K-5 Science Teaching Time

• NGSS Framework for K-12 Science Education (NRC, 2012)
• Link between K-5 science teaching time & science achievement (Judson, 2013, Curran & Kitchin, 2019)
• Science instructional time trends nationally (Blank, 2013, Banilower et al., 2018)
• Missouri Department of Elementary & Secondary Education (MO DESE) recommendations:
 - Lower Elementary (1-3): 150 minutes/week
 - Upper Elementary (4-5): 200 minutes/week
mySci: A Research Practice Partnership (RPP)

- Focused on increasing science instructional time & quality since 2005
 - Institute for School Partnership
 - WashU STEM faculty
 - Informal science education institutions
 - Regional educators
- mySci Program components
 - Educative K-8 science curriculum
 - Comprehensive professional development
 - Hands-on science materials kits with leasing model
 - Partnership support & consulting services
- mySci serves ~3,500 K-5 teachers in 248 elementary schools
Approach to Research

- Improvement Science & Design-Based Implementation Research (DBIR)
 - Collaborative, grounded in systematic inquiry, focused on transformational change and the use of research to solve practical problems (Fishman et al., 2003, Bryk et al., 2015)
 - Research outcomes: production of change and improvement, along with production of theory
 - Data collection to analyze current system in context, delineate new problems, develop interventions, and measure impact
 - Program evaluation including biannual, voluntary Teacher Implementation Survey (TIS)
mySci & K-5 Science Teaching Time

The problem…
• mySci teachers report problems with timing & length of lessons and units
• COVID response and the impact of virtual learning

Possible factors…
• Accountability pressure (Hayes & Trexler, 2016, Judson, 2013)
 – School FRL status
 – Student population & race
 – State testing structure & grade levels
• School / District policies
• Teacher science mindsets & beliefs
• Access to & appropriateness of materials
Understanding K-5 Science Teaching Time

Research Questions:
1. How much time do elementary school teachers spend on science?
2. What factors are associated with the amount of time elementary school teachers spend on science?
3. How do teachers perceive their level of control over the amount of time spent on science, and how is this associated with the amount of time spent on science teaching?
Study Design & Methods

- Mixed-methods secondary analysis of evaluation survey using state district demographics
 - Thematic qualitative analysis using preset & emergent coding
- May 2021 mySci Teacher Implementation Survey
 - District, school, & primary grade level/band taught
 - Science instructional time (minutes per week)
 - Perception of science instructional time adequacy & control (categorical)
 - Factors influencing science instructional time allocation (open)
- Sample:
 - Voluntary survey with incentive raffle, sent via direct email & shared with district administrator partners
 - 11 independent schools & 26 public districts represented
 - 466 K-5 respondents
Analyses & Findings: Time & Perceptions

How much time do elementary school teachers spend on science?
- All grade levels report mean below state benchmarks
- Upper elementary & lower elementary trends

How do teachers perceive their level of control over the amount of time spent on science?
- Perception of adequacy drops for 3rd grade teachers

<table>
<thead>
<tr>
<th>Control over science time (N=451)</th>
<th>Perception of Science Time (N=451)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean weekly minutes of sci instr (N=459)</td>
<td>Has enough time to teach sci</td>
</tr>
<tr>
<td>Makes most/all sci time decisions</td>
<td>25.5%</td>
</tr>
<tr>
<td>Makes some sci time decisions</td>
<td>34.6%</td>
</tr>
<tr>
<td>Makes few/no sci time decisions</td>
<td>35.7%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grade</th>
<th>Mean Weekly Minutes of Science Instruction</th>
<th>Control</th>
<th>Perception</th>
</tr>
</thead>
<tbody>
<tr>
<td>All K-5</td>
<td>126.2</td>
<td>Makes most/all sci time decisions</td>
<td>25.5%</td>
</tr>
<tr>
<td>Makes some sci time decisions</td>
<td>34.6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Makes few/no sci time decisions</td>
<td>35.7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Has enough time to teach sci</td>
<td>48.3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Does not have enough time to teach sci</td>
<td>51.7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K (N=58)</td>
<td>109.6</td>
<td>Makes most/all sci time decisions</td>
<td>38.6%</td>
</tr>
<tr>
<td>Makes some sci time decisions</td>
<td>31.6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Makes few/no sci time decisions</td>
<td>28.9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Has enough time to teach sci</td>
<td>52.6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Does not have enough time to teach sci</td>
<td>47.4%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 (N=74)</td>
<td>91.5</td>
<td>Makes most/all sci time decisions</td>
<td>29.2%</td>
</tr>
<tr>
<td>Makes some sci time decisions</td>
<td>33.3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Makes few/no sci time decisions</td>
<td>37.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Has enough time to teach sci</td>
<td>50.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Does not have enough time to teach sci</td>
<td>50.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 (N=83)</td>
<td>110.9</td>
<td>Makes most/all sci time decisions</td>
<td>17.1%</td>
</tr>
<tr>
<td>Makes some sci time decisions</td>
<td>43.9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Makes few/no sci time decisions</td>
<td>39.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Has enough time to teach sci</td>
<td>53.7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Does not have enough time to teach sci</td>
<td>46.3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 (N=76)</td>
<td>127.4</td>
<td>Makes most/all sci time decisions</td>
<td>18.4%</td>
</tr>
<tr>
<td>Makes some sci time decisions</td>
<td>40.8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Makes few/no sci time decisions</td>
<td>40.8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Has enough time to teach sci</td>
<td>27.6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Does not have enough time to teach sci</td>
<td>72.4%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 (N=81)</td>
<td>136.7</td>
<td>Makes most/all sci time decisions</td>
<td>26.6%</td>
</tr>
<tr>
<td>Makes some sci time decisions</td>
<td>30.4%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Makes few/no sci time decisions</td>
<td>43.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Has enough time to teach sci</td>
<td>49.4%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Does not have enough time to teach sci</td>
<td>50.6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 (N=87)</td>
<td>170.4</td>
<td>Makes most/all sci time decisions</td>
<td>32.9%</td>
</tr>
<tr>
<td>Makes some sci time decisions</td>
<td>31.8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Makes few/no sci time decisions</td>
<td>35.3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Has enough time to teach sci</td>
<td>56.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Does not have enough time to teach sci</td>
<td>43.5%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Analyses & Findings: Mode of Instruction

What factors are associated with the amount of time elementary school teachers spend on science?

- Lower elementary remote or hybrid instruction associated with spending more time on science

<table>
<thead>
<tr>
<th>Grade Band</th>
<th>Descriptor</th>
<th>Mean</th>
<th>StDev</th>
<th>Mean Diff</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 3</td>
<td>Remote or hybrid only (N=90)</td>
<td>120</td>
<td>59.3</td>
<td>30.5</td>
<td>0.001***</td>
</tr>
<tr>
<td></td>
<td>In-person only (N=60)</td>
<td>89.5</td>
<td>50.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 to 5</td>
<td>Remote or hybrid only (N=82)</td>
<td>160.2</td>
<td>77.8</td>
<td>4.9</td>
<td>0.788</td>
</tr>
<tr>
<td></td>
<td>In-person only (N=40)</td>
<td>155.3</td>
<td>122.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Analyses & Findings: Student Demographics

What factors are associated with the amount of time elementary school teachers spend on science?

- District racial majority
- Building Community Eligibility Provision (CEP) status for Free & Reduced Lunch (FRL) program

Descriptive Statistics

<table>
<thead>
<tr>
<th>Grade Band</th>
<th>Descriptor</th>
<th>Mean</th>
<th>StDev</th>
<th>Mean Diff</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>District Racial Majority</td>
<td>Majority Black Students (N=43)</td>
<td>124.6</td>
<td>62.8</td>
<td>15.8</td>
<td>0.142</td>
</tr>
<tr>
<td>1 to 3</td>
<td>Majority White Students (N=161)</td>
<td>108.7</td>
<td>62.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 to 5</td>
<td>Majority Black Students (N=32)</td>
<td>173.9</td>
<td>67.7</td>
<td>19.9</td>
<td>0.281</td>
</tr>
<tr>
<td></td>
<td>Majority White Students (N=116)</td>
<td>154</td>
<td>97.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>School Building Free & Reduced Lunch Population</td>
<td>More than 40% FRL (N=99)</td>
<td>106.6</td>
<td>60.1</td>
<td>6.1</td>
<td>0.455</td>
</tr>
<tr>
<td>1 to 3</td>
<td>Less than 40% FRL (N=133)</td>
<td>112.7</td>
<td>62.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 to 5</td>
<td>More than 40% FRL</td>
<td>147.4</td>
<td>65.1</td>
<td>12.2</td>
<td>0.386</td>
</tr>
<tr>
<td></td>
<td>Less than 40% FRL</td>
<td>159.6</td>
<td>103.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Analyses & Findings: Teacher Perceptions

What factors are associated with the amount of time elementary school teachers spend on science?

- Teachers perception of the adequacy of their science instructional time aligns with their reported time spent teaching science.

<table>
<thead>
<tr>
<th>Grade Band</th>
<th>Descriptor</th>
<th>Mean</th>
<th>StDev</th>
<th>Mean Diff</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 3</td>
<td>Has enough (N=101)</td>
<td>118.9</td>
<td>70.6</td>
<td>14.3</td>
<td>0.076*</td>
</tr>
<tr>
<td></td>
<td>Does not have enough (N=129)</td>
<td>104.6</td>
<td>51.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 to 5</td>
<td>Has enough (N=87)</td>
<td>171.7</td>
<td>80.2</td>
<td>32.8</td>
<td>0.017**</td>
</tr>
<tr>
<td></td>
<td>Does not have enough (N=77)</td>
<td>139</td>
<td>94.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 to 3</td>
<td>High control (N=49)</td>
<td>104.6</td>
<td>61</td>
<td>11.5</td>
<td>0.282</td>
</tr>
<tr>
<td></td>
<td>Low control (N=87)</td>
<td>116.1</td>
<td>58.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 to 5</td>
<td>High control (N=49)</td>
<td>155.9</td>
<td>90.3</td>
<td>7.5</td>
<td>0.684</td>
</tr>
<tr>
<td></td>
<td>Low control (N=64)</td>
<td>163.4</td>
<td>102.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Analyses & Findings: Qualitative Themes

District & administration expectations, policies
- Referenced at the same rate as teachers reporting lack of control over science time allocation (~1 out of 3)
- Evenly split between teachers feeling like they spent “enough” and “not enough” time on science
- Evenly split between those spending less than 130 min/week and those spending greater than 130 min/week
- Both lower and upper elementary teachers referenced district expectations as important to their decision making at roughly the same rate
- Teachers cited district or administration policy and expectations at roughly the same rates regardless of the student racial majority in their district
Analyses & Findings: Qualitative Themes

Everyday Schedule Issues Superseding Science

- Time of day and other activities “running long”
- Specials, assemblies, & “pull outs”
- Commonly cited across all subsets of teachers, no trends by student demographics, grade level, or teacher perceptions of science time adequacy
Analyses & Findings: Qualitative Themes

Perceived importance of Math & ELA

• Teachers who make all of their own decisions regarding science time tend to spend less time on science and cite the need to focus on math & ELA as a major factor
• Teachers who do not feel they spend enough time on science also cite math & ELA focus as a major factor
• Most often cited factor in schools serving racially diverse and majority Black student populations
• Science & Social Studies “split”
Analyses & Findings: Qualitative Themes

COVID-19

• Learning loss fears from administrators
• Sanitization precautions & technology issues more frequently cited by teachers serving schools with majority Black student population
• Virtual teaching cited both as “more flexible” and consistent
• Availability of virtual science resources through the mySci RPP
• Social-Emotional importance of “fun” through hands-on science activities
Discussion

Limitations:
- Specificity of sample to RPP participants
- Self-reported science teaching minutes
- 2020-2021 was not a typical year
- Quantity vs quality of science instruction

Implications:
- 3rd Grade & the onset of standardized testing
- Interdisciplinary integration
- Hands-on science activities & social-emotional well-being
- De facto & de jure instructional time pressures and priorities
Thank you!

Maia Elkana mjelkana@wustl.edu
Rachel Ruggirello ruggirello@wustl.edu