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SECTION 1: INTRODUCTION




INTRODUCTION

In studying the behavior of non-linear functions f : RN — RM in
the vicinity of X,

m We use derivatives to form the linear aproximation Df (X)

m We use linear theory to study the behavior of the linear
mapping Df(X) : RN — RM

m We use calculus theory to translate information about the
non-linear function f in a neighborhood of X.



NOTATION 1

A vector / point x € RN is represented as:

X1
X=Xq,...,xy) = | ¢
XN Nx1
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NOTATION 2

A function f : RV — RM can be represented as:

FO) = (F(), - fm(x))

since f(x) is a point in RM, it can be represented as an M x 1
matrix. Each of its coordinates is a function fp(x) : RN — R for
m=1,...,M

F1(0)
o=

) L
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SECTION 2: PARTIAL AND DIRECTIONAL
DERIVATIVES




PARTIAL DERIVATIVES

Given a function f : RN — RM,

Definition 1

The partial derivative of f,, with respect to the n th coordinate,
Xn, evaluated at the point X, is:

Dufin(3) = ) _ o G Fo ) — Fn(R)

8Xn t—o t

assuming that the limit exists.



THE JACOBIAN

The matrix of partial derivatives of all the coordinate functions
fm with respect to all the x, evaluated at the point X is called
Jacobian of f at X.

Difa(X) ... Dnfi(X)
If(X) = : :
Dafm(X) -+ Dnfm(X) |y

If the partial derivatives Dfp(X) are defined for all X in the
domain of f, then one can define functions Dpfp,.



DIRECTIONAL DERIVATIVES

m A direction in RV is a vector v € RY sit. ||lv|| = 1.

Definition 2
The directional derivative of the m th coordinate function fp, in
the direction v evaluated at the point X, is:

fm(X + tv) — fn(X)

Oufn) = iy G

assuming that the limit exists.



DIRECTIONAL DERIVATIVES - EXAMPLE

iR SR, f(X)=3%+XX, K=(1,1), V= (ﬁﬁ)
Duf(R) = Jimg [0 =1
. f(1+%,1+%) —f(1,1)
t—0 t
20 ()
t—0 t

3+ L +1+ L+ 4

t—0 t




DIRECTIONAL DERIVATIVES - INTERPRETATION

Let Dyf(X) denote the M -dimensional vector containing the
directional derivatives D,fy(X) for each coordinate function at X

Duf+(X)
Dvf(X) = (Dvf(X), . .., Dufu(X)) = :
vaM()A()

Then, for t small, the change in the function when X changes in
direction v can be approximated by D,f(X) :

f(&+tv) = f(X) = Duf ()t
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PARTIAL AND DIRECTIONAL DERIVATIVES

Partial derivatives are a special case of directional derivatives:

Define e, = (0,...,0,1,0,...,0) (1in the nth position), and let

V:en.
. : X+ tep) — fm(X
De,,fm(X)ZJng)fm( ;’) fm( )
= |im fm ()/%’l +O,-~-7)A(n—’l +Oa)?n+t7$(n+1 +07"'7)?N) _fm()?)
t—0 t
" tso t
= Dnfm(X)



SECTION 3: DIFFERENTIABILITY




DIFFERENTIABILITY

Given a function f : RN — RM,

Definition 3

f is differentiable at X if there exists an M x N matrix Df (X) called
the derivative of f at X, such that for any sequence of vectors
h € RN, h — o, the following limit exists:

i LG h) = F(8) = DF ORI _

h—0 1P|

f is differentiable iff f is differentiable at every x in its domain.



DIFFERENTIABILITY - INTUITION

m f(X+ h) : how much the function changes when X changes in
h.

m f(X) + Df(X)h : linear approximation of the change in the
function.

m f(X+ h) —f(X) — Df(X)h : approximation error

As h — o, the approximation error goes to zero faster than h.

Differentiable functions admit good linear approximations.



CONTINUITY

Given a function f : R — R and an element x, of the domain, f is
said to be continuous at the point x, when:

for any e > o there exists a § > 0 such that for all x in the
domain of f with xo — § < x < X0 + 4, the value of f(x) satisfies

f(Xo) —e <f(x) <f(xo) +¢

More formally:

Definition 4
f is continuous at X if Ve >0, 3§ > 0o st.

Ix =X| <& = [If(x) = fFK) <.

We say that f is continuous if it is continuous at every point x in
its domain.
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CONTINUOUS DIFFERENTIABILITY

Definition 5

A function f : R — R is C" (r continuously differentiable function)
iff the r th derivative exists and is continuous.

Theorem 1

f: RN — RMis C"if and only if Dnfp, is continuous for every n, m.

Proof: Rudin. O

In particular, the function Df exists if all partial derivatives are
continuous.

We can think of Df as a function from R" to the set of all linear
transformations from RN to R™ (remember that Df(x) isan M x N
matrix).
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COUNTEREXAMPLE

%
FRISR, fx)=4{ B8 X70O
(6] X=0

Df does not exist even though all partials at o exist (because the
partial derivatives D,f are not continuous):

Df(o)=[0 o o]

32 —26xa  —2Xx:
Df(x) = | w@7a (X%+;(§2)2 (X%+;<52 forx #0

Henceforth, we will assume that f is at least C" .

15/ 37



THE CHAIN RULE

Theorem 2 (The Chain Rule)

Letf : RN - RM g:RM — RL % € RN, and define the composite
function h : RV — Rt by h(x) = go f(x) = g(f(x)). If f is
differentiable at X and g is differentiable at y = f(X), then h is
differentiable at X and

Proof: Omitted. O
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THE CHAIN RULE: EXAMPLE

LﬂﬁR%WjMz[;]

and g : R*> — R,g(y) =y3 + Vo

h(x) = 2@ Dh(X) = [4K]
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THE DERIVATIVE AND DIRECTIONAL DERIVATIVES

If f : RN — RM is differentiable at X, then for any v € RN such that
Vil =1,

Dyf(X) = Df (X)v

18 [ 37



THE DERIVATIVE AND DIRECTIONAL DERIVATIVES

Proof.

Define:

g:R—=R"Y by g(t)=X+tv

h:R—R" by h=fogh(t)=f(g(t)) = +tv)
The derivative of h evaluated at o is:

h(t) —h(o) _ f(x+1tv) —f(X)
t t

or
Dh(0) = Dyf(X)

By the Chain rule:
Dh(o) = Df (X)Dg(0)

Using the definition of g:
Dg(t) = v

So:
D/f(X) = Dh(o) = Df(X)v
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EXAMPLE

f:R2—>R

f(X)=3% + X%, X=(1,
and we got that D,f(X) =
DFX)=[B+x2 Xxi|=[a 1

DF(R)V = [ 4 1}[@]:%:%‘(&)

-—
o
<
Il
/N

o
S
SN—

2k
N

V2
Using the previous theorem, letv =¢e, =(0,...0,1,0,...,0)
of1
dn
De,f(X) = : = Df(X)en, which is the n th column of Df (%)
afm
OXn

So Df(R) = Jf(X) if Df (%) exists.



MORE ON DIFFERENTIABILITY.

Theorem ¢4

A function f : RV — RM is differentiable at X iff each of its
component functions f,, is differentiable at X.

Moreover, if f is differentiable at X, the partial derivatives of the
component functions f,, exist at X, and the derivative of f at

X, Df (X), is the matrix of first partial derivatives of the component
functions evaluated at X.

Df (%)
Df (%) = :
Dfm(X) |
Where each of the Dfy,(X) is a 1 x N row vector,
Dfm(X) = [Dafm(X) - -- Dme(j\()]MxN

Proof: Omitted. O



SECTION 4: REAL VALUED FUNCTIONS




TANGENT PLANE

If f : RN — R is differentiable at X, then the tangent plane is
defined as the graph of the function

Tofe ) -xffe )
fixy

Df (") [x = x] + f (x)

BOg=Dtnpn — Dty + i)




GRADIENT

Recall

DF(R) = | &LE) . ZL® ]

1xXN

The transpose of Df(X) is called gradient
go]
V() = DF RN = | = (Z®,.... &L ®)
oty ()

OXy Nx1
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THE GRADIENT AND DIRECTIONAL DERIVATIVES

In particular,

Df(®) = DF(R)v = [DF(R)] -v = VF() - v

Directional derivatives can be written as the inner product
between the gradient and the direction for a real valued function.
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A KEY FACT ABOUT THE GRADIENT

Given a differentiable real valued function f : R — R and a
point X in RN, Vf(X) points in the direction in which f increases
most rapidly.

Proof.

MaXy st. |lv||=1 Duf(X) = Vf(X) - v
Using the geometric definition of the inner product’,
VF(X) - v =[[Vf(X)|[[|v]| cos 6 = cos 6| VF(X)|

We know that cosé € [-1,1] and cos# = 1when § = 0. So both v
and Vf(X) are collinear.

"https://en.wikipedia.org/wiki/Dot_product
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MORE GRADIENT INTUITION

m Givenf: RV 5 R, X Vf(%) € RV.
Given a point X, Vf(X) points, in the domain, in the direction
in which X should be increased to obtain the fastest increase

inf.

m For N = 2, think of a hill: f(x) is altitude, and coordinates are

given by x = (x4, X3)
The gradient Vf evaluated at X contains all the information
we need to know to climbing the hill at the fastest speed

possible.




GRADIENT: EXAMPLE 1

f:RZ—>R

f(X)=3Inx;s+1Inxy, X=(2,2)

w<x>:[§?§i§]=H=H
IVF@)I = | = 5
v= (e 7)

Using the above interpretation, if | travel north a certain small
distance, | will ascend 1/2 feet (meters); if | go east, | will go up
the hill 3/2 feet (meters). The direction of fastest increase is
northeast.
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GRADIENT: EXAMPLE 2

Consider a production function Q : R> — R, Q(K, L) = 4K3/4L"/4

And the current input bundleis (K, L) = (10, 000; 625)

o 29 (R 1) 3L/ 3
VQ(K’L):{gc KL ]: ki :[2}
QL) o 8
o7 Vi
IVa(K,L)|| = -

()
Vi
If the firm wants the fastest increase in production, it should add
capital and labor at a ratio of 3t0 16.
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LEVEL SETS

Definition 6

L(c) is a level set of the real valued function f : RN — R iff
L(c)={x|xeR", f(x)=c},whereceR

We can also define a level set relative to some point X in the
domain:

L) = {xlx e RV, £() = F(%) }
We can completely represent f by its level sets.

They let us reduce by one the number of dimensions needed to
represent the function.

29 [ 37



LEVEL SETS: EXAMPLE

u:R?—>R, xeR? u(X)=xX

The level sets of this utility function are indifference curves.
L(5) = {x | x € R*,u(x) = x+Xo = 5}

Atx =(5/2,2),u(5/2,2) =5

L(5/2,2) = {x | x € R?,u(X) = x4X = 5}
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APPLICATION OF THE CHAIN RULE: IMPLICIT FUNCTION

THEOREM

Consider a continuously differentiable function f : R? -+ R and a
point X € R?, and let § = f(X)

m The level set of f through X is the set of points x such that

f)=9.

m The Implicit Function theorem states that if f is well behaved
at a point X then the level set of f through X is the graph of a
continuously differentiable function, at least near X.
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IMPLICIT FUNCTION THEOREM CONTINUED

In the 2 -dimensional case, X, = ¢ (X,), and

9 g 20
ax: 5 %)

The level set of f through X, L(X), is the graph of .

The behavior close to X in L(X) can be approximated by the
tangent line, whose slope is g—i (%1)
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IMPLICIT FUNCTION THEOREM: GENERAL CASE 1

Consider f : REM — RM that is continuously differentiable. Let
O C R be an open subset. Then f(x) = § defines implicitly a
function ¢ : 0 — RM that defines the last M coordinates of x as a

A

function of the first L coordinates such that f(x) = y.

The implicit function theorem is used to guarantee that ¢ exists
and is differentiable.

Even if we don’t know ¢, we can compute D using the Chain
Rule.
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IMPLICIT FUNCTION THEOREM: GENERAL CASE 2

Let Df(X) = [DAf(X) D,f(X)]. D,f has full rank.
Define s : 0 — R-*M such that s(g) = (g,+(q)),and h: 0 — RM
such that h (x)) = f (s(x)))
Then h(xy) =f (xa, % (xx)) = ¥ for every x, € 0,so Dh =0
By the Chain Rule, Dh (X)) = Df (X)Ds (X»)

= [DAf(X)D,.f(X)]

= DAf (%) + Duf (X)De) (%)
S0 DAf(X) + D,f(R)D¥ (%) = 0
since Dy(X) has full rank and f is continuously differentiable, and
since determinant is continuous, D,f(X) has full rank for all x in
0.
Then:

Dy (%) = — [D,f (%) Daf(%)
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THE HESSIAN

Remember we defined the Gradient as

Vf:RN SR
The derivative of Vf is called the Hessian of f

o°f o°f
I o
HX) =DVf(x)=| + =~
of ... 9f
DRNOR: B5 A s

H(X) is a particular matrix way of displaying D?f(X)
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THE HESSIAN: EXAMPLE

f R = R,f(X) = In (x1) In (x2)

Xq
X 2Xx1

X2

Vf(X) =

ors= 0 [ 93]
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YOUNG'S THEOREM

Theorem 5 (Young)

. N . . . s, 82]—' - 82f
Iff: IR{. — R is C? , then the Hessian is symmetric: X% = K%,
foralliand

Proof: Omitted .
Example

Consider a Cobb Douglas production function g = kx9y®.

0Q _ a—1,,b
% = akxa7ly
92 — bRx%yb—

So gxd% = abkxayb—1 = 2 o "0 as Young's theorem mandates.
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