Connected Spaces.\(^1\)

1 Definition.

Definition 1. Let \((X, d)\) be a (non-empty) metric space. \(X\) is disconnected iff there are non-empty, disjoint, open sets \(A, B \subseteq X\) such that \(A \cup B = X\). \(X\) is connected iff it is not disconnected.

A subtlety is that if \(X\) is a subspace of a larger metric space \(Y\), then open means with respect to \(X\), not with respect to \(Y\). For example, consider \(X = \{0, 1\} \subseteq \mathbb{R}\). Then \(X\) is disconnected: take \(A = \{0\}\) and \(B = \{1\}\). Here \(A\) and \(B\) are open in \(X\) even though they are not open in \(\mathbb{R}\). The following result says that if \(X\) is a subset of a larger metric space \(Y\), then one can, in fact, also check connectedness by working with sets that are open in \(Y\). I use this fact in the proof of the main result of this section, Theorem 2.

Theorem 1. Let \((Y, d)\) be a (non-empty) metric space and let \(X \subseteq Y\). Then \(X\) is disconnected iff there are disjoint sets \(O_1, O_2 \subseteq Y\) that are open in \((Y, d)\) and such that \(O_1 \cap X \neq \emptyset, O_2 \cap X \neq \emptyset\) and \(X \subseteq O_1 \cup O_2\).

Proof: \(\Rightarrow.\) Since \(X\) is disconnected, there are non-empty, disjoint sets \(A, B \subseteq X\) that are open in \(X\) and such that \(A \cup B = X\). Since \(A\) is open in \(X\), for any \(a \in A\), there is an \(\varepsilon_a > 0\) such that \(\{x \in X : d(a, x) < \varepsilon_a\}\) has no intersection with \(B\). This implies that \(N_{\varepsilon_a}(a) = \{x \in Y : d(a, x) < \varepsilon_a\}\) also has no intersection with \(B\). Let

\[
O_1 = \bigcup_{a \in A} N_{\varepsilon_a/2}(a).
\]

Define \(O_2\) similarly for \(b \in B\). Note that, under this construction, for any \(a \in A, b \in B, \varepsilon_a, \varepsilon_b \leq d(a, b)\), hence \(\varepsilon_a/2, \varepsilon_b/2 \leq d(a, b)/2\).

All of the conditions for \(O_1\) and \(O_2\) are immediate except disjointness. Consider, then, any element \(x \in O_1\). Then there is an \(a \in A\) such that \(x \in N_{\varepsilon_a/2}(a)\). Take any \(b \in B\). Then, by the Triangle Inequality and the construction of \(\varepsilon_a\),

\[
d(x, b) \geq d(a, b) - d(x, a) > d(a, b) - \varepsilon_a/2 \geq d(a, b)/2 \geq \varepsilon_b/2.
\]

Therefor \(x \notin N_{\varepsilon_b/2}(b)\). Since \(b\) was arbitrary, \(x \notin O_2\).

\(\Leftarrow.\) Almost immediate: set \(A = O_1 \cap X\) and \(B = O_2 \cap X\). \(\blacksquare\)

\(^1\)©2020. This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License.
Thus, continuing the example from above, if \(X = \{0, 1\} \subseteq \mathbb{R} \) then \(X \) is disconnected since I can take \(O_1 = (-1/2, 1/2) \) and \(O_2 = (1/2, 3/2) \).

On the real line, connected sets must be of a certain form. Recall that a set \(X \subseteq \mathbb{R} \) is an interval iff for any \(a, b \in X \) with \(a \leq b \), if \(a < x < b \), then \(x \in X \).

Theorem 2. If \(X \subseteq \mathbb{R} \), then \(X \) is connected iff it is an interval.

Proof. By contraposition.

\(\Leftarrow \). Suppose that \(X \) is not connected. Then by Theorem 1, there are disjoint sets \(O_1, O_2 \) that are open in \(\mathbb{R} \) and such that \(O_1 \cap X \neq \emptyset \), \(O_2 \cap X \neq \emptyset \), and \(X \subseteq O_1 \cup O_2 \).

Choose any \(a \in O_1 \cap X, b \in O_2 \cap X \). Without loss of generality, suppose \(a < b \).

Let \(E = \{x \in O_1 : x < b\} \). \(E \) is bounded above (by \(b \)) and non-empty (since \(a \in E \)). Let \(x^* = \sup E \).

I claim that \(a < x^* < b \) and \(x^* \notin X \), hence \(X \) is not an interval.

1. Claim: \(a < x^* \). Since \(a \in O_1 \) and \(O_1 \) is open, there is an \(\varepsilon > 0 \) such that \(N_\varepsilon(a) \subseteq O_1 \). Since \(b \in O_2, b \notin O_1 \). Since \(a < b \), this implies \(N_\varepsilon(a) \subseteq E \). Since \(x^* \) is an upper bound for \(E \), this implies that \(a + \varepsilon \leq x^* \), hence \(a < x^* \).

2. Claim: \(x^* < b \). Since \(b \in O_2 \) and \(O_2 \) is open, there is an \(\varepsilon > 0 \) such that \(N_\varepsilon(b) \subseteq O_2 \). Therefore any element of \(N_\varepsilon(b) \) is an upper bound for \(E \), which implies \(x^* \leq b - \varepsilon \), hence \(x^* < b \).

3. Claim: \(x^* \notin X \). This follows from the following subclaims.

 - Claim: \(x^* \notin O_1 \). Take any \(x \in O_1 \) such that \(x < b \). As in the proof that \(a < x^* \), this implies \(x < x^* \). Thus, \(x^* < b \) but \(x^* \) is strictly greater than any \(x \in O_1 \) such that \(x < b \), hence \(x^* \notin O_1 \).
 - Claim: \(x^* \notin O_2 \). Take any \(x \in O_2 \) that is an upper bound of \(E \). As in the proof that \(x^* < b \), this implies \(x^* < x \). Thus, \(x^* \) is an upper bound of \(E \) but \(x^* \) is strictly less than any \(x \in O_2 \) that is an upper bound of \(E \), hence \(x^* \notin O_2 \).

\(\Rightarrow \). Suppose that \(X \) is not an interval. Then there are points \(a, b \in X \), with \(a < b \), and a number \(x^* \) such that \(a < x^* < b \) and \(x^* \notin X \). Take \(O_1 = (-\infty, x^*) \) and \(O_2 = (x^*, \infty) \) and apply Theorem 1. –

If I remove a point from the interior of an interval in \(\mathbb{R} \), I get a disconnected set: although \([0, 3] \) is connected, \([0, 1) \cup (2, 3] \) is disconnected. This is not true in higher dimensions. For example, \(S = \{ x \in \mathbb{R}^2 : ||x|| \leq 1 \} \), which is the unit disk in \(\mathbb{R}^2 \), is connected, but also so is \(S \setminus \{0\} \), which is the unit disk with the origin removed. This is an important topological difference between \(\mathbb{R} \) and Euclidean spaces of higher dimension. It is the fundamental reason why some useful results for \(\mathbb{R} \), notably the Mean Value Theorem, do not fully generalize, and why other useful results, such as the Intermediate Value Theorem, generalize only with great difficulty.
(here, I am interpreting the Brouwer Fixed Point Theorem as the generalization of the Intermediate Value Theorem).

Remark 1. If \(X = A \cup B \), where \(A \) and \(B \) are disjoint, then \(A \) is open iff \(B \) is closed, and vice versa. Hence \(X \) is disconnected iff \(X = A \cup B \) where \(A, B \) are non-empty, disjoint, closed sets. \(\square \)

Remark 2. Recall that in any metric space \(X \), \(\emptyset \) and \(X \) are both open and closed. The preceding remark establishes that \(X \) is disconnected iff there are sets other than \(\emptyset \) and \(X \), namely the sets \(A \) and \(B \) in the definition of disconnected, that are also both open and closed. For example, if \(X = \{0, 1\} \subseteq \mathbb{R} \), then \(\{0\} \) and \(\{1\} \) are both open and closed.

Stating the same idea differently, \(X \) is connected iff the only sets in \(X \) that are both open and closed are \(\emptyset \) and \(X \) itself. One can show that if \(X \) is a normed vector space, then it is connected and hence that there are no sets in such spaces, other than \(\emptyset \) and \(X \) itself, that are both open and closed. \(\square \)

Remark 3. Let \((Y,d) \) be a metric space. \(A, B \subseteq Y \) are separated iff \(\overline{A} \cap B = A \cap \overline{B} = \emptyset \). \(A \) and \(B \) are separated iff \(X = A \cup B \) is disconnected. The argument is as follows.

\(\Rightarrow \). Suppose that \(A \) and \(B \) are separated. \(\overline{A} \cap B = \emptyset \) implies that \(A \) has no limit points in \(B \). Since \(A \cup B = X \), this implies that \(A \) is, in fact, closed in \(X \). A similar argument shows that \(B \) is closed in \(X \), which implies that \(X \) is disconnected (by Remark 1).

\(\Leftarrow \). Suppose that \(X \) is disconnected. Then there are non-empty, disjoint sets \(A, B \subseteq X \) that are open in \(X \) and such that \(X = A \cup B \). But then, since \(B \) is open in \(X \), its complement in \(X \), namely \(A \), is closed in \(X \), hence \(\overline{A} = A \), which implies \(\overline{A} \cap B = \emptyset \). Similarly, \(A \cap \overline{B} = \emptyset \). \(\square \)