tr>
<tr>
<td>Total cortical volume</td>
<td>5.48 (4.01 to 7.39)</td>
<td>0.040</td>
<td>2.34 (1.48 to 3.54)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total subcortical volume</td>
<td>1.72 (1.12 to 2.71)</td>
<td>0.060</td>
<td>1.97 (1.14 to 3.28)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total surface area</td>
<td>1.72 (1.12 to 2.71)</td>
<td>0.060</td>
<td>1.97 (1.14 to 3.28)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regional Metrics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average inferior parietal thickness</td>
<td>−1.35 (−1.56 to −1.14)</td>
<td>0.042</td>
<td>0.013</td>
<td>0.042</td>
<td>0.005</td>
</tr>
</tbody>
</table>

Tests are two tailed, %ΔR² = change in marginal proportion of variance explained, calculated as the difference in pseudo-\(R^2 \) between the current model vs. a model excluding the predictor of interest, converted to a percentage; CI, confidence interval; FDR, false discovery rate-corrected; PGS, polygenic score.

DISCUSSION

Here, we show that PLEs in middle childhood (\(n = 4650 \)) are associated with GWAS-derived PGSs (\(%\Delta R^2 = 0.120\%–0.660\% \)) and putative intermediary neural and behavioral phenotypes that may partially underlie these associations (all \(%\Delta R^2 = 0.21\%–2.85\% \)). Genomic liability for broad-spectrum psychopathology (cross-disorder PGS) and educational attainment (EDU PGS) were associated with both PLE measures; however, schizophrenia and late-life PLE PSGs were only significantly associated with the presence of distressing PLEs. Consistent with these findings, group contrasts revealed that schizophrenia PGS among those experiencing significantly distressing PLEs was significantly higher than those reporting PLEs without significant distress (Table S1). One possible explanation is that PLEs may portend broad psychopathology vulnerability (1), while significantly distressing PLEs may more specifically foreshadow psychosis risk (40).

Finally, reported PLEs were associated with lower global (e.g., intracranial volume) and regional (i.e., inferior parietal thickness) was associated with broad PLEs brain structure metrics (Figure 1B), with evidence that lower volume (i.e., intracranial volume, total cortical, and total subcortical) may indirectly link EDU PGS to reported PLEs alongside cognition (Figure 2).

Collectively, these results show that PGSs derived from adult GWASs can generalize to indices of risk among children and provide incremental predictive usefulness beyond measured proximal phenotypes.

Polygenic Propensity for Education Attainment

PGS for lower educational attainment was the most robust PGS predictor of reported PLEs. These findings suggest that prior reports linking EDU PGS to severe psychosis among

Additionally, associations between EDU PGS and PLEs remained even when accounting for anhedonia (Supplement).
clinical patients (41) may generalize to earlier markers of psychosis spectrum symptoms during middle childhood. The fact that cognition accounted for a large portion (28.57%–32.22% of variance) of the association between EDU PGS and reported PLEs aligns with evidence that premorbid cognition prospectively predicts PLEs and psychopathology, including schizophrenia (21), and suggests that such vulnerability may be partially genomic in origin. However, other work has failed to find a strong genetic correlation between later-life PLEs and intelligence (6); it is possible that genomic associations between PLEs and cognition may differ across the life course and be more correlated during childhood with divergence in later life [e.g., PLEs related to cognitive decline and/or dementia (42)]. Notably, executive functioning PGS generally showed similar patterns compared with models including EDU PGS, although executive functioning PGS showed weaker effects with neural metrics (Supplement). In addition to PGSs, it is also likely that there were a number of additional influences on cognitive performance that were not included in this study, including additional pathophysiological factors (e.g., functional connectivity) and environmental influences (e.g., exposure to toxins).

Supportive of neurodevelopmental models of psychosis spectrum disorders positing that brain differences underlie cognition-related vulnerability for schizophrenia, we found evidence consistent with brain volume accounting for a portion of the association between educational attainment PGS and reported PLEs (3.22%–8.79%) (Table S7; Figure 2). However, given that neural metrics are likely less proximal to EDU PGS than cognition, it is unsurprising that associations for cognition were larger than associations for brain structure (7). Associations between reported PLEs and global volume reductions are consistent with previous research examining volumetric alterations (22). The fact that lower global volume may indirectly link EDU PGS and reported PLEs is consistent with the notion that genomic liability for lower cognitive functioning may be associated with altered neural maturational processes, which may contribute to the development or maintenance of psychosis spectrum symptoms (43).

General Psychopathology, Schizophrenia, and PLEs Polygenic Risk

Genomic liability to general psychopathology (i.e., cross-disorder PGS) was associated with broadly defined (i.e., total) and severe (i.e., significantly distressing) PLEs, while PGSs for schizophrenia and PLEs were only associated with severe PLEs. These findings align with evidence that polygenic and phenotypic psychopathology associations may be nonspecific in middle childhood and potentially become increasingly specific with increased severity (e.g., with more clinically significant PLEs) and/or maturation (e.g., in adolescence) (44).

We did not find strong evidence of associations between broadly defined PLEs and polygenic risk for later-life PLEs, although there were associations between later-life PLE PGSs and more severe PLEs. Alongside evidence of similar effect size estimates across both PLE measures within PGSs, it is plausible that with better powered discovery GWASs and target samples, PLEs defined broadly and with greater severity will show similar relationships.

Genomic Propensity for Birth Weight and Inflammation

Reported birth weight was negatively associated with PLEs during middle childhood, consistent with research in young adults (45), and positively associated with birth weight PGS; however, birth weight PGS was not associated with reported PLEs. Together, this raises the intriguing possibility that environmental factors associated with lower birth weight, as opposed to genetic predisposition to low birth weight, may underlie the association between lower birth weight and PLEs (46).

There were nominally significant associations between inflammation PGS and total reported PLEs, although this was trend level after adjusting for multiple testing. Inflammation has been widely associated with psychopathology, with emerging evidence suggesting that inflammation-driven variation in neurodevelopment (i.e., neural pruning during puberty) may play a prominent role in the etiology of schizophrenia (18). It is possible that associations between inflammation PGS and the expression of PLEs may increase following periods of heightened neural development (e.g., adolescence) and/or in interaction with other factors (e.g., infection) that will require larger samples to address.

Limitations

It is important to consider limitations of this study while interpreting these findings. First, the generalizability of these...
Psychotic-like Experiences and Polygenic Liability

findings is limited, because we restricted most analyses to individuals of European ancestries due to the sample compositions of the discovery GWASs and evidence that polygenic risk does not translate across ancestries (47). Owing to this exclusion and inclusion for quality control reasons, a number of participants \(n = 7225 \) were not included in analyses. Excluded participants showed higher scores than included participants on a number of measures (Table S15), and therefore, if anything, would have contributed to the clinical severity of this sample. Second, and consistent with expectations from the ABCD Study (28), which uses a heterogeneous sample, and from prior PGS studies (7), the effects reported are generally small (for associations with reported PLEs, \(|\hat{p}| < 0.09, \%\Delta R^2 < 0.7\%) (48). Third, prevalence rates of PLEs (e.g., 55.3\% for total PLEs) were higher than some previous estimates (i.e., ~10\%) (1), although consistent with others (49). This high rate of endorsement may reflect overendorsement or transient phenomena related to assessing PLEs in middle childhood that may have diluted the magnitude of associations found in this study. Total PLEs are unlikely useful as a clinical indicator, although they may be useful as a measure of the dimension of PLEs, including developmentally normative experiences and trait-relevant phenomena (e.g., oddness). Regardless, the PQ-BC, including total scores, has been validated for use with children as young as age 9 (4), and there is evidence that only people with high trait levels of PLEs typically endorse PQ-BC items (50). Fourth, while the nonexperimental and cross-sectional nature of our data does not preclude conducting mediation analyses (51), they should not be interpreted by themselves to imply causation. However, these analyses provide some empirical evidence consistent with putative gene-brain-behavior mechanisms underlying childhood PLE risk. Fifth, it is important to note that the GWASs have differential power to detect effects (e.g., the EDU GWAS was based on 766,345 individuals, whereas the PLE GWAS was based on 127,966 individuals). These differences in power present challenges for interpreting across different PGSs. As discovery GWASs continue to grow, it will be critical to acquire additional GWAS datasets across development, including in childhood, to examine genetic correlations for the same phenotype across ages as well as differential associations with psychopathology and structural neural metrics. Future studies using the ABCD Study dataset should further examine the validity of the PGS scores, including validity in other populations, and potential clinically applicable thresholds (52). Finally, future research should begin to examine associations between PLEs, PGSs, and other factors previously found to be associated with PLEs in the ABCD Study (e.g., environmental toxins) (23).

Conclusions

Broadly, GWAS-based PGSs for psychopathology and EDU generated from adult samples are associated with indices of PLEs during middle childhood. Polygenic propensity to EDU was the most robust predictor of reported PLEs, and there was evidence that these associations may be partially mediated by cognitive performance and brain structure. PGS associations mirrored phenotypic evidence that broadly defined PLEs are associated with broad-spectrum psychopathology risk while more severe PLEs may index psychosis liability. Taken together, this study documents that GWAS-derived PGSs index psychopathology and psychosis vulnerability in children. PGSs may support the identification of putative intermediate biological and behavioral mechanisms through which genomic risk for psychopathology emerges. Although there are a number of important ethical considerations with regards to using PGSs for prediction purposes, including concerns about early identification efforts and the potential for exacerbating health disparities that must be addressed before clinical use (53), more severe PLEs may be important early indicators of psychosis liability. Therefore, future research should begin to examine whether severe PLEs can be utilized as markers for further assessment and potential intervention.

ACKNOWLEDGMENTS AND DISCLOSURES

This work was supported by the National Institute of Health (Grant No. U01 DA041120 [to DBJ]; Grant Nos. K23MH121792 and L30MH112057 [to NRK]; Grant Nos. MH109532 and DA032573 [to AA]; Grant No. F32 AA027435 [to EGU]; Grant No. T32-DA007261 [to ASH]; and Grant Nos. R01- AG045251, R01-HD083614, R01-AG052564, R21-AA027827, and R01- DA046224 [to RB]).

Data used in the preparation of this article were obtained from the Adolescent Brain Cognitive Development (ABCD) Study (https://abcdstudy.org), held in the National Institute of Mental Health Data Archive. This is a multisite, longitudinal study designed to recruit more than 11,500 children age 9–10 years and follow them over 10 years into early adulthood. The ABCD Study is supported by the National Institutes of Health and additional federal partners under Grant Nos. U01DA041022, U01DA041025, U01DA041028, U01DA041048, U01DA041089, U01DA041093, U01DA041106, U01DA041117, U01DA041120, U01DA041134, U01DA041148, U01DA041156, U01DA041174, U24DA041123, and U24DA041147. A full list of supporters is available at https://abcdstudy.org.nih-collaborators. A listing of participating sites and a complete listing of the study investigators can be found at https://abcdstudy.org/principal-investigators.html. ABCD consortium investigators designed and implemented the study and/or provided data but did not necessarily participate in analysis or writing of this report. This manuscript reflects the views of the authors and may not reflect the opinions or views of the National Institutes of Health or ABCD consortium investigators.

We thank Drs. Michelin and Kotow for the creation of the general psychopathology scores. The authors also thank Dr. Tim Bigdeli for access to evidence that only people with high trait levels of PLEs typically endorse PQ-BC items (50). Fourth, while the nonexperimental and cross-sectional nature of our data does not preclude conducting mediation analyses (51), they should not be interpreted by themselves to imply causation. However, these analyses provide some empirical evidence consistent with putative gene-brain-behavior mechanisms underlying childhood PLE risk. Fifth, it is important to note that the GWASs have differential power to detect effects (e.g., the EDU GWAS was based on 766,345 individuals, whereas the PLE GWAS was based on 127,966 individuals). These differences in power present challenges for interpreting across different PGSs. As discovery GWASs continue to grow, it will be critical to acquire additional GWAS datasets across development, including in childhood, to examine genetic correlations for the same phenotype across ages as well as differential associations with psychopathology and structural neural metrics. Future studies using the ABCD Study dataset should further examine the validity of the PGS scores, including validity in other populations, and potential clinically applicable thresholds (52). Finally, future research should begin to examine associations between PLEs, PGSs, and other factors previously found to be associated with PLEs in the ABCD Study (e.g., environmental toxins) (23).

From the Department of Psychiatry (NRK, EJL, ASH, AA, DMB), Washington University School of Medicine; and Department of Psychological and Brain Sciences (SEP, DMB, RB), Washington University, St. Louis, Missouri; Department of Psychiatry (DAAB), University of Pittsburgh, Pittsburgh, Pennsylvania; and the Population Neuroscience and Genetics Laboratory (WKT), University of California San Diego, San Diego, California.

Address correspondence to Nicole R. Karcher, Ph.D., at nkarcher@wustl.edu.

Received Apr 2, 2021; revised Jun 1, 2021; accepted Jun 28, 2021.

Supplementary material cited in this article is available online at https://doi.org/10.1016/j.bpsc.2021.06.012.
Psychiatric-like experiences and Polygenic Liability

REFERENCES

Psychotic-like Experiences and Polygenic Liability