Abstract

What drives partisan competition over the pursuit of legislative majorities in contemporary congressional elections? While conventional wisdom suggests that the chances of a legislative majority is largely predicated on the public’s ideological policy preferences or national standing of the president, to date there is little work assessing the dynamics of partisan competition over the course of the electoral cycle. Leveraging over 55 years of new generic congressional ballot data measuring the quarterly preference of the mass public’s partisan presence for the congressional majority, this paper finds that partisan competition for the majority largely centers on the national policy mood and the public perception of presidential performance. Moreover, there is no evidence to suggest that partisan conflict on Capitol Hill negatively inhibits the majority party’s pursuit of maintaining their majority. This paper validates the importance of these findings relating to partisan competition for the legislative majority by showing that this electoral competition plays a significant role in predicting the national normal popular vote and partisan seat turnover from 1960 to 2018.

Key words: generic congressional ballot, party competition, legislative conflict, ideological policy mood, presidential approval
Yesterday, the people went to the polls and they cast their vote for a new direction in the House of Representatives. And while the ballots are still being counted in the Senate, it’s clear the Democratic Party had a good night last night. And I congratulate them on their victories... I’m obviously disappointed with the outcome of the election and, as the head of the Republican Party, I share a large part of the responsibility.

Tonight is a great victory for the American people. Today, the American people voted for change, and they voted for Democrats to take our country in a new direction. And that is exactly what we intend to do.

On the heels of growing public discontent over the Bush Administration’s stewardship of American involvement in the war in Iraq, Democrats gained 30 seats in the House of Representatives and 6 in the United States Senate to take unified control of Congress for the first time since the 1994 Republican Revolution. Facing electoral head winds provided by President Bush’s low job approval ratings, due in large part to perceived failure of his policy in Iraq, Democrats defeated 22 Republican House incumbents and 6 Republican Senators to secure control of Congress for the last two years of the Bush Administration (Grose & Oppenheimer, 2007). The day following the election, President Bush accepted a “large share” of responsibility for his party’s defeat and acknowledged that the American public cast a “vote for a new direction.” Shortly thereafter, Democratic Speaker-designate Nancy Pelosi declared victory by pledging that the incoming Democratic Congress would “take our country in a direction” given that the “American people voted for change.”

While conventional wisdom cites the unpopularity of President Bush and the war in Iraq as the chief culprit of Republicans losing their majority in 2006, scholarly work provides evidence that the 2006 Democratic victories may have been fueled by broader unpopularity in the Republican policy program. Indeed, the chief signature policy proposal pushed by President Bush following his 2004 re-election was the long-held Republican plan to privatize social security, which was a
lengthy centerpiece of his February 2005 State of the Union Address.\(^1\) President Bush’s proposal proved to be chronically unpopular with the mass public relatively quickly, to the point that the proposal was abandoned by October 2005 (Barabas, 2006).\(^2\) Another key Republican policy agenda that proved to be out of step with public opinion prior to the Democratic congressional takeover was President Bush’s high-profile veto of the bipartisan Stem Cell Research Enhancement Act in July 2006 (Karch, 2012). Passed by a Republican Congress, President Bush issued his first veto on bipartisan legislation that would have expanded federal funding on stem cell medical research and enjoyed considerably strong support in the mass public, with only 31% of the public supporting the veto according to a subsequent Gallup Poll (Nisbet & Becker, 2014).\(^3\) Alongside the Iraq War, stem cell research was featured prominently by the Democratic campaign during the 2006 midterm elections, particularly in the competitive Missouri and Maryland U.S. Senate contests (Nisbet & Becker, 2014).

In addition to the general unpopularity surrounding President Bush and the Republican policy agenda during the lead-up to the 2006 elections, one potential component that perhaps aided Democrats in their quest for majority control of Congress was their stark opposition to the Republican majority’s legislative agenda on Capitol Hill. Scholars have long remarked that Congress is increasingly becoming an institution marred in partisan conflict between two relatively ideologically cohesive, and responsible, parties (McCarty, Poole & Rosenthal, 2006; Roberts & Smith, 2003; Lebo, McGlynn & Koger, 2007). One of the hallmarks of minority party conflict is not only to delay, or stop, legislative policies that diverged from their preferences (Krehbiel, 1991), but to also create a clear contrast on “party issues” to the broader electorate (Cox & McCubbins, 2005, p.27). Indeed, legislative conflict by the minority party, even if unable to prevent majority-backed

\(^2\)To that point, President Bush also spent a considerable amount of time on the campaign trail arguing for the privatization of social security, even mentioning the proposal during his 2004 State of the Union Address. Barabas (2006) finds evidence that this push for privatization was, in large part, due to a relatively robust stock market that provided a policy window for the proposal.
legislation from passage, may successfully influence public opinion regarding the majority party’s legislative stewardship (Ramirez, 2009).

In this manuscript, I propose a theory of partisan competition for the majority between the two parties positing that the majority party’s electoral fortunes are tied to the degree of legislative conflict, policy mood, and public sentiment of the president throughout the course of the electoral campaign for Congress. Using this theoretical framework, I argue that the majority party’s grip on the legislative majority in the U.S. House and Senate weakens with greater legislative conflict, greater divergence with the policy mood of the mass public, and more politically unfavorable sentiments regarding the president.\footnote{To the latter point, I argue that “politically unfavorable” sentiments regarding the president is the notion that the majority party is disadvantaged during periods of popularity for the opposing minority party’s president and advantaged during periods of unpopularity for the opposing minority party’s president.} Using original generic ballot data measuring the majority party’s electoral lead from 1959-2018, I find strong evidence that the majority party loses support to the minority party during periods of greater ideological divergence with the mass public and politically unfavorable presidential assessments. This is congruent with standing literature suggesting that the public serves as a “thermostat” by punishing the majority party if they are out-of-step with mass opinion and sentiments regarding presidential job performance. Lastly, I show that this electoral competition for the legislative majority shapes national election outcomes, with majority party electoral standing being highly predictive of the normal two-party voteshare and seat turnover in November. Taken together, this work suggests that partisan competition of the legislative majority throughout the course of the campaign is predictable and, ultimately, consequential in deciding which party controls the United States Congress.

1 Theory of Partisan Competition for the Majority

1.1 Partisan Conflict & Majority Party Fortunes

Prominent theories of legislative organization posit that the majority party in Congress should monopolize their agenda-setting power at the expense of allowing the minority party having an
influence on the legislative process (i.e., Rohde, 1991; Cox & McCubbins, 2005). In their seminal procedural cartel theory of legislative organization, Cox & McCubbins (2005) explicitly argue that the majority parity excludes the minority party from agenda-setting activities towards the end of building an exclusive electoral brand on which all of their party members can seek election. Indeed, agenda-setting powers are delegated to senior majority party members (i.e., the Speaker, committee chairs, etc.) towards the end of shepherding policies that strengthen the electoral majority brand and blocking the consideration of legislation that would weaken the brand by potentially dividing the party (Cox & McCubbins, 2005, Ch.2). As a consequence, the minority party is presented with a stark incentive to obstruct the majority party’s quest of building a successful electoral brand that their members can seek election on and thus denying the majority with a record of salient legislative accomplishments. Moreover, legislative conflict helps the minority party draw and highlight key ideological policy distinctions with the majority party, towards the end of seeking an advantage in the next election (Binder, 1999). This is particularly amplified of the presidential out-party, with the opposition facing a stark incentive to defeat the high-profile presidential agenda in order to gain seats in the next election (Lebo & O’Geen, 2011).

Within this context, scholars have found that legislative conflict coincides with greater perceptions of irresponsiveness by Congress (Hibbing & Theiss-Morse, 1995; Adler & Wilkerson, 2012) and lower evaluations of congressional job performance (Ramirez, 2009). This latter point of greater conflict coinciding with lower perceptions congressional approval is a particularly costly finding for the majority party, since scholars have found that congressional approval is directly tied to the electoral fortunes of the collective majority party at the aggregate and voter-level of analysis (Jones, 2010; Algara, 2021b). As such, one can expect that higher levels of partisan

5 Cox & McCubbins (2005) refer to these senior majority party members as “senior partners” as opposed to “junior partners” used to describe rank-and-file majority party legislators. These “senior partners” are akin to those found in business firms competing in a general market place just as parties compete in the electoral arena. Ultimately, Cox & McCubbins (2005) contend that parties exists in order to lower the transaction costs and collective action problem associated with election, with rank-and-file majority party members delegating agenda-setting power to party leaders to build a record of legislative accomplishments that strengthen the majority brand—with senior partners being rewarded with continued power in the majority if successful in their efforts of building a desirable electoral brand that their co-partisans can seek election on and thus keeping the majority.

6 To this point, recent work finds that not only is this approval electorally pivotal towards the electoral fortunes of the majority party, but individual voters and the electorate at-large evaluate Congress in terms of the ideological
conflict can loosen the majority party’s electoral hold throughout the course of the campaign given that the presence of legislative conflict could elicit a greater sense of that Congress is abdicating its policy-making responsibilities as an institution (Hibbing & Theiss-Morse, 1995; Adler & Wilkerson, 2012) and general dislike over the partisan policymaking process (Flynn & Harbridge, 2015). Moreover, a Congress marred in legislative conflict could signal to the broader electorate that the majority party is simply incapable of governing, with this conflict often resulting in inaction (Binder, 2004) and failure in implementing a salient electoral brand on which individual party members can seek re-election (Cox & McCubbins, 2005). This gives rise to the following testable implication below:

\[\star H_1 : \text{Higher levels of legislative conflict lowers the majority party’s electoral advantage over the minority party.} \]

1.2 Considering Ideological Policy Mood

In addition to legislative conflict, one key component defining competition for the legislative majority between both parties is the general ideological direction of the country. Indeed, a rich literature in political science posits that the policy mood of the mass public is thermostatic, with the public reacting in ideologically divergent ways to policies espoused and implemented by the federal government (Wlezien, 1995; Erikson, MacKuen & Stimson, 2002). As Erikson, MacKuen & Stimson (2002, p.351) articulate, “for every two pieces of liberal legislation during a presidency, mood becomes more conservative,” with the electorate responding by electing more Republicans to positions of power in order to enact more conservative policies. Within the context of federal spending, Wlezien (1995) finds evidence of these feedback thermostatic opinion with the mass public electing for a decrease in public spending in response to an increase in governmental appropriations. MacKuen, Erikson & Stimson (1989) find a similar relationship within the context of macropartisanship, with the mass public responding to unpopular presidents

7Policy mood refers to the overall predisposition of the mass public to support liberal or conservative policy positions regarding the government’s role in solving societal collective action (Stimson, 1998).
by slightly shifting their partisan preferences away from that of an unpopular incumbent. In terms of policy responsiveness, Stimson, MacKuen & Erikson (1995) finds that large-scale shifts in policy mood yields large-scale shifts in governmental action across the presidency and Congress.

In terms of partisan competition of the legislative majority, one can expect that the ideological policy mood to manifest itself in similar ways as previous scholarly contexts. Indeed, there should be congruence between the ideological policy mood of the mass public and the national partisan preference on the generic majority party ballot. For example, greater preference for liberal policies in the policy mood of the mass public should correspond to a greater preferences for a Democratic majority in the U.S. Senate and House. Given that a Republican majority naturally espouses a conservative policy platform and, in some cases, implementation of this platform at a national scale (Binder, 1999; Epp, Lovett & Baumgartner, 2014); greater preference for liberal policies in the mass public should erode the Republican advantage on the generic ballot. Conversely, greater conservative policy mood in the mass public should increase support for Republicans on the generic ballot at the expense of Democrats. This gives rise to the following hypothesis:

★ \(H_2 \): Higher congruence between the policy mood of the mass public and the majority party the greater the majority party’s electoral advantage over the minority party.

1.3 The Role of Presidential Approval & Competing for the Majority

In addition to ideological policy mood, a robust academic literature posits that presidential performance plays a large role in shaping partisan competition and accountability (Ashworth, 2012; Healy & Malhotra, 2013). Largely situated within the context of waning public support for war in the face of high causalities, this literature finds that the mass public electorally penalizes both the president and their co-partisans on the basis of low presidential approval. Even prior to the emergence of the contemporary two-party system, Carson et al. (2001) find evidence that Civil War casualties contributed to the loss of the Republican U.S. House majority during the 1862-63 midterm elections. Over a century later, Gartner, Segura & Wilkening (1997) find that areas with higher Vietnam War casualties were among the first to disapprove of President Lyndon
Johnson’s stewardship of the conflict. More recently, in their assessment of the Iraq War Grose & Oppenheimer (2007) find stark evidence that voters residing in areas of high casualties punished Republican House candidates during the 2006 elections. Kriner & Shen (2007) replicate this result within the context of the 2006 U.S. Senate elections and Karol & Miguel (2007) find evidence that President Bush’s victory two years prior was depressed by mounting Iraq war casualties. Indeed, voters who were in close social proximity to mounting casualties of the Iraq War expressed higher levels of disapproval for President George W. Bush (Gartner, 2008), providing a critical mechanism by which voters electorally held his party accountable during the 2006 and 2008 election cycles.

Even in the absence of a war, the literature identifies that presidential performance can still play a large role in shaping electoral accountability. Perhaps in the most salient example, the literature finds that a lagging economy and President Ford’s pardon of disgraced former President Richard Nixon served as a catalyst for pronounced Democratic gains during the 1974 midterm elections (Abramowitz, 1985; Uslaner & Conway, 1985). Within the context of the coronavirus (COVID-19) pandemic, Warshaw, Vavreck & Baxter-King (2020) find preliminary evidence that voters residing in counties with greater pandemic-related deaths coincides with less intended support for President Trump and Republican Senate candidates. In short, a rich literature posits that presidential performance largely plays a large role in shaping not only individual accountability for a presidential performance, but also the dynamics of partisan legislative competition in Congress. Indeed, a weak president plagued by lower job approval assessment can weigh down his party’s quest for capturing, or sustaining, their legislative majority. On the other hand, a strong president bouyed by high job approval can aid his party’s pursuit of flipping, or maintaining, the legislative majority. This gives rise to the following testable hypothesis:

⋆ \(H_{3} \): Higher congruence between presidential job approval assessments of the mass public and the majority party the greater the majority party’s electoral advantage over the minority party.

This testable hypothesis posits that during periods of opposing-partisan presidential unpopularity (popularity), the majority party gains electoral support over the minority party given that the
minority party is forced to contend with an unpopular (popular) co-partisan president governing the country. Conversely, during periods of co-partisan presidential popularity (unpopularity), the majority party also gains (loses) electoral support over the minority party given shared partisanship between the president and the legislative majority of the chamber.

1.4 Controlling for Economic Effects on Partisan Accountability

To evaluate the aforementioned hypotheses, it is important to consider potential confounding predictors of partisan competition for the legislative majority. Indeed, a long line of literature posits that collective partisan competition is shared by retrospective evaluations of the economy (see Healy & Malhotra, 2013, for a comprehensive review of the literature.) and, in addition, the mass public can use these evaluations to even shape their perceptions of national institutions (i.e., Congress) (Stimson, 2004; Ramirez, 2009). While scholars debate how to measure the state of the national economy, the literature largely posits that the mass public holds collective parties and institutions to account for declining economic conditions and the failure to fulfill the baseline expectation of providing a healthy stable economy (Ramirez, 2009). One of the salient lines of this work posits that presidential elections are largely a referendum on not only presidential performance, but also the state of the national economy—with incumbent presidents overseeing weak economies being forecasted as poor bets for reelection (Abramowitz, 1988, 2008). In line with standing work, it well could be the case that partisan competition for the majority is driven by national economic conditions, with the majority party losing support to the minority if they fail to ensure policies that provide for a robust national economy. Conversely, the majority party may stand to gain electoral support over the minority on the strength of a robust and growing economy.

To that end, the theoretical framework presented here must account for the possibility that partisan competition for the legislative majority is largely shaped by economic conditions rather than partisan conflict, the congruence of the mass public’s policy mood and the majority party, or presidential performance. In the forthcoming models evaluating the theory of partisan competition
for the legislative majority, and reflecting the broader measurement debate (Healy & Malhotra, 2013), multiple measures of the state of the national economy (i.e., GDP growth, unemployment rate, consumer sentiment, market changes) are included in order to isolate the key covariates of interest. By accounting for the relationship of national economic conditions and partisan competition for the legislative majority, the model can robustly test the theoretical framework of partisan competition for the majority presented here. In the forthcoming section, I turned to specification of the empirical model assessing the drivers of Democratic and Republican partisan competition for standing majorities in the U.S. House and Senate over time.

2 Research Design

2.1 Measuring Party Competition for the Majority: The Generic Ballot

To test the theoretical framework of informing partisan competition for the legislative majority, I estimate a time-series of the generic congressional ballot measuring the mass public’s partisan preference in the upcoming congressional election in their district or, in other words, measuring the public’s “generic ballot” preference of which party they intend to vote for in their district. Since legislative control of Congress and the U.S. Senate will ultimately be decided by the distribution of partisan outcomes across 435 individual House races and about 33 individual Senate elections, respectively, the generic ballot helps capture the public’s support of a given party relative to another throughout the course of the campaign cycle (Bafumi, Erikson & Wlezien, 2010; Jennings & Wlezien, 2016). To that end, I collect survey marginal data from the Roper Center measuring partisan preference in the upcoming congressional election for all elections from 1959-2018, providing for 3,956 nationally representative surveys, sponsored by multiple outlets, and covering over 30 election cycles.¹ I code these survey marginals as a generic ballot support differential

¹I begin with 1959 since this is the first year in which the generic ballot was asked on a consistent enough basis to generate a quarterly time-series. In the early period of this survey marginals, many of these questions asked respondents a variant of the following question: “If the elections for Congress were being held today, which party would you like to see win in this state—the Republican party or the Democratic party?” This question wording eventually evolves to focus on the congressional district level, rather than the state level, with the following wording:
between the two parties, with a value greater than 0 indicating a partisan advantage for the majority party and a negative value indicating a partisan disadvantage (i.e., a partisan advantage for the minority party). I rely on Stimson’s (1998) dyad ratios latent variable model to identify shared variance across differently worded surveys designed to measure generic ballot preferences and derive smoothed quarterly estimates of partisan preferences in the general ballot.9 The resulting estimation from the model, analogues to confirmatory factor analysis, shows that the generic ballot survey marginals are quite similarly construct regardless of the question wording, with the entire surveys explaining about 98.5\% of the variance in latent generic ballot preferences. This suggests a high degree of construction validity in the time-series outcome variable of interest.

\textbf{Figure 1: Quarterly Congressional Generic Ballot, 1959-2018}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Quarterly Congressional Generic Ballot, 1959-2018}
\end{figure}

9Akin to a factor analysis, Stimson’s (1998) latent variable model has been applied to multiple contexts in which scholars use aggregate data from multiple survey outlets to estimate overall trends in mass public opinion (McGann, 2014). This model plays an integral role in the \textit{Macropolicy} project developed by Erikson, MacKuen & Stimson (2002).
the dyad ratios model, along with overlaid raw values of the survey marginals used, for the U.S. House and Senate, respectively. Reflecting the stark Democratic grip on the U.S. House prior to the 1994 Republican Revolution, the majority advantage in the generic ballot was on average about 5% from 1959 to 1995. Following the 1994 elections and reflecting an increase in two-party competition over the congressional majority (Lee, 2016), the mean generic ballot lead for the majority party is -0.7%, articulating clear partisan balance in the battle for the House majority that was lacking during the period of Democratic dominance from 1959 to 1994. The generic ballot estimates also captures stark misfortune in the majority party’s electoral fortunes. For example, Republicans faced a 6.8% deficit in the generic congressional ballot when they lost their House and Senate majorities during the 2006 election. This is similar to the 1986 election cycle, where Senate Republicans faced a 6.5% deficit in the generic ballot en route to losing the majority they won with President Reagan’s election in 1980. By contrast, the time series also captures election cycles of majority fortune, as seen by the 12.9% generic ballot lead the Democratic House and Senate majorities enjoyed on their way to historic gains during the post-Watergate 1974 election cycle. In all, these estimates possess a high degree of qualitative external validity by reflecting salient examples of majority party prospects heading into decisive election cycles.

2.2 Measuring Key Covariates of Interest

Now that the key outcome variable is specified, I turn to measuring the key independent variables of interested identified by the theoretical framework. To measure legislative conflict, I calculate the proportion of the roll-call voting agenda consisting of party unity votes in both the House and Senate, respectively. This standard approach captures the degree to which both parties disagree on salient issues and the amount of legislative conflict present in the chamber over a given issue or piece of legislation (Rohde, 1991; Lebo, McGlynn & Koger, 2007; Ramirez, 2009). To construct this measure, I rely on legislator-level roll-call voting data scrapped from the
VoteView project housed at the University of California, Los Angeles (Boche et al., 2018). Using this data for both legislative chambers, I code each individual roll-call vote in which at least 50% of Democrats vote against at least 50% of Republicans as a party unity vote. If a roll-call vote fails to reach this degree of partisan disagreement, this reflects a roll-call vote that did not divide the parties and are thus code as not being a party unity vote. I then sum up the number of party unity votes per temporal quarter and divide by the total number of roll-call votes taken during that quarter to account for fluctuations in the number of roll-call votes considered over time.11 I repeat this procedure for both the House and Senate, with Figure 2A showing the trend in quarterly party unity in both legislative chambers. Reflecting the current increase in legislative conflict on Capitol Hill, the Figure shows that the both contemporary polarized chambers are increasingly marred in partisan conflict than their counterparts of the past (Theriault, 2008). Indeed, during the 115th from 2017-2018, about 65\% of House votes and 60\% of Senate votes in a given quarter were party unity votes, thus reflecting a high degree of partisan conflict within both chambers.

Turning to the second key covariate of interest, I rely on Stimson’s (1998) policy mood to measure the ideological policy preferences of the national mass public. Using a host of national surveys across differing policy issue areas, policy mood captures the general degree of liberal-conservative preference for governmental activism in society. I recode this ideological policy mood measure in the direction of the majority party in the House and Senate, respectively, with higher values indicating greater ideological congruence between the mass public and the majority party. By contrast, lower values indicate greater ideological divergence (i.e., less congruence) between the mass public and the majority party. Figure 2B plots quarterly majority directional policy mood from discongruence to congruence for both legislative parties from 1959, the first year of the time-series, and 2018, the last year of the time-series. Congruent with the notion that policy mood responds “thermostatically to government policy” (Stimson, 2004, p. 165), there is clear evidence

11I also consider alternative measures of partisan conflict used in the literature, such as the number of presidential vetoes or filed cloture motions in the United States Senate (Ramirez, 2009). However, given the quarterly construct of the time-series dataset, these two observations are observed far too infrequently on a quarterly basis. Of course, presidential vetoes do not account for legislative conflict within both chambers and the House lacks the cloture procedural filing found in the Senate. As such, the measurement approach articulated presents a direct comparison of the effect of legislative conflict on majority party electoral fortunes in both the House and Senate context, respectively.
that greater mood divergence coincides with pronounced majority party loses. For example, policy mood congruence was at its nadir the quarter prior to the loss of the Republican majorities in 2006 and was also fairly low prior to House Democrats losing 63 seats, and their majority, during President Obama’s first midterm in 2010.12

Lastly, I estimate a measure of presidential job approval to capture the mass public’s sentiment of the president. Returning to survey marginal data from 5,678 nationally representative polls compiled by the \textit{Roper Center}, I replicate the dyad-ratios estimation strategy used to in the generic ballot time-series estimation to estimate quarterly presidential approval over the same time period. This results in quarterly data of the mass public’s job approval assessments of over 12 presidents and I again code the resulting time-series in the direction of the majority party in both the House and the Senate. The logic of this coding posits that the majority party should gain in their electoral advantage over the minority if their co-partisan president is relatively popular or if the opposing party’s president is relatively unpopular. Conversely, the majority party should lose an electoral advantage to the minority party during periods in which their presidential co-partisan is relatively unpopular or the opposing party’s president is popular. \textbf{Figure 2C} plots the majority party presidential approval time-series and, here too, the time-series provides external validity to this measurement.13 Turning again to the 2006 election cycle, President George W. Bush’s negative net approval rating of 6\% heading into the election corresponds to a loss of both chambers for his party. Moreover, during the nadir of his presidency in 2008, a negative net approval of 22.97\% heading into the election qualitatively played a critical factor in House Democrats expanding their majority and Senate Democrats approaching the 60 seats required for a filibuster proof majority.14

12During the 2010 election cycle, Senate Democrats lost 6 seats to Republicans but held onto their majority given their stark 59-41 seat advantage heading into the election. Senate Democrats would finally lose their majority during the 2014 cycle, when Republicans gained 9 Senate seats.

13Note that this measure of presidential approval and policy mood, both coded in the direction of the majority party, are correlated at \approx-0.01 in the U.S. House and Senate, thus indicating no correlation between presidential approval and ideological policy mood of the mass public in this context.

14Of course, this low presidential popularity also contributed to the pronounced 2008 victory of the Democratic Obama/Biden ticket over the Republican McCain/Palin ticket, with the Democratic ticket winning convincingly by 52.9\%-45.7\% popular vote margin and 365-173 electoral vote margin.
Figure 2: Quarterly Measures of Covariates of Interest, 1959-2018

(a) Party Unity Votes

(b) Ideological Policy Mood

(c) Presidential Approval

N = 13,187 (House) & 11,091 (Senate). Loess regression line articulates over-time trend. Data: VoteView.

Data: Stimson (2020)

N = 5,678 nationally representative presidential polls. Data: Roper Center iPoll. Shaded areas indicate co-partisan President as chamber majority. Quarterly estimates derived from dyad-ratios model (Stimson 1998). 99.8% variance explained in latent variable.
2.3 Specifying the Model of Partisan Competition for the Majority

Now that our main covariates of interest are defined, I turn to specifying a single-equation generalized error correction model (GECM) assessing the drivers of partisan competition over the legislative majorities in Congress. I specify this forthcoming model for both the U.S. House and the U.S. Senate, respectively. Specifying this type of model allows for modeling cointegrated time series and can be applied to assessing dynamic relationships between stationary and non-stationary time-series (Banerjee et al., 1993; De Boef & Keele, 2008). Indeed, due to this flexibility in assessing dynamic relationships across differing time-series GECMs have increasingly gained popular within political science (Grant & Lebo, 2016). Moreover, recent advancements in hypothesis testing by Webb, Linn & Lebo (2019) allows for correctly using GECM models to generate reliable estimates when assumptions about integration, co-integration, and the stationary of the time series data cannot be met.\s

The single equation GECM model takes the following functional form:

$$\Delta y_t = \alpha_0 + \alpha_1 y_{t-1} + \beta_0 \Delta x_t + \beta_1 x_{t-1} + \epsilon_t$$ (1)

where Δy_t is the change in the dependent variable—in this case the majority party’s lead in the generic ballot— at time t, α_1 is the error correction rate, β_0 is the effect of a Δ change in a given covariate at time t, and β_1 captures the effect of the lagged $t-1$ value of a given covariate on the dependent variable. This GECM setup, which is functionally equivalent to the auto-distributed lag model, allows for the estimation of short-term and long-run effects of model covariates x_t on the dependent variable y_t. The advantage of this approach is the model can capture the substantive relationship between changes in levels of the independent variable (x_t) and the dependent variable (y_t) by using long-run multipliers (LRMs) estimated as $LRM_x = \frac{\beta_1}{\alpha_1}$ (De Boef & Keele, 2008). These long-run multipliers (LRM_x) allow for assessing the cumulative effect of a given covariate

15For a more detailed discussion on the standard assumptions of GECMs and the biased estimates produced when these assumptions are violated, see Grant & Lebo (2016). As discussed in the forthcoming section, I rely on the hypothesis testing method developed by Webb, Linn & Lebo (2019) given the uncertainty regarding the diagnosing of unit roots.
on the dependent variable y_t over future time-periods. In other words, LRM
s help assess both
the short-term and long-term effects, or “total effects”, of x_t on y_t over future time periods (De

To conduct hypothesis testing derived from the GECM model, I rely on the method developed
by Webb, Linn & Lebo (2019) as a means to assess the significance of the relationship between x_t
and y_t articulated by the LRM. Unlike traditional time-series hypothesis testing, this method does
not make assumptions about whether a given time-series is stationary, integrated, or fractionally
integrated. This is particularly helpful given the uncertainty about whether a series has a unit root,
especially in light of a lack of conclusive diagnostic tests assessing whether a series is stationary,
integrated, or fractionally integrated. As such, this method allows for the recovery of reliable long-
rung multiplier estimates when one is not sure of the properties of the data as opposed to relying on
the standard GECM framework that require explicit assumptions to be met for reliable hypothesis
testing estimation.16 Indeed, this hypothesis testing framework centers on leveraging the test
statistic of the LRM and bounds testing to derive accurate inferences of statistical significance
between the long-running relationship between covariates and the dependent variable.17 By
first identifying the appropriate lower and upper bound t-statistic critical values, depending on
the length of the time-series and number of regressors present in the model, one can infer the
significance of the long-run relationship between x_t and y_t (Webb, Linn & Lebo, 2019). If the
t-statistic of the LRM is less than the lower bound critical value, one can infer an insignificant
long-run relationship between x_t and y_t. However, if the t-statistic of the LRM is greater than
the upper bound critical value, one can infer a significant long-run relationship between x_t and
y_t. If the t-statistic of the LRM is greater than the lower-bound critical value but less than the
upper-bound critical value (i.e., falling between the bounds of the critical values), the significance
of the long-run relationship between x_t and y_t is indeterminate.

16To that point, reliance on traditional GECM coefficient estimates for hypothesis testing will prove unreliable
if assumptions of integration and co-integration are not met (Grant & Lebo, 2016). This further justifies the use
of LRM’s and the bounds method by Webb, Linn & Lebo (2019) to reliably conduct hypothesis testing between the
covariates of interest and the majority party’s generic ballot lead over the time-series.

17For a detailed description of this method with application to various example GECM models spanning various
political science subfields, see Webb, Linn & Lebo (2020).
Taken together, I will use this method of hypothesis testing identified by Webb, Linn & Lebo (2019) to estimate LRM s for each independent variable from a GECM, derive standard errors using the delta method, and compare resulting LRM t-statistic to the critical values identified by bounds testing to assess statistical significance of the relationship between x_t and y_t. In addition to the main covariates measuring partisan conflict, ideological policy mood of the mass public, and presidential approval; the model also controls for other potentially salient predictors of the generic ballot electoral differential. Reflecting the fact that retrospective economic voting may manifest itself in multiple dimensions (see the annual review by Healy & Malhotra, 2013, for a full discussion), the model controls for latent national economic conditions by controlling for changes in the growth domestic product (GDP), the national unemployment rate, changes to the Dow Jones Industrial Average (DJIA), and consumer sentiment. The addition of these quarterly time-series into the model help control for the effect of various dimensions of economic performance on the electoral standing of the majority party relative to the minority party.\footnote{I measure consumer sentiment using data from the University of Michigan’s Index of Consumer sentiment, which became available in 1960. Higher values of the consumer sentiment measure indicates higher levels of prospective economic confidence by consumers. Note that given the monotonic rise of the stock market (DJIA) and GDP from 1959 to 2018, I elect to specify these measures as the relative changes rather than absolute terms. This approach allows for comparisons over time, since GDP and the DJIA rises monotonically over this time-series and the American economy and financial markets are much larger in absolute terms longitudinally.} In addition to these time-series control variables, I also include control whether the chamber’s legislative majority is of the same party as the president. Lastly, I specify two counter variables controlling for the salience of presidential and midterm campaign cycles, respectively. Following the lead of Wolak & Peterson (2020), I use two counter variables to control for campaign effects, coded 1 for the first quarter of a presidential or midterm campaign year through 4 indicating the last quarter of a given presidential or midterm campaign cycle. In odd numbered years, these campaign counter variables are coded 0 given the lack of a presidential or midterm campaign cycle.
3 Model Results: The Key Role of Mood & Presidency

Table 1 presents results of three differing generalized error correction models assessing the determinants of partisan competition for the legislative majority in the U.S. House and Senate from 1959 to 2018. Model 1 is the baseline model assessing the effect of all variables with complete quarterly data from 1959 to 2018. Model 2 expands the baseline model with the inclusion of the campaign and partisan contextual covariates. Lastly, Model 3 represents the fully specified model with all covariates of interest. This fully specified model begins in 1960, given the lack of consumer sentiment index data for 1959. Table 1 articulates the long running multipliers (LRMs) for each of the quarterly covariates across all models for the House and Senate, respectively. Following the Webb, Linn & Lebo (2019) method and as previously articulated, I focus on assessing the long-run multipliers to test the relationship between the quarterly covariates of interest rather than standard GECM coefficients.\footnote{I report and assess the coefficients and standard errors derived from the GECM models in Table 1A of the appendix.}

Applying the hypothesis testing method identified by Webb, Linn & Lebo (2019), Table 1 provides for leverage on assessing the significance of the relationship between individual time-series covariates and the electoral standing of the majority party. Given the number of regressors in the model and the length of the time-series, Webb, Linn & Lebo (2019) identify that the 95% upper bound critical value is 3.56 and, as a consequence, the test statistic of a given LRM must be greater than 3.56 to indicate a statistically significant relationship between the covariate and dependent variable regardless of univariate dynamics present in the series.\footnote{Note that test statistics that fall between the lower bound critical value at 1.02 and the upper bound critical value of 3.56 reflect an inconclusive relationship given uncertainty about the true nature of all the covariate series used in the analysis (Webb, Linn & Lebo, 2020). For test statistics that fall below the lower bound critical value, one cannot reject the null hypothesis of a long-run relationship between a given covariate and the outcome variable at the standard 95% level of statistical significance, thus indicating a statistically insignificant relationship. In the forthcoming discussion, I treat an inconclusive relationship as a statistically insignificant relationship in which one cannot reject the null hypothesis for ease of interpretation.} With respect to party conflict, the LRM confirms an insignificant relationship between this key covariate and electoral standing of the majority party in both the House and Senate. While the minority party may be faced with an incentive to obstruct the majority party agenda and clarify partisan distinctions
through pronounced conflict (Cox & McCubbins, 2005), these models suggest that this conflict
does not lower the electoral position of the majority party in the electoral battle for House or
Senate control over the course of the national campaign.

By contrast, Table 1 shows that across each model specification for both chambers the effect
of the ideological policy mood of the mass public is a significant predictor of the majority party’s
electoral positioning. In substantive terms, a one-standard deviation increase in policy mood
($\sigma \approx 11.76$) towards the ideological direction of the majority party increases the House majority
party’s electoral lead in the generic ballot by 2.94% in the fully specified model (3). Similarly,
this one-standard deviation increase in the U.S. Senate ($\sigma \approx 11.78$) corresponds to a cumulative
increase in the generic ballot for the Senate majority by 3.65% in the fully specified model (3).

To further conceptualize the long-running relationship between mass public policy mood and
the electoral standing of the majority party, consider the case of when policy mood was at
its nadir heading into the last quarter prior to the 2018 elections. On the heels of passing the
chronically unpopular Republican Tax Cuts and Jobs Act of 2017 (Jacobson, 2019), ideological
policy mood stood at about two standard deviations below the mean relative to the majority
party ($\sigma \approx -23.71$), contributing in a decline of electoral advantage of 9.48% and 7.35% for the
Republican majorities in the House and Senate, respectively.\footnote{21}

In terms of presidential approval, all model specifications show clear evidence of a significant
long-run relationship between the political standing of the president and the majority party’s
electoral standing in both the House and Senate. Turning to the fully specified model (3), a
one-standard deviation change increase in presidential approval in the direction of the majority
party ($\sigma \approx 16.51$) corresponds to an increase of 4.62% and 4.79% in the electoral standing of the
House and Senate majority parties, respectively. In substantive terms, consider the case of 1998
and 2008. Heading into the quarter prior to the 1998 midterm elections, the net job approval of
approximately 15.75% for Democratic President Bill Clinton cost the Republican House and Senate
majorities approximately 4.41% and 4.57% in their generic ballot standing according to the fully

\footnote{21}This articulation is derived from estimates of the fully specified model (3) for the House and Senate.
specified model. Congruently, Republican President George W. Bush’s net job approval of -22.97% heading into the 2008 election cost the Republican House and Senate majorities approximately 6.43% and 6.66%.

Table 1 also reveals a lack of significant relationships between other quarterly covariates capturing various economic conditions and the electoral standing of the majority party. Taken together, there is clear evidence that both the ideological policy mood of the mass public and assessments of presidential job approval influence the electoral standing of the majority parties in both chambers of Congress. To assess the temporal nature of these significant effects, I plot the estimated lag distributions for ideological policy mood and presidential approval in both the House and Senate in Figure 3.22 The estimated lag distributions shown in Figure 3 articulate the change in the majority party’s generic ballot lead for each quarter following a shift in the predictor of interest at time T_0. For both ideological policy mood and presidential approval in the House and Senate, the effect on the majority party’s electoral lead materializes in the quarter following a shift in the predictor and declines in subsequent quarters towards an equilibrium. These lag distributions in the effect of ideological policy mood and presidential approval on the majority party’s generic ballot electoral lead mirrors those of other time-series models assessing the role of macro political dynamics on institutional attitudes and outcomes (Ramirez, 2012; Wolak & Peterson, 2020).

22This Figure is derived from the fully model specified estimates found in Table 1 Column 3 for the House and Senate, respectively.
<table>
<thead>
<tr>
<th></th>
<th>U.S. House Model (1)</th>
<th>U.S. House Model (2)</th>
<th>U.S. House Model (3)</th>
<th>U.S. Senate Model (1)</th>
<th>U.S. Senate Model (2)</th>
<th>U.S. Senate Model (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRM Party Conflict</td>
<td>-3.61</td>
<td>-10.03</td>
<td>-8.05</td>
<td>-1.71</td>
<td>-3.71</td>
<td>-2.21</td>
</tr>
<tr>
<td></td>
<td>(5.57)</td>
<td>(5.56)</td>
<td>(5.57)</td>
<td>(7.16)</td>
<td>(6.88)</td>
<td>(6.83)</td>
</tr>
<tr>
<td></td>
<td>[-0.65]</td>
<td>[-1.80]</td>
<td>[-1.45]</td>
<td>[-0.24]</td>
<td>[-0.54]</td>
<td>[-0.32]</td>
</tr>
<tr>
<td>LRM Policy Mood</td>
<td>0.30</td>
<td>0.26</td>
<td>0.25</td>
<td>0.25</td>
<td>0.32</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td>(0.06)</td>
<td>(0.06)</td>
<td>(0.06)</td>
<td>(0.07)</td>
<td>(0.07)</td>
<td>(0.08)</td>
</tr>
<tr>
<td></td>
<td>[4.82]†</td>
<td>[4.33]†</td>
<td>[4.23]†</td>
<td>[5.44]†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LRM Presidential Approval</td>
<td>0.17</td>
<td>0.27</td>
<td>0.28</td>
<td>0.19</td>
<td>0.28</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td>(0.04)</td>
<td>(0.05)</td>
<td>(0.05)</td>
<td>(0.05)</td>
<td>(0.06)</td>
<td>(0.06)</td>
</tr>
<tr>
<td></td>
<td>[4.05]†</td>
<td>[5.09]†</td>
<td>[5.28]†</td>
<td>[3.56]†</td>
<td>[4.49]†</td>
<td>[4.74]†</td>
</tr>
<tr>
<td>LRM GDP Change</td>
<td>2.55</td>
<td>2.51</td>
<td>2.69</td>
<td>1.19</td>
<td>1.25</td>
<td>1.42</td>
</tr>
<tr>
<td></td>
<td>(0.90)</td>
<td>(0.86)</td>
<td>(0.85)</td>
<td>(1.09)</td>
<td>(1.02)</td>
<td>(0.99)</td>
</tr>
<tr>
<td></td>
<td>[2.83]</td>
<td>[2.93]</td>
<td>[3.18]</td>
<td>[1.09]</td>
<td>[1.22]</td>
<td>[1.43]</td>
</tr>
<tr>
<td>LRM Unemployment Rate</td>
<td>-0.15</td>
<td>-0.41</td>
<td>-0.48</td>
<td>-1.52</td>
<td>-1.01</td>
<td>-1.20</td>
</tr>
<tr>
<td></td>
<td>(0.44)</td>
<td>(0.42)</td>
<td>(0.52)</td>
<td>(0.55)</td>
<td>(0.52)</td>
<td>(0.62)</td>
</tr>
<tr>
<td></td>
<td>[-0.34]</td>
<td>[-0.97]</td>
<td>[-0.93]</td>
<td>[-2.77]</td>
<td>[-1.92]</td>
<td>[-1.94]</td>
</tr>
<tr>
<td>LRM Market Change (DJIA)</td>
<td>-0.19</td>
<td>-0.16</td>
<td>-0.12</td>
<td>0.03</td>
<td>0.21</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>(0.14)</td>
<td>(0.13)</td>
<td>(0.14)</td>
<td>(0.16)</td>
<td>(0.15)</td>
<td>(0.16)</td>
</tr>
<tr>
<td></td>
<td>[-1.38]</td>
<td>[-1.22]</td>
<td>[-0.91]</td>
<td>[0.18]</td>
<td>[0.14]</td>
<td>[0.30]</td>
</tr>
<tr>
<td>LRM Consumer Sentiment</td>
<td>-</td>
<td>-</td>
<td>-0.02</td>
<td>-</td>
<td>-</td>
<td>-0.04</td>
</tr>
<tr>
<td></td>
<td>(0.07)</td>
<td>(0.07)</td>
<td>(0.07)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[-0.34]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R²</td>
<td>0.27</td>
<td>0.32</td>
<td>0.33</td>
<td>0.21</td>
<td>0.25</td>
<td>0.26</td>
</tr>
<tr>
<td>N</td>
<td>237</td>
<td>237</td>
<td>235</td>
<td>237</td>
<td>237</td>
<td>235</td>
</tr>
<tr>
<td>Box-Ljung Q Test</td>
<td>29.54</td>
<td>30.19</td>
<td>32.37</td>
<td>41.12</td>
<td>33.11</td>
<td>31.77</td>
</tr>
<tr>
<td>ρ-value</td>
<td>0.89</td>
<td>0.87</td>
<td>0.80</td>
<td>0.42</td>
<td>0.77</td>
<td>0.82</td>
</tr>
</tbody>
</table>

Dependent variable: ΔQuarterly lead differential for majority party.
Standard errors reported in parenthesis. t-values reported in brackets.
†indicates significant long running multipliers for covariates of interest where |t| > 3.56, indicating statistical significance at **ρ < 0.05.
Figure 3: Estimated Lag Distributions of Party Majority Competition Determinants

(a) Ideological Policy Mood

(b) Presidential Approval
4 Competition as Predictors of National Partisan Normal Vote & Seat Turnover in the House & Senate

The preceding models find robust evidence that partisan competition legislative majorities in the U.S. House and Senate are largely shaped by the ideological policy mood of the mass public and attitudes centered on the job performance of the president. While these factors shape partisan competition over the power to set the agenda on Capitol Hill, is this partisan competition indicative of realized electoral outcomes in November? While scholars have assessed the degree to which partisan competition, as measured by the generic ballot differential, is predictive of the partisan normal vote (Erikson & Sigelman, 1996; Moore & Saad, 1997; Bafumi, Erikson & Wlezien, 2010); much of this work is situated only within the context of midterm elections in the House. Moreover, no previous work seeks to situate partisan campaign competition over the legislative majority as a predictor of observed partisan electoral outcomes with respect to both the normal vote and seat turnover realized in both congressional chambers.

To situate the relevance of these findings, I specify OLS models predicting the majority party’s performance in terms of both the normal vote and seat turnover from 1960 to 2018 for both chambers of Congress. If the majority party’s electoral standing heading into the election plays a significant role in shaping electoral outcomes in both of these dimensions, then it is clear that the dynamics of the electoral campaign over the majority plays a salient role in the ultimate electoral outcome. To that end, I begin validating the findings of majority party competition by specifying a model of the national popular vote won by the majority party as a function of the party’s standing heading into the election cycle. Using data from the Brookings Institute, I specify the dependent variable as the two-party percentage of the national normal vote won by the majority party across all races contested by both parties. This measure aggregates all the votes won by both parties across these contested races to calculate the national two-party normal vote. I specify three models for each chamber and the fully specified model controls for election cycle.
Table 2: OLS Models Predicting Majority Party National Normal Popular Vote in U.S. House & U.S. Senate Elections, 1960-2018

<table>
<thead>
<tr>
<th></th>
<th>U.S. House</th>
<th></th>
<th>U.S. Senate</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Majority Party</td>
<td>0.46***</td>
<td>0.48***</td>
<td>0.45***</td>
<td>0.49***</td>
</tr>
<tr>
<td>Differential (Q4)</td>
<td>(0.07)</td>
<td>(0.08)</td>
<td>(0.08)</td>
<td>(0.08)</td>
</tr>
<tr>
<td>Majority Party</td>
<td>-</td>
<td>1.84***</td>
<td>2.16***</td>
<td>-</td>
</tr>
<tr>
<td>Election Cycle</td>
<td>(0.45)</td>
<td>(0.46)</td>
<td>(0.46)</td>
<td>(0.62)</td>
</tr>
<tr>
<td>Republican Majority</td>
<td>-</td>
<td>0.86</td>
<td>0.64</td>
<td>-</td>
</tr>
<tr>
<td>(0.95)</td>
<td>(0.99)</td>
<td>(1.12)</td>
<td>(1.10)</td>
<td></td>
</tr>
<tr>
<td>Presidential Approval</td>
<td>-</td>
<td>-</td>
<td>0.02</td>
<td>-</td>
</tr>
<tr>
<td>Maj. Direction (Q4)</td>
<td>(0.03)</td>
<td>(0.03)</td>
<td>(0.03)</td>
<td>(0.03)</td>
</tr>
<tr>
<td>Constant</td>
<td>50.48***</td>
<td>50.16***</td>
<td>50.43***</td>
<td>49.23***</td>
</tr>
<tr>
<td></td>
<td>(0.48)</td>
<td>(0.61)</td>
<td>(0.73)</td>
<td>(0.47)</td>
</tr>
</tbody>
</table>

R² | 0.59 | 0.82 | 0.82 | 0.54 | 0.72 | 0.77 |
N | 30 | 30 | 30 | 30 | 30 | 30 |

Dependent variable: Contested majority party national two-party normal popular vote.
Models estimated with bootstrapped standard errors drawn from 50,000 iterations.
in parenthesis.
* ρ < 0.1; ** ρ < 0.05; *** ρ < 0.01

Table 2 showing results of these three models predicting the majority party national normal vote finds that the majority party’s differential in the generic ballot prior to the election is a consistent predictor of the normal vote won by the party in both the House and Senate. While less salient in the Senate, an increase in majority party’s electoral standing heading into the election does contribute to increase percentage of the national normal vote by the majority party even after controlling for the election cycle, partisan majority, or presidential approval.

24 Specifically, election type is coded as 1 for a midterm election cycle in which the majority party is of a different party as the president (i.e., 2014), 0 for a presidential election cycle, and -1 if the majority party is of the same party as the president (i.e., 2010). The logic of this coding helps control for whether the majority party is heading into a favorable, unfavorable, or neutral election cycle. Presidential approval is coded similarly in the majority party direction, as articulated in the preceding sections.
Table 3: OLS Models Predicting Majority Party Seat Turnover in U.S. House & U.S. Senate Elections, 1960-2018

<table>
<thead>
<tr>
<th></th>
<th>U.S. House</th>
<th></th>
<th>U.S. Senate</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Majority Party (Q4)</td>
<td>1.78**</td>
<td>3.37**</td>
<td>2.24**</td>
<td>0.19</td>
</tr>
<tr>
<td>(0.77)</td>
<td>(0.71)</td>
<td>(0.66)</td>
<td>(0.11)</td>
<td>(0.13)</td>
</tr>
<tr>
<td>Majority Party Election Cycle</td>
<td>-</td>
<td>21.65***</td>
<td>26.52***</td>
<td>-</td>
</tr>
<tr>
<td>(4.87)</td>
<td>(4.19)</td>
<td>(4.19)</td>
<td>(0.81)</td>
<td>(1.19)</td>
</tr>
<tr>
<td>Republican Majority</td>
<td>-</td>
<td>29.62***</td>
<td>21.77***</td>
<td>-</td>
</tr>
<tr>
<td>(8.21)</td>
<td>(7.46)</td>
<td>(7.46)</td>
<td>(2.02)</td>
<td>(2.24)</td>
</tr>
<tr>
<td>Presidential Approval</td>
<td>-</td>
<td>-</td>
<td>0.66**</td>
<td>-</td>
</tr>
<tr>
<td>Maj. Direction (Q4)</td>
<td></td>
<td>(0.19)</td>
<td>(0.19)</td>
<td></td>
</tr>
<tr>
<td>(4.73)</td>
<td>(5.36)</td>
<td>(5.32)</td>
<td>(0.90)</td>
<td>(1.41)</td>
</tr>
</tbody>
</table>

R² | 0.16 | 0.69 | 0.79 | 0.07 | 0.26 | 0.34 |
N | 30 | 30 | 30 | 30 | 30 | 30 |

Dependent variable: Majority party seat turnover.
Models estimated with bootstrapped standard errors drawn from 50,000 iterations.
in parenthesis.

*ρ < 0.1; **ρ < 0.05; ***ρ < 0.01

Of course, the national normal vote does not translate perfectly to the number of seats won or lost by the majority party (Kastellec, Gelman & Chandler, 2008). For example, in 2008 House Democrats secured 50.7% of the national two-party normal vote but fell far short of winning a majority by winning only 46.2% seats (Jacobson, 2015). To assess whether the majority party differential is a salient predictor of seat turnover, I respecify the model with the dependent variable assessing partisan seat turnover of the majority party ranging. In the House, this ranges from -63 (i.e., 2010 Democratic losses) to 49 (i.e., 1974 Democratic gains). In the Senate, seat turnover ranges from -12 (i.e., 1980 Democratic losses) to 8 (i.e., 2008 Democratic gains). Table 3 provides robust evidence that the generic ballot differential is strongly predictive of majority seat turnover.

座转数据由Brookings提供。

24Seat turnover data for both chambers was provided by Brookings.
in the House across all specifications. In the fully specified model shown in column 3, a change of 5% in the generic ballot towards the House Majority party corresponds to a modest 11.2 seat gain in partisan seat turnover. Perhaps owing to institutional differences rooted in staggered elections between the House and Senate, the generic ballot differential is largely insignificant in the Senate.

To graphically conceptualize the salience of the majority party’s electoral standing on realized election outcomes, I turn to Figure 4 showing the relationship between the majority party’s lead in the generic ballot and electoral outcomes in both chambers taken from the fully specified models. Figure 4A shows that the model fits observed electoral outcomes in the House and Senate fairly well, with a stronger generic ballot lead heading into the election yielding a stronger showing in the normal vote. The same is true for majority party seat turnover in Figure 4B in the context of the House. Moreover, and consistent with the traditional argument that the majority party is overexposed in their seat share (Marra & Ostrom Jr., 1989; Campbell, 2010), the House majority must hold about a 5% lead in the generic ballot heading into the election to stave off potential seat loses to the minority party. This is a dynamic not faced in the Senate, where electoral standing of the majority party plays no role in seat turnover. This inconsistent finding between both the House and the Senate majorities is likely due to stark institutional differences between the chambers, with staggered nature of statewide elections and Senators representing more heterogeneous constituencies making these elections traditionally less partisan and more candidate-centered relative to the House (Gronke, 2001; Algara, 2019). Taken together, it is clear that the majority party’s electoral standing heading into the election plays a significant role in shaping the ultimate electoral outcomes realized in November.
Figure 4: Relationship between Generic Ballot & Partisan National Election Outcomes

(a) Majority Party National Normal Vote

(b) Majority Party Seat Turnover

Estimates derived from Table 3, Model 3. U.S. House: $\beta = 0.45$ [se: 0.09], $R^2 = 0.92$. U.S. Senate: $\beta = 0.28$ [se: 0.10], $R^2 = 0.74$.

Estimates derived from Table 4 Model 3. U.S. House: $\beta = 2.24$ [se: 0.66], $R^2 = 0.79$. U.S. Senate: $\beta = 0.23$ [se: 0.16], $R^2 = 0.34$.

27
5 Discussion: Dynamics of Party Competition

The empirical results of this manuscript provide clear support for a model positing that partisan competition for legislative majority in the U.S. House and Senate is driven by the national policy mood and the mass public’s perception of presidential performance. During periods of greater congruence between the majority party and the national policy mood, the majority party’s lead over the minority party grows. Conversely, during periods of higher co-partisan (opposing partisan) presidential approval (disapproval), the majority party’s electoral lead over the minority party expands (contracts). Moreover, in contrast to other work assessing the dynamics of the congressional generic ballot (e.g., Bafumi, Erikson & Wlezien, 2010), this paper assesses these dynamics over the course of campaign competition between both parties for over 55 years. Taken together, this manuscript provides stark evidence that partisan competition for the congressional majority is defined by the ideological preferences of the mass public and perceptions of presidential performance. Moreover, I show that this partisan competition for the legislative majority plays a significant role in shaping national electoral outcomes, with the competition prior to the November election being fairly predictive of observed national normal vote and partisan seat turnover since 1960.

I motivated this paper with the qualitative dynamics surrounding the 2006 midterm elections and how voter discontent over President Bush’s handling of the Iraq War (Grose & Oppenheimer, 2007), in addition to broader unpopularity of the Republican policy agenda (Barabas, 2006; Karch, 2012), fueled the Democratic takeover of Congress during the last two years of the Bush presidency. This manuscript provides systematic evidence that partisan gains by the minority party largely centers on the mass public’s ideological policy mood and perceptions of presidential performance, vis-à-vis the majority party, suggesting that Republicans did lose their congressional majorities in 2006 on the basis of an unpopular president and the public’s desire for a divergent policy agenda. The results presented here suggests that throughout the course of campaign competition between both parties, the majority party is rewarded or sanctioned on the basis of presidential popularity.
and shifting ideological direction of the mass public’s policy preferences. This presents a clear implication for the majority party. While legislative parties are traditionally defined as “dying in ideological boots” (Poole, 2007), the results presented here suggest that the majority party faces a strong incentive to moderate their positions in light of changes in the mass public’s policy mood. This observation would be consistent with prior work by Stimson, MacKuen & Erikson (1995) suggesting that legislators respond to the political environment like “antelope in an open field” and shift policies in the direction of the mass public’s policy mood. Indeed, by being more responsive to the mass public’s ideological mood, the majority party can stave off potential gains by the minority party and, ultimately, reduce loses in terms of the ultimate electoral outcomes in November.

In sum, I find pronounced evidence that collective partisan competition for the legislative majority is systematically driven by what the public wants, in terms of the ideological direction of policies, and perceptions of presidential performance. Moreover, this competition for the majority sets the stage for observed electoral outcomes in November. Future work should assess the theoretical model posited here in terms of assessing the causal effect of growing divergence between the majority party and the mass public, such as the role of divergence in defining the nature of quality candidate recruitment and fundraising as the parties competition for the majority throughout the course of the campaign. While further work is needed to assess how partisan majorities lose electoral support to the minority, this analysis lays the groundwork that partisan turnover in the national majority is ultimately rooted in policy representation and perceptions of presidential performance.
References

6 Appendix

Table 1A presents results of three differing generalized error correction models assessing the determinants of partisan competition for the legislative majority in the U.S. House and Senate from 1959 to 2018.25 As discussed at length in the model specification section of the manuscript, I elect to present long-run multipliers derived from the hypothesis testing method developed by Webb, Linn & Lebo (2019) given concerns regarding the reliability of GECM coefficients when model assumptions are not met. However, I present the following table with raw GECM coefficients as complimenting evidence of what is presented in the manuscript. Across all three model specifications— and as evidenced in significant of δ change and lagged t_{-1} coefficients— there is consistent support that ideological policy mood and presidential approval are significant dynamic predictors of the electoral standing of the majority party. Indeed, greater ideological policy mood in the direction of the majority party and higher levels of presidential approval correspond to a growing electoral advantage of the majority party at the expense of the minority party. This holds for both the House and Senate models. In terms of our last covariate of interest, there is no consistent evidence that greater party conflict decreases the electoral standing of the majority party on the generic ballot in both the House and Senate. Moreover, consistent with president-centered accountability, being a presidential co-partisan generally costs the majority party support in the generic ballot (Campbell, 1960).

25Note that Model 1 is the baseline model assessing the effect of all variables with complete quarterly data from 1959 to 2018. Model 2 builds off Model 1 with the inclusion of the campaign and partisan contextual covariates. Lastly, Model 3 represents the fully specified model with all covariates of interest. This fully specified model begins in 1960, given the lack of consumer sentiment index data for 1959.
Table 1A: Generalized Error Correction Models Explaining Electoral Partisan Competition for the Legislative Majority in the U.S. House & U.S. Senate, 1959-2018

<table>
<thead>
<tr>
<th></th>
<th>U.S. House Model (1)</th>
<th>U.S. House Model (2)</th>
<th>U.S. House Model (3)</th>
<th>U.S. Senate Model (1)</th>
<th>U.S. Senate Model (2)</th>
<th>U.S. Senate Model (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Majority Party</td>
<td>-0.17***</td>
<td>-0.18***</td>
<td>-0.19***</td>
<td>-0.15***</td>
<td>-0.16***</td>
<td>-0.17***</td>
</tr>
<tr>
<td>Differential$_{t-1}$</td>
<td>(0.04)</td>
<td>(0.03)</td>
<td>(0.04)</td>
<td>(0.04)</td>
<td>(0.03)</td>
<td>(0.04)</td>
</tr>
<tr>
<td>ΔParty Conflict</td>
<td>-0.95</td>
<td>-1.77**</td>
<td>-1.62*</td>
<td>-0.26</td>
<td>-0.41</td>
<td>-0.24</td>
</tr>
<tr>
<td></td>
<td>(0.87)</td>
<td>(0.86)</td>
<td>(0.90)</td>
<td>(0.83)</td>
<td>(0.85)</td>
<td>(0.88)</td>
</tr>
<tr>
<td>Party Conflict$_{t-1}$</td>
<td>-0.62</td>
<td>-1.80*</td>
<td>1.49</td>
<td>-0.26</td>
<td>-0.61</td>
<td>-0.38</td>
</tr>
<tr>
<td></td>
<td>(0.97)</td>
<td>(0.99)</td>
<td>(1.02)</td>
<td>(1.11)</td>
<td>(1.13)</td>
<td>(1.17)</td>
</tr>
<tr>
<td>ΔPolicy Mood</td>
<td>0.15***</td>
<td>0.14***</td>
<td>0.14***</td>
<td>0.15***</td>
<td>0.14***</td>
<td>0.14***</td>
</tr>
<tr>
<td>Majority Direction</td>
<td>(0.04)</td>
<td>(0.04)</td>
<td>(0.04)</td>
<td>(0.03)</td>
<td>(0.03)</td>
<td>(0.03)</td>
</tr>
<tr>
<td>Policy Mood</td>
<td>0.05***</td>
<td>0.05***</td>
<td>0.05***</td>
<td>0.06***</td>
<td>0.05***</td>
<td>0.05***</td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
<td>(0.02)</td>
<td>(0.02)</td>
<td>(0.02)</td>
<td>(0.02)</td>
<td>(0.02)</td>
</tr>
<tr>
<td>ΔPresidential Approval</td>
<td>0.09***</td>
<td>0.10***</td>
<td>0.11***</td>
<td>0.07***</td>
<td>0.08***</td>
<td>0.08***</td>
</tr>
<tr>
<td>Majority Direction</td>
<td>(0.01)</td>
<td>(0.01)</td>
<td>(0.01)</td>
<td>(0.01)</td>
<td>(0.01)</td>
<td>(0.01)</td>
</tr>
<tr>
<td>Presidential Approval</td>
<td>0.03***</td>
<td>0.05***</td>
<td>0.05***</td>
<td>0.03**</td>
<td>0.05***</td>
<td>0.05***</td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.01)</td>
<td>(0.01)</td>
<td>(0.01)</td>
<td>(0.01)</td>
<td>(0.01)</td>
</tr>
<tr>
<td>ΔGDP</td>
<td>0.22</td>
<td>0.23</td>
<td>0.25*</td>
<td>0.03</td>
<td>0.04</td>
<td>0.05</td>
</tr>
<tr>
<td>Change</td>
<td>(0.15)</td>
<td>(0.14)</td>
<td>(0.15)</td>
<td>(0.15)</td>
<td>(0.15)</td>
<td>(0.16)</td>
</tr>
<tr>
<td>GDP Change$_{t-1}$</td>
<td>0.44**</td>
<td>0.45**</td>
<td>0.50***</td>
<td>0.18</td>
<td>0.21</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>(0.18)</td>
<td>(0.17)</td>
<td>(0.18)</td>
<td>(0.18)</td>
<td>(0.18)</td>
<td>(0.18)</td>
</tr>
<tr>
<td>ΔUnemployment Rate</td>
<td>-0.07</td>
<td>-0.17</td>
<td>-0.18</td>
<td>-0.25</td>
<td>-0.28</td>
<td>-0.33</td>
</tr>
<tr>
<td>Rate$_{t-1}$</td>
<td>(0.21)</td>
<td>(0.20)</td>
<td>(0.22)</td>
<td>(0.21)</td>
<td>(0.21)</td>
<td>(0.24)</td>
</tr>
<tr>
<td>Unemployment Rate$_{t-1}$</td>
<td>-0.03</td>
<td>-0.07</td>
<td>-0.09</td>
<td>-0.23**</td>
<td>-0.17*</td>
<td>-0.21*</td>
</tr>
<tr>
<td></td>
<td>(0.08)</td>
<td>(0.08)</td>
<td>(0.10)</td>
<td>(0.09)</td>
<td>(0.09)</td>
<td>(0.12)</td>
</tr>
<tr>
<td>ΔMarket Change (DJIA)$_{t-1}$</td>
<td>-0.02</td>
<td>-0.01</td>
<td>-0.01</td>
<td>-0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
<td>(0.02)</td>
<td>(0.02)</td>
<td>(0.02)</td>
<td>(0.02)</td>
<td>(0.02)</td>
</tr>
<tr>
<td>ΔConsumer Sentiment$_{t-1}$</td>
<td>-0.00</td>
<td>-0.00</td>
<td>-0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.01)</td>
<td>(0.01)</td>
<td>(0.03)</td>
<td>(0.03)</td>
<td>(0.03)</td>
</tr>
<tr>
<td>Pres. Co-Partisan Majority</td>
<td>-1.06***</td>
<td>-1.07***</td>
<td>-1.07***</td>
<td>-1.06***</td>
<td>-1.07***</td>
<td>-1.08***</td>
</tr>
<tr>
<td></td>
<td>(0.30)</td>
<td>(0.30)</td>
<td>(0.30)</td>
<td>(0.33)</td>
<td>(0.33)</td>
<td>(0.33)</td>
</tr>
<tr>
<td>Midterm Campaign</td>
<td>-0.10</td>
<td>-0.09</td>
<td>-0.05</td>
<td>-0.05</td>
<td>-0.05</td>
<td>-0.05</td>
</tr>
<tr>
<td></td>
<td>(0.10)</td>
<td>(0.10)</td>
<td>(0.10)</td>
<td>(0.11)</td>
<td>(0.11)</td>
<td>(0.11)</td>
</tr>
<tr>
<td>Presidential Campaign</td>
<td>-0.24**</td>
<td>-0.22*</td>
<td>-0.10</td>
<td>-0.10</td>
<td>-0.08</td>
<td>-0.08</td>
</tr>
<tr>
<td></td>
<td>(0.10)</td>
<td>(0.10)</td>
<td>(0.10)</td>
<td>(0.11)</td>
<td>(0.11)</td>
<td>(0.11)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.38</td>
<td>1.92**</td>
<td>2.16</td>
<td>1.55*</td>
<td>2.00**</td>
<td>2.75</td>
</tr>
<tr>
<td></td>
<td>(0.71)</td>
<td>(0.78)</td>
<td>(1.60)</td>
<td>(0.82)</td>
<td>(0.84)</td>
<td>(2.03)</td>
</tr>
</tbody>
</table>

R2 0.27 0.32 0.33 0.21 0.25 0.26
N 237 237 235 237 237 235
Box-Ljung Q Test 29.54 30.19 32.37 41.12 33.11 31.77
ρ-value 0.89 0.87 0.80 0.42 0.77 0.82

Dependent variable: ΔQuarterly lead differential for majority party.
Standard errors presented in parenthesis.
*ρ<0.1; **ρ<0.05; ***ρ<0.01