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Abstract

A major problem in neurorehabilitation is the lack of objective outcomes to measure movement quality. Movement
quality features, such as coordination and stability, are essential for everyday motor actions. These features allow reacting
to continuously changing environment or to resist external perturbations. Neurological disorders affect movement
quality, leading to functionally impaired movements. Recent findings suggest that the central nervous system organizes
motor elements (eg, muscles, joints, fingers) into task-specific ensembles to stabilize motor tasks performance. A method
to quantify this feature has been previously developed based on the uncontrolled manifold (UCM) hypothesis. UCM
quantifies movement quality in a spatial-temporal domain using intertrial analysis of covariation between motor elements.
In this point-of-view article, we first describe major obstacles (eg, the need for group analysis) that interfere with UCM
application in clinical settings. Then, we propose a process of quantifying movement quality for a single individual with a
novel use of bootstrapping simulations and UCM analysis. Finally, we reanalyze previously published data from individuals
with neurological disorders performing a wide range of motor tasks, that is, multi-digit pressing and postural balance tasks.
Our method allows one to assess motor quality impairments in a single individual and to detect clinically important motor
behavior changes. Our solution may be incorporated into a clinical setting to assess sensorimotor impairments, evaluate
the effects of specific neurological treatments, or track movement quality recovery over time. We also recommended the
proposed solution to be used jointly with a typical statistical analysis of UCM parameters in cohort studies.

Keywords
neurorehabilitation, motor quality, neurological disorders, motor control, translational research

increasingly recognized in the field of neurorehabilitation as
a possible solution to develop theory-based clinical assess-
ments and treatments.’'? Translating findings from the area
of neural motor control into clinical practice can provide
tools that accurately measure fundamental properties of
movements such as motor performances (eg, endpoint accu-
racy, velocity, and smoothness)'? and movement quality
(eg, intersegmental and multimuscle coordination).!®!
Motor performance is described as the end-effector’s

Introduction

One of the current problems in the field of neurorehabilita-
tion is uncertainty about the best type of interventions for
individuals with neurological conditions, for example,
stroke, Parkinson’s disease (PD), and incomplete spinal
cord injury.!* There have been several randomized clinical
trials published in recent years examining the effectiveness
of various novel neurological treatments in comparison to
standard care physical therapy.* The majority of these

studies reported no differences in the primary outcome
measures between the experimental and control groups.’
All participants improved; however, their sensory-motor
recovery was incomplete."® While current clinical trials
focus on interventions based on principles of neuroplasti-
city and motor learning (eg, repetition, task difficulty, moti-
vation, etc),” they do not consider basic concepts of neural
motor control and how control processes are disrupted after
a brain injury.?

Thus, the need for implementing current theories of the
neural control of movements into clinical practice has been
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movement smoothness, speed and precision in the external
space and, thus, cannot fully detect the recovery processes
since movement might be performed with compensation at
different levels (eg, reaching to an object with abnormal
trunk displacement).'®!” Movement quality is quantified in
body-centered coordinates providing spatial and temporal
characteristics of joint angles, segment (ie, trunk) and mus-
cle activation pattern suited to distinguish recovery from
compensation strategies.'>'® Recently, movement quality
has been operationally described as a comparison between
a motor task or action executed by a patient with regard to a
reference population of age-matched healthy individuals.'®
Specifically, from a motor control perspective, movement
quality is quantified by the extent to which coordination
among joints and muscles provides stability at the endpoint
level, ensuring accurate and adaptable movements. For
example, during a functional task, eg, reaching or walking,
individual joints, angles, and segments, as well as forces/
moments, are coordinated to stabilize in spatial and tem-
poral domains the resultant final position of the body.!>!®
The difference between the quantified movement quality
characteristics in healthy and neurological individuals
may be considered a proxy of its clinically measure out-
comes able to differentiate restitution from compensatory
strategies.!>'® Features of movement quality, such as stabil-
ity and coordination, are essential characteristics of every-
day motor actions. Coordinated and stable movements
allow healthy individuals to react to the continually chang-
ing environment or to resist unpredictable external pertur-
bations. Neurological or musculoskeletal disorders affect
stability and coordination, leading to functionally impaired
movements (ie, object dropping) or compromised move-
ment safety (ie, increased the risk of falling). Thus, in neu-
rorehabilitation, there has been increasing recognition of
movement quality as a core measure for clinical research in
individuals with neurological disorders.'%!%1?

Recent neurophysiological findings suggest that the cen-
tral nervous system (CNS) organizes motor elements (ME,
eg, muscles, joints, fingers, etc) into task-specific ensem-
bles called synergies.?*! In neurophysiology and clinical
practice, the term synergy has various meanings, which
often can be confusing. In movement science, “synergy”
can be described as coherent activation of a group of mus-
cles involved in a motor task (MT).?? In clinics, the term
synergy has a negative connotation describing abnormal
motor patterns (ie, flexor or extensor synergies) due to brain
lesions?>?* (eg, damage of descending motor pathways). To
avoid confusion, in the current article, the term synergy
refers to task-specific ensembles (ie, multimuscle or mul-
tifinger coordination) that ensure stability of salient perfor-
mance variables related to MT.2%? The latter definition
explicitly highlights the specific task context of motor con-
trol as described by Levin et al’® and endorsed by the
Second Stroke Recovery and Rehabilitation Roundtable.'®

Synergies result from specific covariation between ME
aimed at stabilizing particular performance variables (eg,
moments of force, center of pressure [COP]), related to MT
(eg, rotational stability of the held object, or postural stabil-
ity during quiet standing)*'. A method to objectively quan-
tify this feature has been developed based on the uncontrolled
manifold (UCM) hypothesis.?>?’ Briefly, UCM analysis
uses intertrial analysis to estimate 2 components of variance
that do (V,,) and do not affect (V,.,,) a specific perfor-
mance variable related to MT. The normalized difference
between these two components is used to compute the index
of stability (AV). AV reflects the degree of ME coordination
(eg, intersegmental and multimuscle coordination) used to
stabilize MT performance. In more intuitive terms, carrying
a glass of water while walking requires inter-segmental
coordination to keep the glass vertical. Strong interseg-
mental coordination suggests that spontaneous deviations
in joint angles or external perturbation applied to the upper
limb would lead to changes in joint configuration primar-
ily within the UCM, therefore, not affecting the glass ori-
entation and preventing the water from spilling. Such
behavior is expected to lead to relatively high V., values
and positive AV.

Furthermore, a drop in AV stabilizing a MT in prepara-
tion for a quick action or a perturbation involving that MT
has been denoted as anticipatory synergy adjustments
(ASAs).22° For example, previous studies?®2° showed
that, in anticipation of postural adjustments, the intermus-
cular coordination changes in a feed-forward fashion (AV
decrease) to modify stability during a steady-state postural
action. Therefore, ASAs are considered as an index of
agility—the ability to modify intersegmental or intermus-
cular coordination to attenuate stability of the task perfor-
mance, in preparation for MT changes.?!

Evidence from several studies suggested the capability
of AV as a sensitive biomarker to assess movement stability
and coordination in various neurological impairments®>!
(eg, basal ganglia impairments,’>** PD,*3% large-fiber
peripheral neuropathy,* and stroke).*” Moreover, UCM has
been used to evaluate the effectiveness of specific neuro-
logical treatments (effects of deep brain stimulation, DBS)3®
and dopamine-replacement drugs (eg, levodopa,* in indi-
viduals with PD). Significant changes in AV and delayed or
reduced ASAs have been described in neurological popula-
tions, even without clinically identifiable motor impair-
ments, like individuals with PD at stage I of Hoehn and
Yahr scale® or well-recovered poststroke individuals.®’

The application of UCM analysis has so far been limited
to experiments that involve multiple subjects to generate a
distribution of UCM parameters for group comparisons
(within-subject or between-subject study design).!*3! Group
comparisons allow researchers to use statistical tools to
identify possible significant motor control changes in clini-
cal populations (pre- vs post-treatment or patients vs control
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group). This approach, however, is impractical to replicate
in a clinical setting. Instead of group comparisons, clini-
cians are usually interested in testing single individuals to
estimate the level of neurological impairment, monitor the
trajectory of recovery, and to help them develop the best
treatment strategies. The purpose of this point-of-view arti-
cle is to identify problems that hinder the use of UCM in a
clinical setting and to suggest possible solutions that would
help translate this method into clinical practice. We also
propose a novel application of bootstrapping estimation to
quantifying movement quality using UCM for a single indi-
vidual as an objective biomarker for neurorehabilitation in
a clinical setting.

The Problem

In the following sections, we will describe 2 significant
obstacles that hinder the use of UCM analysis in a typical
clinical setting.

The Number of Subjects Required for the UCM
Analysis

The UCM analysis quantifies the variability structure of
ME across several repetitions of a tested movement.
Another UCM-based analysis used to quantify the task-spe-
cific organization of ME in a single trial is called motor
equivalence analysis.’>*” Motor equivalence analysis mea-
sures reorganization of ME following the perturbation of
MT. UCM analysis; however, allows the computation of AV
either for a particular phase of a MT (ie, final hand position
during reaching,”’*! steady-state phase of a prehensile
task)*? or at each time point during a movement (COP dis-
placement during whole-body sway,* or walking,* or mul-
tifinger force tracking).’ In all current applications, UCM
analysis provides only one AV, V.., and V. estimates
(or one trajectory of these estimates) per subject. As stated
earlier, UCM analysis partitions variance of the elemental
variables into components that affect (V) and do not
affect (V) the value of a particular performance vari-
able. Experiments that use UCM, typically compute these
parameters across many individuals with neurological
impairments and their healthy counterparts to generate dis-
tributions of estimated parameters for group comparisons.
A subsequent problem associated with the nature of one
variance estimates per individual is the lack of standard
error of measurement and minimal detectable change
related to the magnitudes of AV, V., or VORT.14 The theo-
retical distribution and the confidence intervals of UCM
parameters are unknown, and most probably differ between
a healthy population and individuals with neurological dis-
orders. Thus, the individual magnitudes of UCM parameters
might be ambiguous. This issue is usually solved through

statistical inference to detect differences between the prob-
ability distribution of UCM parameters, generated from the
data collected from several subjects (for within-group or
between-group comparisons). Research studies involving
many participants allow identifying significant differences
in average UCM parameters between individuals or group
effects of brain stimulation on movement. However, clini-
cians and health care professionals are mainly interested in
testing individuals to assess levels of neurological impair-
ments, which makes translating the UCM in its current form
to a clinical setting impractical.

Magnitudes and Uncertainty of UCM
Parameters

Traditionally, UCM values are evaluated based on their
magnitude (V. Vopps AV) or sign (AV). According to the
UCM theoretical framework, selected ME should be inde-
pendent of each other. Therefore, it is assumed that positive
AV values (V ;- = Vpy) indicate the presence of multiele-
mental coordination stabilizing MT performance, with
larger AV values representing stronger MT stabilization.?!
In contrast, negative AV values (V ., < V) indicate MT
performance destabilization. Randomly selected ME values
should produce an equal amount of 2 components of vari-
ance that do (V) and do not affect (V,.,,) a specific MT,
with AV value equal to zero (Vo = Vgp)-*® Figure 1
illustrates 3 hypothetical scenarios for UCM results.
However, considering only the numerical values of the
estimated UCM parameters might be misleading. Variance
parameters (V. and V) estimated from a random dis-
tribution of ME have arbitrary values, and their magnitude
depends on the number of trials used in the UCM analysis.
When a finite number of movement repetitions is used, the
random set of ME does not produce AV = 0, (V ., =
Vorp)- Generally, the difference in random magnitudes
between V., and V. increases with the decreasing num-
ber of trials used. A small number of random trials (ie, 20)
may incidentally produce a sizeable difference between
Viem and V., and a large positive AV. The increasing
number of random trials (ie, 1000), makes the estimated
variance components closer to each other, with AV values
asymptotically approaching zero (see Figure 2). Also, there
is always a 50:50 chance that V., will be larger than V.,
(AV > 0) when estimated from the finite random ME data
set. In a clinical setting, it is impractical and frequently
impossible to repeat MT many times. Usually, for UCM
purposes, subjects repeat MT between 15 and 30 times. For
example, the recently published recommendations*® advise
for 15 to 20 MT repetitions for accurate AV approximation
in a gait task. Thus, in some situations, AV > 0 may not
necessarily indicate the presence of underlying ME coordi-
nation to stabilize MT performance. Positive AV values,
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Figure I. An illustration of 3 theoretical groups of the uncontrolled manifold (UCM) results. A subject produces a required total force
(dashed line) with 2 fingers (motor elements ME| and ME2) across many repetitions. Black dots illustrate data points of individual trials.
The left panel shows data distribution observed when a subject stabilizes the motor task (total force), using negative covariation of
individual finger forces to minimize the variance of the total force (V,cy > Vgzr and AV > 0). The right panel shows data distribution
when the motor task is destabilized, with large variability in the total force due to positive covariation of individual finger forces (V-
< Vgpr and AV < 0). The central panel shows theoretical data distribution, with no covariation between finger forces.

even with high magnitude, may be observed merely
because of the effect of random noise, especially when the
inadequate (ie, not enough) number of trials are used to esti-
mate UCM parameters.

A reliable biomarker for neurorchabilitation must pro-
vide clinicians the UCM estimates (Vjqy Vorr AV) that
describe the real behavior of an individual and with a very
low probability that these parameters were obtained just by
chance.

The Solution

The use of the UCM method is currently limited to experi-
ments that require many subjects to generate a distribution
of variance parameters for group comparisons. Thus, we
propose a novel use of bootstrapping estimation that allows
quantifying movement quality using UCM parameters for a
single individual. First, we will introduce the process of
computing and evaluating UCM parameters for a single
subject. Then, we reanalyzed previously published data
from individuals with PD performing a wide range of MTs,
that is, multidigit pressing and postural tasks. Our findings
will show that the individually estimated UCM parameters
reliably identified motor quality impairments in subjects
with PD, consistent with group differences (control vs. PD
subjects) reported in previous publications.

Typical Uncontrolled Manifold Analysis

To illustrate the novel application of bootstrapping simula-
tions for UCM parameters, we used previously published
data by Solnik et al.*? In this study, the authors aimed to
identify different motor control strategies while maintaining
the rotational equilibrium of the object held by either (1) 2
persons or (2) a single person using both hands. The main

task of the experiment was to pass the object between 2 per-
sons or between the hands of the same person. The forces
applied to the object by hands were measured for both con-
ditions. Then, the moments of force were calculated during
the steady-state phase when both hands were holding the
object. More specifically, the authors evaluated the multifin-
ger coordination strategies stabilizing the object’s rotational
equilibrium (ie, moments of force applied to the object).

From previously published data, we selected a typical
data from 1 subject and 1 pair of subjects repeating the pre-
hension task 20 times. The data consisted of 20 pairs of
hand forces recorded during the steady-state phase for each
condition (e, single-person and 2-person). For each experi-
mental dataset, we followed the typical UCM analysis pro-
cedure (for computational details, see Latash et al,*® Klous
et al,” and Solnik et al*?). The variance across trials was
separated into 2 components V., and V... Then, we
quantified the performance-stabilizing coordination by
calculating AV for each performance variable, using: AV =
Vuen — Vorr)/ Vo Where Vo, is total variance. For fur-
ther statistical analyses, computed AV values were log-
transformed using a modified Fisher’s z-transformation,
using

AV
1+—|AV |

AV, =0.5xlog| ——= (1
1AV
AV,

where AV, and AV, are lower and upper limits of the AV,
respectively. The modified Fisher’s transform is adjusted
for the actual computational limits of AV to ensure that the
transformed AV, values are equal to zero when V., =
V gy (for details see Equation 4 in Solnik et al*!).



Solnik et al

1071

A v, =119
L ~ _
60 N V,, =304
AN AV =1.192
N
40t ~
N
BN
N
— 20} N .
ey = m
.E .} -
= n
. \ ]
2 of " N
) " =N .
~ N
w =
s -f N
. A
N
wl . " N ™
: ~
N
N
N
60 |- N
N
N
60- 40 200 0 20 40 60

ME 1 (arb. unit)

80

60 -

40

ME 2 (arb. unit)

.40 F

60 |

-80 F

-80- 60 -40- 20 02 04 06 08 1]
ME 1 (arb. unit)

"B
VUCM =361
L N —
40 N . V,, =699
AN AV =-0.63
30 N
N
N
20 N - .
\ | ]
— N
=
= qof ~
g u [ ] N .l
: N
2 or N .
£ N
-
o~ N
w 10 - . N
E \I -
N
20 . N
~
a0 - . . AN
-
~
L N
-40 N
N
e ey
50- 40 -30- 20 -100 10 20 80 40 50

ME 1 (arb. unit)

ME 2 (arb. unit)

ME 1 (arb. unit)

Figure 2. Graphical representations of typical uncontrolled manifold (UCM) results generated from the random data sets of motor
elements (MEs). Please note large differences between V|, and V., for computations with 20 trials (panels A and B). When a very
large number of random trials (ie, 1000) are used, the magnitudes of V ,, and V. tend to equalize (panels C and D), and AV values

asymptotically approach zero.

In a typical UCM study, researchers repeat this proce-
dure for several subjects and subject pairs to identify differ-
ent motor control strategies between 2 groups. However,
our solution, based on bootstrapping simulations, allows us
to evaluate UCM variance estimates and identify synergies
for a single—subject design.

Bootstrapping Simulations and UCM Confidence
Intervals

As outlined in the previous section, UCM parameters are
calculated from a set of ME, recorded from several repeated

trials, which results in one UCM parameter per patient.
However, previously described issues do not allow to draw
clinical conclusions based on individual V., Vopps OF
AV, magnitudes. Each of these values needs to be validated
against the sampling distribution computed from a random
selection of recorded ME, to evaluate if the observed posi-
tive or negative AV, values represent a purposeful organi-
zation of ME. We propose the bootstrapping method to
quantify the amount of uncertainty of UCM parameters (eg,
Viems Yogrre 0F AV,) by computing measures of accuracy
(eg, confidence intervals) of these estimates. Clinicians
should be aware of measurement errors of clinical tests
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administered to a patient. This information should guide a
clinician in deciding if the observed test values are mean-
ingful and not due to the measurement error (eg, goniome-
try errors in the range of motion estimation).*® Our solution
provides clinicians with an estimated error of UCM-based
biomarker of movement quality, using the bootstrapping
method.

Specifically, for Solnik et al,*? the following procedure
was performed. For bootstrapping simulations, we ran-
domly sampled the recorded ME values (ie, 20 pairs of hand
forces for single-person and 2-person) with replacement.
The random sampling with replacements keeps values and
the sample size equal to the ME previously used to compute
UCM parameters, but destroys any covariation*’ between
them (ie, sampling left- and right-hand forces from different
trials). We then computed simulated UCM parameters from
the randomly selected ME values. Next, we repeated this
process 10 000 times to create the distribution of simulated
UCM parameters. The simulated V ;.\, Vopps OF AV, distri-
butions, allow estimating the uncertainty of UCM values
from testing of an individual subject or subject pair. The
range of values between 95% confidence intervals (CIs)*
represents UCM parameters obtained without any deter-
mined organization of ME. Thus, if UCM parameters fall
outside the computed CI, there is a 95% chance that AV,
Viess and V. estimates describe the purposeful motor
control to stabilize (AV, > upper CI) or destabilize (AV, <
lower CI) MT performance (Figure 3).

The subject performing the prehension task alone dis-
played multifinger coordination stabilizing the object’s
rotational equilibrium (ie, AV, > upper CI, Figure 3 top
panel). In a 2-person condition, AV, were positive, but they
did not exceed 95% Cls. It is worth noticing that our
approach provides additional information that could not be
obtained from the group comparisons, where statistical tests
are designed to identify differences in AV, magnitudes. In
some situations, due to the small number of repetitions or
high variability in the experimental data, the range of CI
may be broad, and even high positive values of AV, would
not be indicative of MT stabilizing multifinger coordina-
tion. For example, in the original study by Solnik et al,*? the
authors did not detect significant differences in multi-finger
coordination stabilizing moments of force between one-
person and two-person conditions, with the assumption that
both conditions showed motor behavior stabilizing MT
(both groups had AV, > 0). Our method showed that in a
two-person condition, subjects did not utilize multifinger
coordination to stabilize moments of force, because posi-
tive AV, value fell within the computed 95% CI (Figure 3,
bottom panel). Therefore, we suggest comparing AV, val-
ues to 95% CI, instead of relying only on the estimated
magnitude or sign of the AV,,. Only indices of stability that
lie outside of their random distribution can be identified as

Rotational stability — one subject holding

-0.75 -050 -025 000 025 050 075  1.00
av;

Rotational stability — two subjects holding

Frequency

-1.0 -05 0.0
AV

Figure 3. Example of bootstrapping simulations of indices of
stability (AV;) from previous experimental data from | subject
(top panel) and a pair of subjects (bottom panel). Note that the
distributions obtained from bootstrapping simulations (shaded
areas) represent a sampling distribution of UCM parameters,
computed from the observed motor elements (MEs), but

with random resampling with substitutions. Dotted vertical
lines indicate 95% confidence intervals. The solid vertical line
indicates experimentally obtained AV,. Only AV, that lies
outside the computed confidence interval (Cl) (I subject, top
panel) describes the real behavior of the individual with .05
significance level.

signs of a true task-stabilizing (AV, > upper CI) or task-
destabilizing (AV, < lower CI) behavior.

These results support the use of bootstrapping simula-
tions as a valid tool to quantify and validate movement
quality using UCM for a single individual. Next, we will
discuss the use of the proposed solution as objective bio-
markers for neurorehabilitation in a clinical setting.

Effect of Deep Brain Stimulation on Motor
Quality of a Multifinger Task of an Individual
With Parkinson’s Disease

We tested the ability of our solution to identify the effec-
tiveness of a specific neurological treatment on subjects
with PD. For this purpose, we reanalyzed data from a previ-
ously published article*® aimed to investigate the effects of
DBS on multifinger coordination and agility in individuals
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with PD. Participants have been asked to produce a specific
force with 4 fingers of one hand, followed by a rapid force
pulse at a self-paced time. Authors computed AV, and
ASAs to assess multifinger coordination to stabilize the
total force during the steady-state, and the ability to attenu-
ate the stability of the motor task in preparation for quick
force change, respectively. All subjects repeated the MT in
2 conditions, with and without DBS of nuclei within the
basal ganglia. We reanalyzed data from one individual with
PD: a 75-year-old man, with PD duration for 14 years, tak-
ing oral medication with levodopa equivalent daily dose
(LEDD) of 755 mg. The bilateral DBS leads were implanted
in the subthalamic nucleus 5 months before the data collec-
tion. The subject’s motor scores, estimated from the Unified
Parkinson’s Disease Rating Scale—Part III (UPDRS III),
were 49 and 47 for DBS-on and DBS-off states, respec-
tively. In brief, the multifinger MT started by pressing on
miniature force sensors and maintaining the total force at
8% of maximal voluntary contraction (MVC) level for
about 5 seconds. Then, at a self-selected time, the subject
performed a quick force pulse into the target set at 25% of
MVC. The subject repeated the multifinger motor tasks 17
times for DBS-on and 21 times for DBS-off conditions.
Both conditions were performed with the right hand. We
selected individual finger forces from 600 ms before to 200
ms after the quick pulse for further analysis. The finger
forces were aligned with respect to the onset of the quick
force pulse (time = 0). For further analysis, we replicated
the typical steps of UCM analysis (see details of data pro-
cessing in Falaki et al*®). We separated the intertrial vari-
ance of ME (eg, finger forces) into two components V.,
and V... Then, we quantified the multifinger coordination
stabilizing total force by calculating AV for each time step.
AV, was computed using Equation 1.

Similar to the previous study, we estimated the time of
ASA initiation as the point in time when AV, decreased
more than 2 standard deviations from the average AV, from
the steady-state (from 600 ms to 400 ms before time = 0, as
performed in the original work). This procedure was
repeated for both DBS-on and DBS-off conditions (see AV,
trajectories and ASA in Figure 4, and V., and V ., trajec-
tories in Figure 5). Next, we estimated 95% CI of the com-
puted AV,, V., and V.. using the bootstrapping
simulation, for each time step (shaded areas in Figures 4
and 5).

The bootstrapping simulations showed that the individ-
ual with PD displayed multifinger coordination that stabi-
lized the total force, regardless of the stimulation. AV,
were above 95% CI, in both DBS-on and DBS-off condi-
tions during the steady-state (see Figure 4). However, AV,
magnitudes were higher when DBS was on, indicating
stronger stability of the MT. The ASA analysis revealed
that DBS improved the ability to decrease stability of the
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Figure 4. Reanalyzed data® from one individual with
Parkinson’s disease (PD) with (DBS-on) and without (DBS-off)
deep brain stimulation (DBS) performing a multifinger task.
Index of stability (AV.) trajectories from 600 ms prior and 200
ms after the onset of motor task change (time = 0). The dotted
vertical line indicates the onset of a quick pulse. Note that the
anticipatory synergy adjustment (ASA) was observed earlier
during DBS-on when compared with the DBS-off condition.
Shaded areas indicate 95% confidence intervals (Cls) computed
from bootstrapping simulation.

motor task in preparation to sudden action change. The
ASA was observed earlier (—260 ms) during DBS-on, when
compared with the DBS-off condition (55 ms). These
results align well with the group-averaged results published
previously.*®

Notably, the use of bootstrapping on V., and V,;
variance components revealed DBS effects on movement
quality, that were not detected previously. During the MT,
the individual with PD actively decreased the total force
variability (V,,), regardless of the DBS state. Indeed,
V g trajectories had small magnitudes, with values below
the 95% CI in both DBS-on and DBS-off conditions
(Figure 6, bottom panel). DBS had a strong effect on the
variance of finger forces within the UCM. In DBS-off,
Vien values were within 95% CI (ie, not significant). In
other words, with DBS-off, the individual did not utilize
multifinger coordination to exploit many possible solutions
to perform the MT successfully. Conversely, with DBS-on,
the overall variability of the performed movements increased
(note increased 95% CI in DBS-on, Figure 5). The variance
increase, however, was primarily within the UCM. In the
DBS-on condition, V., trajectories increased to values
above 95% CI, for the whole MT. This demonstrates that
DBS caused the emergence of multifinger coordination that
increases the stability of MT performance.

In general, the application of bootstrapping simulation to
Vem and V- parameters revealed new information about
the effect of DBS on the individual with PD. Only in
DBS-on conditions, the subject exhibited movement qual-
ity characteristic, typical to healthy population—actively
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Figure 5. Results of bootstrapping simulations of 2
components of variance that do (V) and do not affect (V)
a specific motor task revealed a strong effect of deep brain
stimulation (DBS) on movement quality. Data obtained from one
individual with Parkinson’s disease (PD) performing a multifinger
task with (DBS-on) and without (DBS-off) DBS. Shaded areas
represent 95% confidence intervals (Cls). Black lines represent
experimentally obtained V ;. (top panel) and V. (bottom
panel). Dashed lines indicate conditions with DBS-off and solid
lines with DBS-on. In both DBS-off and DBS-on conditions, the
individual with PD actively decreased the total force variability
(Vorr < lower 95% CI). DBS had; however, a strong effect on
Vcu- DBS-on caused the emergence of multifinger coordination
that increases the motor task stability (V,, > upper 95% CI).

compensating MT errors (ie, minimized V) and utilizing
multifinger coordination to stabilize MT performance (ie,

increased V).

Postural Synergic Control of an Individual With
Parkinson’s Disease

To investigate the use of the proposed solution for a whole-
body MT, we reanalyzed data from a previously published
article aimed at exploring the changes in postural control
in the PD population.’> More specifically, the authors
investigated multimuscle coordination stabilizing the
COP trajectory in a postural task performed by PD
patients without identified clinical symptoms (=Hoehn-
Yahr stage II). Additionally, the authors quantified ASA,
that is, preparatory decrease in AV, that represents MT

Figure 6. Index of synergy (AVz) during the preparation for
the motor task change at time = 0 for a control (Control)
participant and a patient with Parkinson’s disease (PD).
Shaded areas represent 95% confidence intervals (Cls) of

the distribution generated with the bootstrapping method.
During the steady-state (600 ms to 200 ms before time = 0),
the overall AV was higher for Control than for PD; however,
these values were within 95% CIl. The consistent drop of

AV, related to anticipation of the motor task change, started
earlier for Control than for PD (1). The significant attenuation
of the motor task stability (AVz < lower ClI) is only observed
in Control (2), at around 100 ms before the movement task
change.

stability adjustments in anticipation of a self-triggered pos-
tural perturbation. The authors recorded electromyographic
(EMG) signals from muscles of lower extremities and mea-
sured ground reaction forces to calculate COP trajectories.
Subjects were asked to hold a weight in a fully extended
arm in front of them for about 3 seconds (steady state), and
at a self-paced time, to release the weight (self-triggered
postural perturbation), while maintaining the upright pos-
ture. In the current study, we reanalyzed data from one
individual with PD and from one representative of the
control group. We used 24 repeated trials to compute the
multimuscle coordination that stabilized COP in the ante-
rior-posterior direction, from 600 ms before to 200 ms
after the weight drop at time = 0. The computational
details are described elsewhere.? For this selected time, we
estimated 95% CI of the computed AV, using the boot-
strapping simulation (see Figure 6).
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During the steady state (600 ms to 200 ms before the
weight release), the overall AV, was higher for the control
subject when compared with the individual with PD; how-
ever, these values were within 95% CI. The consistent drop
of AV, indicating ASA of the MT, was observed in the con-
trol subject only. The noisy characteristics of EMG signals
make the 95% CI to have a wider range; therefore, the ini-
tial AV, drop was not significant (point 1, Figure 6 top
panel). The significant ASA was observed in control sub-
ject at around —100 ms before the MT change (point 2,
Figure 6). Notably, the individual with PD did not exhibit
such anticipatory behavior, and the onset of AV, drop
occurred at the moment of weight release (point 1, Figure 6,
bottom panel).

In general, the observed reduction in the time of ASA in
the individual with PD supports the findings of the original
study. The modification we propose provides additional
information that potentially has significant importance in
the clinical application. Our approach shows that none of
the subjects exhibited significant COP-stabilizing behavior
during the steady state. However, only the healthy individ-
ual displayed anticipatory attenuation of the MT stability
before the self-elicited perturbation.

Recommendations

For the first time, we offer a solution for translating the
UCM framework from theoretical neuroscience and experi-
mental findings to clinical practice. Our solution may be
incorporated into a clinical setting to assess sensorimotor
impairments, evaluate the effects of specific neurological
treatments, or track movement quality recovery over time.
Measuring movement quality employing UCM may help
the development of new treatment strategies based on motor
control of movement.

There is growing evidence that low-cost sensors could
be used in clinical settings to measure joint kinematics,*
finger forces,'® and EMG signals.’**! A reach-to-grasp task
may be performed with inertial sensors to collect kinemat-
ics data and estimate joint angles. An instrumented handle
could measure finger forces during a prehension tasks,
while low-cost EMG sensors®**! can be used to measure
muscle activation in whole-body tasks (eg, body sway).
These clinically accessible devices to measure biomechan-
ical variables are promising tools in implementing the use
of UCM in clinical practice. In our approach, a patient
would need to perform 25 to 30 repetitions of a MT, while
selected ME variables are recorded. Then, a computer soft-
ware would present a clinician the computed UCM param-
eters with the associated range 0f 95% CI from bootstrapping
simulations. This analysis could be performed for a spe-
cific epoch (ie, steady state in prehension tasks) or for the
entire movement trajectory (ie, reach-to-grasp or postural
tasks).

We recommend the proposed solution as an extension of
the current UCM analysis for situations when movement
quality assessment is needed in a clinical setting. Our solu-
tion provides clinicians with a UCM-based biomarker that
can be used as a proxy of movement quality. It provides
clinicians with an objective evaluation of movement that
overcomes measurement limitations when using ordinal
scales.>? Our bootstrapping simulation is effective in detect-
ing the effects of selected neurological procedures and
impairments on motor behavior of single individuals.

The use of our approach is also recommended for research
experiments using within or between-group designs. The
proposed solution should be used jointly with a typical sta-
tistical analysis of UCM parameters. Evaluation of each
experimentally obtained UCM parameters against 95% CI,
would provide additional information about the motor
behavior changes of the individuals included in the tested
groups.

Future studies should investigate the minimum number
of trials for reliable UCM estimations and the feasibility of
employing UCM in clinical practice with low-cost sensors
and clinically accessible EMG systems. Further develop-
ment of open-source data-science friendly programs might
increase the application of UCM in neurorehabilitation
research and clinical settings.

Authors’ Note

Python implementation of our algorithm developed for this study
is available from the corresponding author on reasonable request.
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