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Abstract 

Cryptocurrency is a new asset class that struggles attracting investors with low risk 

tolerance due to their high volatility. The goal of this project is to use historical cryptocurrency 

trade data and machine learning models to generate prices that are better than market prices. 

This project implements an autoregressive linear model, several baseline machine learning 

models, and systems of machine learning models. It tests the accuracy of each in predicting the 

future 1 hour percent change in price of 10 different cryptocurrencies. Several models show 

significant predictive power and potential to make markets more efficient. However, this project 

is not able to conclude that margin trading cryptocurrencies provides a higher return on 

investment than a buy and hold strategy. 
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Background 

Cryptocurrency is digital money that combines the most advanced cryptographic 

techniques with a revolutionary new platform called a blockchain to allow its users to securely 

transfer value between each other. The first ever cryptocurrency, Bitcoin, was created by a 

cryptographer under the pseudonym of Satoshi Nakamoto in 2009 and its value has since 

grown to a total market capitalization of roughly $20 billion at the beginning of 2017. Despite this 

spectacular rise in value, Bitcoin is far from perfect. Bitcoin transactions take many minutes to 

confirm, fees for transactions can often reach levels higher than its users are willing to pay, and 

its decentralized governance model makes it tough for developers to improve the underlying 

protocol. As a result of these issues, many new and separate cryptocurrencies have been 

created in effort further improve upon the Bitcoin software. In fact, there are now hundreds of 

cryptocurrencies that are valued at over $1 million in market capitalization, each with different 

software governing how they can be used. One particular cryptocurrency, Ethereum, has 

recently been threatening to take over Bitcoin as the cryptocurrency with the largest market cap, 

increasing by roughly 5x in value over the first quarter of 2017. Ethereum hopes to offer a 

turing-complete and programmable blockchain which can be used to create things like smart 

contracts and has many far reaching applications. 

Although cryptocurrencies are an exciting new asset class that have the potential to 

revolutionize many industries, they have a major problem. Investors have not yet come up with 

a proven way to fundamentally value cryptocurrencies similarly to how they value stocks. This 

makes cryptocurrency extremely volatile. Its price can increase or decrease by orders of 

magnitude within a month or even a day.  This is a major turnoff to new investors who may be 

interested in cryptocurrency but can not afford to risk losing half of their investment in a single 

day. The cryptocurrency industry loses out on much of the wealth that would come from these 
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new investors seeking a safe investment. More stable prices would help increase adoption of 

cryptocurrency greatly. Unfortunately, this is a very difficult task. Since prices are largely driven 

by speculation, the most practical way to value each cryptocurrency is to predict its future price 

based on past price data. One of the goals of this project is to come up with a model that uses 

past trade data to value cryptocurrencies better than market prices. 

A common method used in systems engineering to estimate a future value in time series 

data is to treat the time series data as a stochastic process and use an autoregressive linear 

estimator. This model assumes that the output depends linearly on the previous values of the 

output and on a stochastic error term. For predicting cryptocurrency prices, the output I will be 

measuring is the future percent change in price over some time interval. The autoregressive 

linear model therefore takes the past changes in price over a set of different time intervals as 

input and estimates the future percent change in price using a linear regression. 

However, there is much more information contained in historical trade data that could be 

useful in predicting the movement of cryptocurrency. A more complex model is needed in order 

to take advantage of this information. To build such a model, I will use machine learning. The 

most basic machine learning model is multiple linear regression. This method fits a linear 

relationship between many different independent variables and the dependent variable, the 

future percent change in price. Although it often works as a good baseline model, it assumes 

that the variables do not interact with each other, have a normal distribution, and can be 

transformed to fit a linear relationship with the dependent variable. 

When a data set is still too complex for multiple linear regression, researchers often turn 

to a random forest to deal with the interactions between variables. A random forest is a 

collection of decision trees. Each decision tree iteratively buckets data into smaller subsets until 

each subset consists of similar samples. The decision tree then groups new data into these 
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subsets and each tree is pooled together by the forest to reduce bias and prevent overfitting. 

The critical parameters to tune in a random forest regression are the number of decision trees to 

use and the minimum size of the decision tree subsets. The issue with random forests is that 

they are not designed for continuous time series data and the input features need to be broken 

up into discrete variables to work with the model.  

 

 

 

 

 

Figure 1.  Random Forest of Decision Trees 

To cope with the temporal nature of asset prices, researchers often use time series 

analysis methods instead. Hidden markov models are one of the most proven methods of time 

series analysis. They are designed to sequence together probabilistic transitions in order to 

estimate the final output state. The most important parameters in this model are the type of 

model (multinomial, gaussian, or gaussian mixture) and the number of hidden states. Although 

they work well with time series data that follow obvious trends, they cannot handle as much 

information as other machine learning models and often overfit on past trends. 
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Figure 2. Hidden Markov Model 

 

However, there is a time series model that can handle more information, called a 

recurrent neural network. Long short term memory networks are the most useful type of 

recurrent neural network for financial time series data. This model combines hidden layers of a 

stationary neural networks with an additional sequencing memory later to predict future data. 

The important parameters of a general neural network is the type of solver, the number of 

hidden neuron layers, and the number of neurons per layer. With recurrent neural networks, the 

number of past states to examine is an important parameter as well. Although recurrent neural 

networks are a more powerful than the other methods mentioned above, it requires the most 

data and it is very hard to tune the parameters without overfitting. 

 

 

 

 

 

 

Figure 3. Recurrent Neural Network  
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Although each of these models can be very useful in modeling cryptocurrency prices, 

they all have weaknesses and need significant processing in order to recognize some of the 

many complex patterns that can exist in price data. The main goal of this project is to design a 

system of machine learning models that combines these models to capitalize on their strengths 

without being held back by their weaknesses. I will use historical pricing data to backtest the 

effectiveness of different models with the ultimate goal of implementing an algorithm that offers 

buy and sell prices that beat market valuations. If a machine learning model or system of them 

can be created that better values cryptocurrencies, its implementation would help reduce 

volatility and provide significant benefit to the marketplace. 

 

Methods 

Most aspects of this design project involved programming. In order to create fast and 

functional software, I used python. Although other languages such as C++ and Java can be 

used to build a more efficient trading algorithm, python is better for prototyping and has many 

open source libraries that are useful for building the models I will need in this project. 

The first step of building machine learning models is collecting data. I gathered historical 

market trade data over the past year for 10 different cryptocurrencies and converted them into 

separate data tables. The process of how I collected data is covered in more detail in the 

following section. Once the data was collected, I filtered it into only the most significant trades, 

called “triggers.” Since the machine learning models look for patterns in past data, it is important 

to only feed the models significant and independent data points so that they do not overfit the 

data. For my project, I chose triggers to be only trades that had volume twice the size of the 

average trade over the past hour.  
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Once the data was filtered, I created the feature vectors that accompanied each trigger. 

Although the exact feature vector used in each machine learning model sometimes depended 

on the model, I first needed to create a baseline feature vector that could later be manipulated 

to create new features. In order to keep the focus on of this project on the machine learning 

models rather than the features, I decided to keep the feature vector simple. Each feature vector 

consisted of only three types of features: the past percent change in price, volume traded, and 

volatility. Each type of feature was calculated over 12 different time intervals ranging from 1 

hour to 12 hours back for a total of 36 features. Each feature was calculated for every trigger in 

the data table. In addition to the features, I also calculated the dependent variable for each 

trigger. The dependent variable I chose to predict was the percent change in price over the next 

1 hour period. 

The next step of the design process was to split the data table into training and testing 

sets in order to train each machine learning model and backtest the accuracy of their 

predictions. To do this, I separated the data table of triggers and their corresponding features 

into the first 11 months for training and the last 1 month to testing. The train data set contained 

2,074,526 triggers and the test data set contained 340,027 triggers. I also broke the train and 

test data tables into the feature vector and the prediction values. The resulting data tables from 

these splits were the input train set, output train set, input test set, and the output test set. 

Once the data was filtered, I needed to implement the machine learning models and 

train them on the training set. For the baseline machine learning models, I used python scripts 

that others had created and open sourced online. The baseline model algorithms I implemented 

included all five of the models discussed in the introduction: autoregressive linear, linear 

regression, random forest, hidden markov, and recurrent neural network. For the autoregressive 

linear model and hidden markov model, the only features used were the past percent change in 
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price over the different time intervals. The other models used these features as well as the 

volatility and volume traded features. I discovered roughly optimal parameters for each model 

using a grid search. I trained each model using the input and output training sets, then used the 

input test set to create a vector of predicted percent change in prices. 

After implementing the baseline models, I then focused on designing machine learning 

systems that would be improvements over the baseline model. I created four different machine 

learning systems that each used a combination of the baseline machine learning models and 

features from the original feature vector, as well as new features derived from the original 

features. The first model I created used the recurrent neural network to predict values of the 

three distinct features over the future hour interval and then used a random forest on only the 

future features to predict the percent change in price over the next hour. A basic diagram of this 

model is shown in Figure 4 below. In the diagram, xi represents a specific feature and ti 

represents a specific time interval. 

   Original Features:           Predicted Features:             Prediction: 

 

 

 

 

 

 

Figure 4. First Design Model 

The second model I created was similar to the last model, except I used the recurrent 

neural network and hidden markov model to predict future features over 12 equally spaced time 

intervals ranging from 1 hour to 12 hours in the future. I again used a random forest on these 

new features to predict the percent change in price. This model is shown in Figure 5 below. 
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   Original Features:     Predicted Features:           Prediction: 

 

 

 

 

 

 

Figure 5. Second Design Model 

The third model I created was also similar to the last model except I input the future 

features and the past features together into a random forest model to predict the percent 

change in price. Although a diagram of this model is too messy to depict, it is similar to the last 

diagram with the only difference being that each of the original features are also inputs to 

predict the final output variable. 

The fourth model I created went in a different direction than the last three models. 

Instead of using predicted features as inputs to a final model, I ran all five baseline machine 

learning models to come up with five different values for the 1 hour predicted change in price. I 

then input these values as features in a random forest to combine the original predicted values 

into a single value. A diagram of this model is shown below. 

   Original Features:           Intermediate Predictions:        Final Prediction: 

Figure 6. Fourth Design Model 
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Data Collection 

To implement my machine learning model and compare it to other models, I needed 

cryptocurrency pricing data that was as detailed as possible. Fortunately, a few cryptocurrency 

exchanges provide complete market trade data via public api requests. The exchange I am 

using allows you to pull every trade for the past year. Each trade includes the cryptocurrency 

pair, time, amount, price, and whether it was a buy or sell. I downloaded all market trade data 

over the past year and converted it into a data table. A section of the data table that contains 

only 10 trades for a specific cryptocurrency pair shown below. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Trade Data Table  

 

After collecting all market trade data, I also filtered the data into triggers and features, as 

described in the previous section. Each row of the data table corresponds to a trigger trade 

while each column corresponds to either a calculated feature or the calculated output variable. 

An example of this data table is shown below including the future 1 hour change in price as well 
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as the past change in price, volume traded, and volatility features over intervals of 1 hour and 2 

hours. The other features have been omitted in so that the data table would fit neatly in this 

report. The numbers in the column headers correspond to the number of seconds in the feature 

interval. 

Figure 8: Feature Data Table 

 

If I wanted to test my machine learning system on other data sets, I could also collect 

data on national currencies, commodities, or stocks. Although data is available for these assets, 

trade data that is as detailed and looks over the same time scale as my cryptocurrency data set 

is prohibitively expensive to purchase for this project. There are also other time series data sets 

such as electricity pricing data that do not behave similarly to traditional assets. Although these 

data sets could also be used to test my machine learning system, they are not traded the same 

and different features would have to be created to in order to implement useful models. 
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Results 

The final models I tested included the autoregressive linear model, multiple linear 

regression, random forest regression, hidden markov model, and recurrent neural network, as 

well as the four design models mentioned above. After implementing the code for each model, I 

trained each model on the same train data set and used the same test data set to create 

prediction vectors whose values each corresponded to a trigger in the test set. For each model, 

I plotted the actual change in price vs. the predicted change in price to visualize their accuracy. 

To quantitatively determine which models performed best, I used 3 metrics to measure 

how close each vector of predicted changes in price were to the actual vector of changes in 

price. The first comparison test I used was a R2 test. This test indicates how much of the 

variability in the real values is explained by the predicted values. The value of a R2 test ranges 

from 0 to 1, where 0 means there is no correlation between the actual and predicted values and 

1 means they are perfectly correlated. The biggest caveat with a R2 test is that it does not tell 

you anything about the bias of predictions. If the predicted and actual values are highly 

correlated but there is an extreme bias, the R2 may be high but the model is still not adequate. 

To get a better sense of the bias in each model, I measured the mean square error.  This 

value tells you the average of the square of the error between the actual and predicted values. 

The higher the value, the greater the error, signifying the model predictions are less accurate. A 

model that makes predictions with high bias will have a high mean square error. However, the 

mean square error is not as useful a test as R2 for measuring the variability. 

The next parameter I used to measure the accuracy of models was the p-value of the 

correlation. This value tells you the probability of achieving such a correlation between the 

actual and predicted values if the data were random. Each p-value was extremely low due to the 

large sample size and did not provide useful information in determining which models were best. 
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Thus, this metric has been omitted. The scatter plots for each of the models as well as the R2 

and mean square error (MSE) metrics are shown below. 

 

Autoregressive Linear 

R2 = 0.003039, MSE = 0.01495 
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Linear Regression 

R2 = 0.005610, MSE = 0.01482 

 

 

 

 

 

 

 

 

Random Forest 

R2 = 0.006939, MSE = 0.01479 
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Hidden Markov 

R2 = 0.001296 MSE = 0.01498 

 

Recurrent Neural Network 

R2 = 0.007261, MSE = 0.01480 
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Model #1 

R2 = 0.000158, MSE = 0.001499 

Model #2 

R2 = 0.000445, MSE = 0.01497 
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Model #3 

R2 = 0.008705, MSE = 0.01452 

 

Model #4 

R2 = 0.01585, MSE = 0.01471 
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In addition to these statistical tests, I also created an algorithm that calculates the 

theoretical profitability of each of the models had it been trading over the testing period. For 

each trigger, the algorithm calculates a buy or sell amount proportional to the predicted change 

in price and places limit buy or sell order at the top of the orderbook. Since the exchange offers 

margin trading, the algorithm is allowed a net negative position in any cryptocurrency. The 

profitability algorithm accumulates all the buy and sell orders that were traded against before the 

next trigger and calculates the profit or loss of the trade over the next hour. Since the exchange 

charges a 0.10% fee for each limit order, 0.20% of each trade was deducted from the total profit 

for trading into and out of that position. The net profit of every trade was recorded in a new data 

table and graphed over the testing periods for each model. I also compared each model to a 

buy and hold strategy where each of the 10 cryptocurrencies were bought in equal amounts at 

the beginning of the testing period then sold at the end with no trading done in between. The 

profitability of the top performing models are shown below. 

Random Forest 

Profit = 5.980 Bitcoin, Return = 23.9% 
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Model #3 

Profit = 6.103 Bitcoin, Return = 24.4% 

Model #4 

Profit = 11.378 Bitcoin, Return = 45.5% 
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Discussion 

Although none of the machine learning models were able to predict the future with 

extremely high accuracy, many of the models had significant predictive power and also showed 

improvement over the baseline models. The best model was the fourth model I designed that 

combined the predictive power of the baseline models. This model likely performed best 

because it weighted the predictions of multiple models to form a more complete understanding 

of the interactions between features. The model achieved the highest R2 with a value of 

0.01585, meaning that 1.585% of the variability in the future percent change in price was 

predictable by the model. The model also had a low mean squared error with a value of 

0.01471, meaning that the average of the square of the difference between what was predicted 

and the actual value was 1.471%. Also, using the simple trading strategy detailed above, the 

model achieved a fairly low risk profit of 11.378 bitcoins on an original 25 bitcoin investment 

over the month period, which equals a return on investment of 45.5%. 

The second best model was the third model I designed that combined future features 

with past features in a secondary model. The secondary model used that had the best results 

was the random forest. This model likely performed well because it contained the most feature 

information in the secondary model. It achieved a R2 of 0.008705 and a had the lowest mean 

square error of 0.01452. This model also achieved a low risk profit of 6.103 bitcoins on an 

original 25 bitcoin investment for a return of 24.4% that month. Although both models performed 

well, neither were able to beat the market index over the testing period. The buy and hold 

strategy over the month period achieved a profit of 26.550 bitcoins for a total of 106.2% return 

on investment. This is an extremely high return, making it very difficult for any model to beat it 

over the testing period.  Still, both of these models showed improvement over the baseline 

models, as well as the first two design models I created. 
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Although it is important to test any trading model over periods of both upward and 

downward market movements, I was not able to do so over an entire month period. For the past 

several months, the cryptocurrency market index has consistently risen. A graph of the total 

market capitalization of all cryptocurrencies is shown in Figure 9 below. The market cap 

increased from roughly $11 billion on September 1st, 2016 to $36 billion on April 30th, 2017. 

Since I only had 1 year of trade data, every testing period I could have used either experienced 

an increase in the market index or did not have enough data before that period to effectively 

train the models. Even though a full month of negative price movement was not tested on, there 

were still periods of several days that experienced a significant downturn. An example of a 

downturn can be seen between April 3rd and April 12th in the profitability graphs above. 

Fortunately, each tested model actually performed better over this period than over any other 

part of the month. This is likely because the trading algorithm can ‘short’ cryptocurrencies, 

effectively having a negative position, to make money whenever the market becomes 

temporarily overpriced. This is important because the significant positive returns on the market 

index are likely not sustainable forever and there will eventually be longer periods of downward 

trends in the market. 

 

 

 

 

 

 

 

Figure 9. Cryptocurrency Market Index 
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The first two models I designed did not perform nearly as well as the last two. The first 

model I designed only achieved a R2 of 0.000158 and a mean square error of 0.01499, while the 

second model achieved a R2 of 0.000445 and a mean square error of 0.01497. These models 

likely did not perform well because feeding the features forward resulted in a significant loss of 

information in the final models. The second model performed better than the first probably 

because there were more features and thus not as significant a loss of information in the final 

model. Neither were able to beat the best baseline models though. The best baseline models 

were the random forest and recurrent neural network. The random forest achieved a R2 of 

0.006939 and a mean square error of 0.01479. The recurrent neural network achieved a R2 of 

0.007261 and a mean square error of 0.01480. The worst model was the hidden markov model, 

which only achieved a R2 of 0.0001296 and had a mean square error of 0.01498. 

The accuracy metrics mentioned above were the most important considerations I had in 

deciding which models were best able to predict the future. However, in real trading, speed is 

also a very important factor in deciding which model to use. It is important that models are able 

to calculate a prediction before this markets move significantly. Fortunately, since each model 

was implemented from highly optimized third party code, each model was fast enough to 

calculate predictions on the entire test set within a few minutes. Since the test set included 

340,027 triggers, a single prediction would only take a few milliseconds. This is more than fast 

enough to be used in real cryptocurrency markets. In fact, the limiting factors in performance 

was calculating the features and can take orders of magnitude longer than the predictions. 

Although it would be nice to be able to compare the performance of my models to that of 

the past results of other researchers, there is no literature specifically on using machine learning 

to predict cryptocurrency prices. It is thus impossible to know if my results were within 

reasonable expectation given the features, models, and cryptocurrencies used. The baseline 
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models I implemented are useful for comparing to models commonly used in research given the 

same market environment and data. However, it is not safe to make assumptions about how the 

models I designed would perform on different data sets and feature vectors. Much more 

research would have to be done on different data to make conclusions on general time series 

data. 

There are many different approaches that could be taken in the future to expand on what 

was done in this project and come up with more conclusive results. Testing each of the models 

over test sets other than the month I used is one way to confirm or reject the results found in 

this project. Selecting features other than the three distinct features over the specified time 

intervals is another way to come up with more results to make more distinct conclusions. Using 

completely different data sets for testing such as commodity or electricity prices would also be 

useful to determine if the results are dependent on using cryptocurrencies markets. There are 

also prediction variables other than the 1 hour percent change in price that each model could be 

used to predict, such as a 1 day percent change in price or a 1 hour percent change in volatility. 

Each of these techniques could offer great insight into why I obtained the results I did and show 

if my results are the standard or the exception. 
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Conclusion 

Despite many of the models proving they were able to predict cryptocurrency movement 

significantly better than the market, none of the models performed better that the market index 

over the month test period. This is partially due to trading fees of 0.10% and the simplicity of the 

trading strategy. Still, this implies that a simple buy and hold strategy would be the best strategy 

to maximize return on cryptocurrency investment. This is partially due to extreme growth 

experienced by the cryptocurrency industry over the past few months. More testing, as 

discussed in the previous section, would need to be done over a more extensive period of time 

in order come up with more conclusive results. Although, at least during past several months, 

being exposed to the cryptocurrency market in general would have been a very rewarding 

investment. 
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