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Abstract

In this online appendix, we extend our formal framework to study sequential choice and

we allow agents to take an action in every period. We provide a recursive formulation of our

model and show that choices are dynamically consistent. We include an application of this

recursive setting to address the “ostrich effect.”
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1. Recursive Choice

In the main body of the paper, we have assumed that the agent chooses an REL at

time 0 and makes no further decisions in subsequent periods. In this appendix, we consider

a sequential choice setting to analyze the dynamic behavior of PTU agents. In a recursive

decision problem, the agent takes an action every period. We let Bt = {1, . . . , nt} denote the

set of feasible period-t actions and let B = B1 × · · · × BN .

At the beginning of each period, the agent chooses an action bt and a random state

ωt ∈ Ωt occurs. Again, we let Ω := Ω1 × · · · × ΩN . The action b1 yields a probability over

states in period 1. In every subsequent period t, the action bt and the state ωt−1, realized

in the previous period, determine the probability Qbt(· |ωt−1) over states in period t. We

assume that every Qbt(· |ωt−1) has a finite support. Each ωt contains all of the payoff relevant

information revealed during the first t periods. Hence, we refer to the states also as histories.

Any history ωt ∈ Ωt yields a lottery φt(ωt) ∈ L in period t and, therefore, any ωN ∈ ΩN

also yields a path φ(ωN ) = φ(ω) = (φ1(ω1), . . . , φN (ωN )). We let φ2t(ωt) denote the second

coordinate, the prize lottery β, of φt(ωt) = (α, β).

A strategy is a collection σ = (σ1, . . . , σN ) ∈ Σ such that σ1 ∈ B1 and σt : Ωt → Bt. We

write Qσt+1
(· |ωt) rather than the more cumbersome Qσt+1(ωt)(· |ωt). Clearly, any strategy σ

induces a probability Qσ over evolving lotteries: let

Qσ(ω) = Qσ1
(ω1)× · · · × Qσt+1

(ωt+1 |ωt)× · · · × QσN−1
(ωN |ωN−1)

Then Qσ, the probability that σ induces on evolving lotteries, is defined as follows:

Qσ(x) = Qσφ
−1(x)

Let Qσ(ωt) = Qσ{ω̂ : ω̂t = ωt}. To ensure that Qσ is a REL, we impose the martingale

property: for all t < N , bt+1 ∈ Bt+1 and ωt ∈ Ωt such that Qσ(ωt) > 0,

∑

(α,β)∈L

βQbt+1
(φ−1

t+1(α, β) |ωt) = φt2(ωt)

Let Q denote the entire collection of state probabilities. Then, a recursive risk consump-

tion problem (RRCP) is a collection D = {Ω,B,Q, φ}. Below, we describe the optimal solution
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to an RRCP for a PTU (u, v, λ, θh, θℓ). Recall that λ is additive and, therefore, the weights

λt it assigns to each individual period t fully characterize it. Define:

WN (ωN−1) = max
bN∈BN

∑

ωN

[

λN (1− θh − θℓ)vuφN (ωN ) + θhvuφ(ωN ) + θℓvuφ(ωN )
]

QbN (ωN |ωN−1)

Hence, WN is the maximal payoff the PTU agent can enjoy in period N , given that the state

ωt−1 occurred in period t− 1. Then, for 1 < t < N , the corresponding maximal payoff is:

Wt(ωt−1) = max
bt∈Bt

∑

ωt

[

λt(1−θh−θℓ)vuφt(ωt) +Wt+1(ωt)
]

Qbt(ωt |ωt−1)

Finally, the maximal period 1 payoff of the agent given the is:

W1 = max
b1∈B1

∑

ω1

[

λ1(1−θh−θℓ)vuφ1(ω1) +W2(ω1)
]

Qb1(ω1)

A strategy σ is sequentially optimal if σt+1(ωt) solves the maximization problem that defines

Wt+1(ωt) for all t, ωt and σ1 solves the maximization problem that defines W1.

Proposition A1 below establishes dynamic consistency; that is, the agent’s sequentially

optimal choice is also ex ante optimal. Its proof is straightforward and omitted.

Proposition A1: For any PTU V and RRCP D, W1 = max
σ∈Σ

V (Qσ).

The proposition above shows that optimal sequential choice is equivalent to choosing an

optimal REL, ex ante, from the set of RELs that can be generated from the given decision

problem. Thus, our definition of W is consistent with the agent’s ex ante preference and yields

dynamically consistent behavior.

1.1 The Ostrich Effect

Agents exhibit the Ostrich effect if they seek information after good news and reject

information after bad news. The simplest example to capture this effect with four periods and

two signals is contained in the main text. Here, we define a version of that simple example for

arbitrary N ≥ 4 and show that the ostrich effect holds generally. As in the simple example,

in each period i = 2, . . . , N − 1, the agent decides whether to observe signal i. The signals

are identically distributed and conditionally independent given the outcome. The initial (i.e.,

period 1) probability of outcome 1 is a ∈ (0, 1) and, conditional on outcome i ∈ {0, 1}, the

probability of getting signal i is d > 1/2. Each period, the agent has two choices: she can
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acquire information (bt = 1) or not (bt = 0). We let ωt = (j1, . . . , jt) be the t-period history

of information outcomes where js = 1 (−1) if the news in period s is good (bad) and js = 0

if the agent does not acquire information in period s. Hence, j1 = 0 for all histories ω. The

probability of the good prize in period t given the history ωt is φ(ωt).

We say that the agent displays the ostrich effect if there is some sequentially optimal

strategy σ and a history ωt−1 that occurs with positive probability given σ such that σ gets

information in period t after history ωt−1 and, in period t+ 1, gets information if and only if

there is good news in period t.

Proposition A2: Let (u, v, λ, θh, θℓ) be a PTU with linear v and θh, θℓ > 0. (i) for all

ωt = (0, j1, . . . , jt−1, 1), there is a sequentially optimal σ such that σt+1(ωt) = 1. (ii) Either

it is optimal to never get information or the agent displays the ostrich effect.

Proposition A2 establishes that it is always optimal to get more information after good

news. It also shows that in some contingencies, the agent must get additional information after

good news and avoid additional information after bad news. If the decision maker receives

good news in period t, then there is no chance that additional information in period t+1 can

create a new low and after some histories may create a new high. Conversely, if the news in

period t is bad, the new information might create a new low but cannot create a new high.

After certain balanced histories; that is, histories in which the agent has received roughly the

same amount of good and bad news, the desire to create new highs and avoid new lows ensures

that the agent displays the ostrich effect.

The proposition above allows for the possibility that the agent may never wish to get

information. However, fixing all other parameters, increasing θh or decreasing θℓ or decreasing

a sufficiently will rule out this possibility and ensure that the agent displays the ostrich effect.

Finally, increasing N increases the option value of information and hence increases the range

of the other parameters for which the ostrich effect is guaranteed.

Proposition A3 below, identifies another behavioral pattern of PTU agents who savor

peaks and dread troughs. Consider again the above information acquisition problem but with

more general signals. Specifically, the signals are i.i.d. conditional on the true value of the

prize and have finitely many possible realizations. The agent must decide whether to acquire

information and get the updated prize lottery (recall that the consumption lottery is fixed
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and constant regardless of the agent’s decisions) or stay uninformed and get the same prize

lottery as in the previous period.

As above, let ωt be the t-period history of information outcomes and let φ(ωt) be the

probability of the good outcome given ωt. Let π(ωt) = max{v(u(φ(ωs)) | s ≤ t} and τ(ωt) =

min{v(u(φ(ωs)) | s ≤ t}. Proposition A3 shows that for any fixed φt, histories with lower

peaks and lower troughs yield greater willingness to acquire information:

Proposition A3: Let (u, v, λ, θh, θℓ) be a PTU with θh, θℓ > 0. Suppose φt(ωt) = φt(ω̂t),

π(ωt) ≥ π(ω̂t) and τ(ωt) ≥ τ(ω̂t). Then, if it is optimal to get information after history ωt, it

is also optimal to get information after history ω̂t.

Proposition A3 holds fixed the choice problem but varies the peak-trough history. It

shows that if the utility of the current prize lottery is closer to the past peak and further from

past trough experiences, the agent is more inclined to choose the informative signal. Holding

the current prize lottery fixed neutralizes the effect of the curvature of v and isolates the effect

of past experience on the agent’s choice behavior.

To provide intuition for Proposition A3, define the period-t utility flow ιt as follows:

ιt(ωt) = (1−θh−θℓ)λtv(φ(ωt))

+ θh(v(π(ωt))− v(π(ωt−1)) + θℓ(v(τ(ωt))− v(τ(ωt−1))

The first term on the right hand side is the flow utility of the period-t prize lottery. The

second and third terms are the utilities associated with reaching a new peak or a new trough

in period t; their sum is positive if a new peak is reached, negative if a new trough is reached

and zero otherwise. In the final period, period N , the agent has no choice; let WN = E[ιN ]

where the expectation is taken over the lottery that reveals all remaining uncertainty given the

state ωN−1. In preceding periods, the agent chooses the informative signal if the expectation

of ιt + Wt+1 is greater under the informative than under the uninformative signal. If we

ignore the continuation, the result in Proposition A3 is straightforward: if peak and trough

are smaller, then the instantaneous payoff for the informative signal is higher since the chance

that the prize lottery reaches a new peak in period t is larger and the chance it reaches a

new trough is smaller. For the uninformative signal, by contrast, the instantaneous payoff

remains unaffected by changes in historical peaks and troughs. Thus, if we only consider the

instantaneous utility, lower peaks and troughs tilt the trade-off in favor of the informative

signal. Proposition A2 shows that this conclusion continues to hold even if we take the

continuation into account and even if all information is revealed in the final period.
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2. Proof of Proposition A2

Let P = Qσ and P̂ = Qσ̂ for strategies σ and σ̂. Throughout the proof of part (ii), we

assume that it is not optimal to never get information.

For any ωt = (0, j2, . . . , jt−1), let σ
ωt be the strategy such that the agent does in period

s ≥ t after history ωs = (0, j2, . . . , jt−1, . . . , js−1) what she would have done after history

(0, 0, j2, . . . , jt−1, . . . , js−1) with strategy σ for all such ωs−1 and gets no information after any

history ωN−2 = (0, j2, . . . , jN−2). After any history that does not follow ωt, σ
ωt chooses the

same action as σ.

For any ωt = (0, j2, . . . , jt) and s ≤ t, let µs(ωt) =
∑s

ŝ=0 jŝ, µ(ωt) = maxs≤t µs(ωt) and

µ(ωt) = mins≤t µs(ωt).

Step 1: If σ is optimal, then σ2(0) = 1.

Let σ be an optimal strategy. By assumption, there is some t such that σt+1(0, . . . , 0) = 1.

Consider the strategy σω1 for ω1 = (0). Hence σω1 is also optimal. Next, take any history

ωN−2 such that µs(ωN−2) ≥ 0 for all s ≤ N − 2 and µN−2(ωN−2) > 0. Since σω1 gets

information in period t < N − 2, there must be some such a history that occurs with positive

probability given σω1 . Let σ̂ be the strategy derived from σω1 by replacing σN−1(ωN−2) for

that history ωN−2 with σ̂N−1(ωN−2) = 1. Clearly, P̂ℓ = Pℓ and P̂h stochastically dominates

Ph, contradicting the optimality of σ.

Step 2: If σ is sequentially optimal and µ(ωt) < µt(ωt) = µ(ωt), then σt+1(ωt) = 1.

The proof is similar to the proof of Step 1. Assume that σ is sequentially optimal. By

Step 2, σ2 = 1. Then, take any history ωN−2 such that µs(ωN−2) ≥ 0 for all s ≤ N − 2 and

µN−2(ωN−2) > 0. Since σ2 = 1, such an ωN−2 occurs with positive probability given σωt .

Then, consider the strategy σ̂ that is derived from σωt by replacing σN−1(ωN−2) = 0 with

σ̂N−1(ωN−2) = 1. Clearly, P̂ℓ = Pℓ and P̂h stochastically dominates Ph, contradicting the

sequential optimality of σ.

For any k ≥ 2, odd let ωo
2k−1 = (0, 1,−1, . . . , 1,−1).

Step 3: If, for some k ≥ 2, there is a sequentially optimal σ such that σ2k(ω
o
2k−1) = 1, then

σ2k−2(ω
o
2k−3) = 1 for every sequentially optimal σ.

Let σ be any sequentially optimal strategy such that σ2k−2(ω
o
2k−3) = 0. Suppose that

σ2k−1(ω2k−2) = 1 for ω2k−2 = (0, 1,−1, . . . , 1,−1, 0). Then, the proof of Step 1 establishes
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that σωo

2k−3 yields the same payoff as σ after every history and is therefore also sequen-

tially optimal. Moreover, σωo

2k−3 gets no information after the N − 2-period history that

follows ωo
2k−2 in which there is good news in every period t > 2k − 3, contradicting Step

2. Hence, ω2k−2 = (0, 1,−1, . . . , 1,−1, 0) = 0. Repeating the last argument establishes

that σ2k(0, 1,−1, . . . , 1,−1, 0, 0) = 0 for every sequentially optimal σ which implies that

σ2k(0, 1,−1, . . . , 1,−1, 1,−1) = 0 for every sequentially optimal σ, a contradiction.

If N = 4, then the decision maker displays the ostrich effect. To see this, let N = 4 and

consider any sequentially optimal σ. Then, by Step 1, σ2(0) = 1. By Step 2, σ3(0, 1) = 1.

We claim that σ3(0,−1) = 0. To see why this is the case, assume σ always get information

while σ̂ gets information after every history except (0,−1). Then, it is easy to see that Pℓ

is stochastically dominated by P̂ℓ and P̂h = Ph. Hence, V (P̂ ) > V (P ) contradicting the

optimality of σ. That is; σ2 = σ3(0, 1) = 1 and σ3(0, 1) = 0 and therefore, the agent displays

the ostrich effect.

Henceforth, we will assume that N > 4. Define,

K = {k ≥ 2 : Qσ(ω
o
2k−1) > 0 and σ2k(ω

o
2k−1) = 1 for some optimal σ}

First, assume that K = ∅. Suppose σ is any optimal strategy. Then, by Step 2, σ2 = 1 and

therefore ω1 = (0, 1) occurs with probability. By Step 3, σ4(0, 1, 1) = 1 and since 2 /∈ K,

σ̂4(0, 1,−1) = 0. Hence, the decision maker displays the ostrich effect.

Next, assume K 6= ∅ and let κ = maxK. We note that N must be greater or equal to

2κ + 2. If not; that is, if N = 2κ + 1, then let σ be any optimal strategy such that ωo
2k−1

occurs with positive probability given σ and σ2k(ω
o
2k−1) = σN−1(ω

o
2k−1) = 1 consider the

strategy σ̂ such that σ̂t+1(ωt) = σt+1(ωt) for all t 6= 2κ or (t = 2κ and ωt−1 6= ωo
t−1) and

let σ̂2κ(ω
o
2κ−1) = 0. Note that P̂h = Ph and P̂ℓ stochastically dominates Pℓ and therefore

V (P̂ ) > V (P ), contradicting the optimality of σ and proving that N ≥ 2κ+ 2.

Suppose N = 2κ+ 2. Let σ be an optimal strategy such that ωo
2κ−1 occurs with positive

probability given σ and σ2κ(ω
o
2κ−1) = 1. Then, if the news in period 2κ is good, it is optimal

for the agent to get information in period 2κ+1 by Step 2. Conversely, if the news in period 2κ

is bad, it is optimal for the agent not to get information in period 2κ+ 1 since the additional

information cannot increase vu(x) but may decrease vu(x). Hence, the agent displays the

ostrich effect.
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If N > 2κ + 2, then by the definition of κ, there is an optimal strategy σ such that

ωo
2κ−1 occurs with positive probability given σ and σ2κ(ω

o
2κ−1) = 1. Then, history ω2κ =

(0, 1,−1, . . . , 1,−1, 1) also occurs with positive probability given σ. By Step 3, σ2κ+1(ω2κ) = 1

and σ̂2κ+2(0, 1,−1, . . . , 1,−1, 1, 1) = 1. Hence, ωo
2κ+1 also occurs with positive probability

given σ and therefore, by the definition of κ, σ̂(ωo
2κ+1) = 0. Hence, the decision maker

displays the ostrich effect. This concludes the proof of part (ii) of the proposition.

To prove part (i) of the proposition, take any ωt = (0, j2, . . . , jt−1, 1) and assume there is

no sequentially optimal strategy σ such that σt+1(ωt) = 1. Let σ be any sequentially optimal

strategy. (Hence, σt+1(ωt) = 0.) Suppose there some history ωs = (0, j2, . . . , jt−1, 1, 0, . . . , 0)

such that σs+1(ωs) = 1. Then, let σ1 = σωt , σ2 = σ1ωt , σ3 = σ2ωt and so on.

Note that σs−t
s+1(ωt) = 1. We noted in the proof of Step 1 that σωt yields the same

distribution of peaks and troughs as σ and therefore, results in the same utility. Hence, σs−t

yields the same utility as σ, and therefore, is also sequentially optimal, contradicting the fact

that there is no sequentially optimal strategy σ such that σt+1(ωt) = 1.

3. Proof of Proposition A3

Assume that it is optimal to get information after history ωt but not optimal to get

information after history ω̂t where π(ωt) ≥ π(ω̂t), τ(ωt) ≥ τ(ω̂t) and φt(ωt) = φt(ω̂t).

First, we claim that getting no information in any period following ω̂t is optimal. To

see why, suppose that there is a sequentially optimal strategy, σ̂, such that σ̂t+1(ω̂t) = 0 and

σ̂s+1(ω̂ŝ) = 1 for some ŝ > t. Let s be the smallest such ŝ. Then, repeating the construction

in Step 1 of the proof of Proposition 6 yields a strategy σ1 = σ̂ωt that yields the same payoff

as σ̂ such that σ1
t+1(ω̂t) = 0 and σ1 gets no information in period ŝ = t+1, . . . , s− 1 following

history ω̂t and gets information in period s. Repeating this construction with σ̂ωt replacing

σ̂ yields an optimal strategy, σ2 that does not get information after history ωt until period

s − 1 and gets information in period s − 1. Hence, repeating this process again and again

yields a strategy σs−t that is optimal and gets information in period t + 1 after history ωt,

contradicting the assumption that no such strategy exists.

Since it is optimal to get information after ωt, there must exist a sequentially optimal

strategy σ that yields a weakly higher payoff than never getting information after ωt such that

σt+1(ωt) = 1. Let P = Qσ.
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θh[EPh
v − π(ωt)] + θℓ[EPℓ

v − τ(ωt)] ≥ 0

Let π(ωt)
+ denote the set of all β ∈ [0, 1] such that Ph(β) > 0 and v(β) > π(ωt) and let

τ(ωt)
− be the set of all β ∈ [0, 1] such that Pℓ(β) > 0 and v(β) < π(ωt). Then, since Ph never

delivers an outcome below π(ωt) and Pℓ never delivers an outcome above τ(ωt), the equation

above is equivalent to

θh
∑

π(ωt)+

[v(β)− π(ωt)]Ph(β) + θℓ
∑

τ(ωt)−

[v(β)− τ(ωt)]Pℓ(β) ≥ 0 (∗)

Now, assume that the decision maker behaves after history ω̂t as she did with strategy σ

after history ωt; that is, the behavior assumed in equation (∗). This strategy is not optimal

since it entails getting information in period t + 1. Furthermore, as we have noted above,

never getting information after history ω̂t is optimal. Hence, arguing as we did in deriving

equation (∗) above yields

θh
∑

π(ω̂t)+

[v(β)− π(ω̂t)]Ph(β) + θℓ
∑

τ(ω̂t)−

[v(β)− τ(ω̂t)]Pℓ(β) < 0 (∗∗)

Equations (∗) and (∗∗) yield

θh
∑

π(ωt)+

[π(ωt)− π(ω̂t)]Ph(β) + θh
∑

π(ω̂t)+\π(ωt)+

[v(β)− π(ω̂t)]Ph(β)

+θℓ
∑

τ(ωt)−\τ(ω̂t)−

[τ(ωt)− v(β)]Pℓ(β) + θℓ
∑

τ(ω̂t)−

[τ(ωt)− τ(ω̂t)]Ph(β) < 0

The last inequality establishes a contradiction since all of the summands above are nonnega-

tive.
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