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Section 1: Introduction



Introduction

In studying the behavior of non-linear functions f : RN → RM in
the vicinity of x̂,

We use derivatives to form the linear aproximation Df (x̂)
We use linear theory to study the behavior of the linear
mapping Df (x̂) : RN → RM

We use calculus theory to translate information about the
non-linear function f in a neighborhood of x̂.
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Notation 1

A vector / point x ∈ RN is represented as:

x = (x1, . . . , xN) =

 x1
...
xN


′

N×1
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Notation 2

A function f : RN → RM can be represented as:

f (x) = (f1(x), . . . , fM(x))

since f (x) is a point in RM, it can be represented as an M× 1
matrix. Each of its coordinates is a function fm(x) : RN → R for
m = 1, . . . ,M

f (x) =

 f1(x)
...

fM(x)


M×1
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Section 2: Partial andDirectional
Derivatives



Partial Derivatives

Given a function f : RN → RM,

De�nition 1
The partial derivative of fm with respect to the n th coordinate,
xn, evaluated at the point x̂, is:

Dnfm(x̂) =
∂fm(x̂)
∂xn

= lim
t→0

fm (x̂1, . . . , x̂n + t, . . . , x̂N)− fm(x̂)
t

assuming that the limit exists.
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The Jacobian

The matrix of partial derivatives of all the coordinate functions
fm with respect to all the xn evaluated at the point x̂ is called
Jacobian of f at x̂.

Jf (x̂) =

 D1f1(x̂) . . . DNf1(x̂)
... . . . ...

D1fM(x̂) · · · DNfM(x̂)


M×N

If the partial derivatives Dnfm(x̂) are de�ned for all x̂ in the
domain of f , then one can de�ne functions Dnfm.
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Directional Derivatives

A direction in RN is a vector v ∈ RN s.t. ‖v‖ = 1.

De�nition 2
The directional derivative of the m th coordinate function fm in
the direction v evaluated at the point x̂, is:

Dvfm(x̂) = lim
t→0

fm(x̂+ tv)− fm(x̂)
t

assuming that the limit exists.
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Directional Derivatives - Example

f : R2 → R, f (x) = 3x1 + x1x2, x̂ = (1, 1), v =
(

1√
2 ,

1√
2

)
Dvf (x̂) = lim

t→0

f (x̂+ tv)− f (x̂)
t

= lim
t→0

f
(
1+ t√

2 , 1+
t√
2

)
− f (1, 1)

t

= lim
t→0

3
(
1+ t√

2

)
+
(
1+ t√

2

)2
− (3+ 1)

t

= lim
t→0

3+ 3t√
2 + 1+ 2t√

2 +
1
2 t
2 − 4

t

= lim
t→0

5√
2
+
t
2

=
5√
2
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Directional Derivatives - Interpretation

Let Dvf (x̂) denote the M -dimensional vector containing the
directional derivatives Dvfm(x̂) for each coordinate function at x̂

Dvf (x̂) = (Dvf1(x̂), . . . ,DvfM(x̂)) =

 Dvf1(x̂)
...

DvfM(x̂)


Then, for t small, the change in the function when x̂ changes in
direction v can be approximated by Dvf (x̂) :

f (x̂+ tv)− f (x̂) ≈ Dvf (x̂)t
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Partial and Directional Derivatives

Partial derivatives are a special case of directional derivatives:

De�ne en = (0, . . . ,0, 1,0, . . . ,0) (1 in the nth position), and let
v = en.
Denfm(x̂) = lim

t→0

fm (x̂+ ten)− fm(x̂)
t

= lim
t→0

fm (x̂1 + 0, . . . , x̂n−1 + 0, x̂n + t, x̂n+1 + 0, . . . , x̂N)− fm(x̂)
t

= lim
t→0

fm (x̂1, . . . , x̂n + t, . . . , x̂N)− fm(x̂)
t

= Dnfm(x̂)
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Section 3: Differentiability



Differentiability

Given a function f : RN → RM,

De�nition 3
f is di�erentiable at x̂ if there exists an M× N matrix Df (x̂) called
the derivative of f at x̂ , such that for any sequence of vectors
h ∈ RN,h→ 0, the following limit exists:

lim
h→0

‖f (x̂+ h)− f (x̂)− Df (x̂)h‖
‖h‖ = 0

f is di�erentiable i� f is di�erentiable at every x in its domain.
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Differentiability - Intuition

f (x̂+ h) : how much the function changes when x̂ changes in
h.
f (x̂) + Df (x̂)h : linear approximation of the change in the
function.
f (x̂+ h)− f (x̂)− Df (x̂)h : approximation error

As h→ 0 , the approximation error goes to zero faster than h.

Di�erentiable functions admit good linear approximations.
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Continuity

Given a function f : R→ R and an element x0 of the domain, f is
said to be continuous at the point x0 when:

for any ε > 0 there exists a δ > 0 such that for all x in the
domain of f with x0 − δ < x < x0 + δ, the value of f (x) satis�es

f (x0)− ε < f (x) < f (x0) + ε

More formally:

De�nition 4
f is continuous at x̂ if ∀ ε > 0, ∃ δ > 0 s.t.

‖x− x̂‖ < δ ⇒ ‖f (x)− f (x̂)‖ < ε.

We say that f is continuous if it is continuous at every point x in
its domain.
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Continuous Differentiability

De�nition 5
A function f : R→ R is Cr (r continuously di�erentiable function)
i� the r th derivative exists and is continuous.

Theorem 1
f : RN → RM is C1 if and only if Dnfm is continuous for every n,m.

Proof: Rudin.

In particular, the function Df exists if all partial derivatives are
continuous.

We can think of Df as a function from RN to the set of all linear
transformations from RN to RM (remember that Df (x) is an M× N
matrix).
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Counterexample

f : R3 → R, f (x) =
{

x31
x22+x23

x 6= 0
0 x = 0

Df does not exist even though all partials at 0 exist (because the
partial derivatives Dnf are not continuous):

Df (0) =
[
0 0 0

]
Df (x) =

[
3x21
x22+x23

−2x31x2
(x22+x23)

2
−2x31x3
(x22+x23)

2

]
for x 6= 0

Henceforth, we will assume that f is at least C1 .
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The Chain Rule

Theorem 2 (The Chain Rule)
Let f : RN → RM,g : RM → RL, x̂ ∈ RN, and de�ne the composite
function h : RN → RL by h(x) = g ◦ f(x) = g(f (x)). If f is
di�erentiable at x̂ and g is di�erentiable at ŷ = f (x̂), then h is
di�erentiable at x̂ and

Dh(x̂)︸ ︷︷ ︸
L×N

= Dg(f (x̂))︸ ︷︷ ︸
L×M

Df (x̂)︸ ︷︷ ︸
M×N

Proof: Omitted.
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The Chain Rule: Example

Let f : R→ R2, f (x) =
[
x
x2
]

and g : R2 → R,g(y) = y21 + y2;

h(x) = 2x2 Dh(x̂) = [4x̂]

Df (x̂) =
[
1
2x̂

]
, Dg(ŷ) =

[
2ŷ1 1

]
Dh(x̂) = Dg(f (x̂)) · Df (x̂) =

[
2x̂ 1

]
·
[
1̂
2x̂

]
= 4x̂
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The Derivative and Directional Derivatives

Theorem 3
If f : RN → RM is di�erentiable at x̂, then for any v ∈ RN such that
‖v‖ = 1,

Dvf (x̂) = Df (x̂)v

18 / 37



The Derivative and Directional Derivatives

Proof.
De�ne:
g : R→ RN by g(t) = x̂+ tv
h : R→ RM by h = f ◦ g,h(t) = f (g(t)) = f (x̂+ tv)
The derivative of h evaluated at 0 is:

h(t)− h(0)
t =

f (x̂+ tv)− f (x̂)
t

or
Dh(0) = Dvf (x̂)

By the Chain rule:
Dh(0) = Df (x̂)Dg(0)

Using the de�nition of g:
Dg(t) = v

So:
Dvf (x̂) = Dh(0) = Df (x̂)v
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Example

f : R2 → R
f (x) = 3x1 + x1x2, x̂ = (1, 1), v =

(
1√
2 ,

1√
2

)
and we got that Dvf (x̂) = 5√

2
Df (x̂) = [3+ x2 x1] = [4 1]

Df (x̂)v =
[
4 1

] [ 1√
2
1√
2

]
= 5√

2 = Dvf (x̂)

Using the previous theorem, let v = en = (0, . . .0, 1,0, . . . ,0)

Deη f (x̂) =


∂f1
∂∂n...
∂fm
∂xn

 = Df (x̂)en, which is the n th column of Df (x̂)

So Df (x̂) = Jf (x̂) if Df (x̂) exists.
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More on Differentiability.

Theorem 4
A function f : RN → RM is di�erentiable at x̂ i� each of its
component functions fm is di�erentiable at x̂.
Moreover, if f is di�erentiable at x̂ , the partial derivatives of the
component functions fm exist at x̂, and the derivative of f at
x̂,Df (x̂), is the matrix of �rst partial derivatives of the component
functions evaluated at x̂.

Df (x̂) =

 Df1(x̂)
...

DfM(x̂)


M×N

Where each of the Dfm(x̂) is a 1× N row vector,
Dfm(x̂) = [D1fm(x̂) · · ·DNfm(x̂)]M×N

Proof: Omitted.
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Section 4: Real Valued Functions



Tangent Plane

If f : RN → R is di�erentiable at x̂, then the tangent plane is
de�ned as the graph of the function

B(x) = Df (x∗) [x− x∗] + f (x∗)
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Gradient

Recall

Df (x̂) =
[

∂f
∂x1 (x̂) . . . ∂f

∂xN (x̂)
]
1×N

The transpose of Df (x̂) is called gradient

∇f (x̂) = [Df (x̂)]′ =


∂f
∂x1 (x̂)...
∂f
∂xN (x̂)


N×1

=
(
∂f
∂x1 (x̂), . . . ,

∂f
∂xN (x̂)

)
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The Gradient and Directional Derivatives

In particular,

Dvf (x̂) = Df (x̂)v =
[
Df (x̂)′

]
· v = ∇f (x̂) · v

Directional derivatives can be written as the inner product
between the gradient and the direction for a real valued function.
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A Key Fact About the Gradient

Given a di�erentiable real valued function f : RN → R and a
point x̂ in RN,∇f (x̂) points in the direction in which f increases
most rapidly.
Proof.
maxv s.t. ‖v‖=1 Dvf (x̂) = ∇f (x̂) · v

Using the geometric de�nition of the inner product 1,

∇f (x̂) · v = ‖∇f (x̂)‖‖v‖ cos θ = cos θ‖∇f (x̂)‖

We know that cos θ ∈ [−1, 1] and cos θ = 1 when θ = 0 . So both v
and ∇f (x̂) are collinear.

1https://en.wikipedia.org/wiki/Dot_product
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More Gradient Intuition

Given f : RN → R, x̂,∇f (x̂) ∈ RN.
Given a point x̂,∇f (x̂) points, in the domain, in the direction
in which x̂ should be increased to obtain the fastest increase
in f .

For N = 2, think of a hill: f (x) is altitude, and coordinates are
given by x = (x1, x2)
The gradient ∇f evaluated at x̂ contains all the information
we need to know to climbing the hill at the fastest speed
possible.

∇f (x̂) =
[

∂f
∂x1 (x̂)
∂f
∂x2 (x̂)

]
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Gradient: Example 1

f : R2 → R

f (x) = 3 ln x1 + ln x2, x̂ = (2, 2)

∇f (x̂) =
[

∂f
∂x2 (x̂)
∂f
∂x2 (x̂)

]
=

[ 3
x21
x2

]
=

[ 3
21
2

]

‖∇f (x̂)‖ =
√

10
4 =

√
10
2

v =
(

3√
10 ,

1√
10

)
Using the above interpretation, if I travel north a certain small
distance, I will ascend 1/2 feet (meters); if I go east, I will go up
the hill 3/2 feet (meters). The direction of fastest increase is
northeast.
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Gradient: Example 2

Consider a production function Q : R2 → R,Q(K, L) = 4K3/4L1/4

And the current input bundle is (K̂, L̂) = (10,000; 625)

∇Q(K̂, L̂) =
[

∂Q
∂L(K̂, L̂)
∂Q
∂L (K̂, L̂)

]
=

[
3L̂1/4
K̂1/4
K̂3/4
L̂3/4

]
=

[ 3
2
8

]

‖∇Q(K̂, L̂)‖ =
√
41
2

v =
(

3√
41
,
16√
41

)
If the �rm wants the fastest increase in production, it should add
capital and labor at a ratio of 3 to 16 .

28 / 37



Level Sets

De�nition 6
L(c) is a level set of the real valued function f : RN → R i�
L(c) =

{
x | x ∈ RN , f (x) = c

}
, where c ∈ R

We can also de�ne a level set relative to some point x̂ in the
domain:

L(x̂) =
{
x|x ∈ RN, f (x) = f (x̂)

}
We can completely represent f by its level sets.

They let us reduce by one the number of dimensions needed to
represent the function.
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Level Sets: Example

u : R2 → R, x ∈ R2, u(x) = x1x2

The level sets of this utility function are indi�erence curves.

L(5) = {x | x ∈ R2,u(x) = x1x2 = 5}

At x = (5/2, 2),u(5/2, 2) = 5

L(5/2, 2) = {x | x ∈ R2,u(x) = x1x2 = 5}
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Application of the Chain Rule: Implicit Function
Theorem

Consider a continuously di�erentiable function f : R2 → R and a
point x̂ ∈ R2, and let ŷ = f (x̂)

The level set of f through x̂ is the set of points x such that
f (x) = ŷ.

The Implicit Function theorem states that if f is well behaved
at a point x̂ then the level set of f through x̂ is the graph of a
continuously di�erentiable function, at least near x̂.
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Implicit Function Theorem continued

In the 2 -dimensional case, x̂2 = ψ (x̂1) , and

dψ
dx1

(x̂1) = −
∂f
∂x1 (x̂)
∂f
∂x2 (x̂)

The level set of f through x̂, L(x̂), is the graph of ψ.

The behavior close to x̂ in L(x̂) can be approximated by the
tangent line, whose slope is dψ

dx1 (x̂1)
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Implicit Function Theorem: General Case 1

Consider f : RL+M → RM that is continuously di�erentiable. Let
O ⊆ RL be an open subset. Then f (x) = ŷ de�nes implicitly a
function ψ : O→ RM that de�nes the last M coordinates of x as a
function of the �rst L coordinates such that f (x) = ŷ.

The implicit function theorem is used to guarantee that ψ exists
and is di�erentiable.

Even if we don’t know ψ, we can compute Dψ using the Chain
Rule.
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Implicit Function Theorem: General Case 2

Let Df (x̂) = [Dλf (x̂) Dµf (x̂)] . Dµf has full rank.

De�ne s : O→ RL+M such that s(q) = (q, ψ(q)), and h : O→ RM
such that h (xλ) = f (s (xλ))

Then h (xλ) = f (xλ, ψ (xλ)) = ŷ for every xλ ∈ O, so Dh = 0
By the Chain Rule, Dh (x̂λ) = Df (x̂)Ds (x̂λ)

= [Dλf (x̂)Dµf (x̂)]
= Dλf (x̂) + Dµf (x̂)Dψ (x̂λ)

So Dλf (x̂) + Dµf (x̂)Dψ (x̂λ) = 0
since DY(x̂) has full rank and f is continuously di�erentiable, and
since determinant is continuous, Dλf (x̂) has full rank for all x in
O.
Then:

Dψ (x̂λ) = − [Dµf (x̂)]−1 Dλf (x̂)
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The Hessian

Remember we de�ned the Gradient as

∇f : RN → R

The derivative of ∇f is called the Hessian of f

H(x̂) = D∇f (x̂) =


∂2f
∂x̂21

· · · ∂2f
∂x̂1∂x̂N

... . . . ...
∂2f

∂x̂N∂x̂1 · · ·
∂2f
∂x̂2N


N×N

H(x̂) is a particular matrix way of displaying D2f (x̂)
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The Hessian: Example

f : R2 → R, f (x) = ln (x1) ln (x2)

∇f (x̂) =
[

ln(x̂2)
x̂1

ln(x1)
x̂2

]
2×1

D∇f (x̂) = H(x̂) =
[
− ln (x̂2) 1

x̃1x̂2
1

x̂1x̂2
− ln(x̂1)
x̂22

]
2×2

For x̂ = (1, 1),H(x̂)
[
0 1
1 0

]
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Young’s Theorem

Theorem 5 (Young)
If f : RN → R is C2 , then the Hessian is symmetric: ∂2f

∂xi∂xj
= ∂2f

∂xj∂xi
for all i and j

Proof : Omitted .

Example
Consider a Cobb Douglas production function q = kxayb.
∂Q
∂x = akxa−1yb
∂Q
∂y = bkxayb−1

So ∂2Q
∂x∂y = abkxa−1yb−1 = ∂2Q

∂y∂x as Young’s theorem mandates.
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