Global Terrorism and (De-)Mobilization: Do Islamic State’s Deadly Attacks Disengage, Deter, or Mobilize Supporters?

Joan Barceló *
Elena Labzina †

Abstract

What are the consequences of committing violent attacks for terrorist organizations? Terrorist attacks might broaden the base of supporters by increasing the perceived group efficacy. However, terrorist attacks might also lead its supporters to believe that the organization is excessively violent or involvement has become too dangerous. This paper employs a novel dataset with 300,842 observations of 13,321 Twitter accounts linked to the Islamic State (IS), collected during a 127-day period, to empirically investigate the impact of terrorist attacks on the number of the organization’s supporters. By exploiting the exogenous timing of terrorist attacks as a natural experiment, we find that the number of followers of IS-related Twitter accounts significantly reduces in the aftermath of the attacks. Additionally, we empirically disentangle two mechanisms: disengagement – a change in supporters’ beliefs – and deterrence – de-mobilization due to fear. Because we do not find support for the latter, we conclude that the disengagement effect dominates our main result.

*Ph.D. Candidate. Department of Political Science. Washington University in St. Louis. joan-barcelosoler@wustl.edu.

†Ph.D. Candidate. Departments of Political Science and Mathematics. Washington University in St. Louis. elena.labzina@wustl.edu.
What are the consequences of committing violent attacks for terrorist organizations? As a result, do they attract more supporters? Scholars and pundits alike generally refer to the existence of two opposing effects in their description of the consequences of violent terrorist activity: a mobilization effect and a disengagement effect. On the one hand, attacks may aim at solidifying and broadening the base of supporters within the terrorist organization (Acosta, 2014b; Doosje et al., 2016). On the other hand, attacks are also a tool to show their capacity and infuse terror among the populace. While this effect targets the general population, they may also have effects on those who were already supporters. Specifically, terrorist attacks might lead supporters to believe that the organization is excessively violent or involvement has become too dangerous, which might lead to a decrease in the number of terrorist supporters (Doosje et al., 2016; Moghadam, 2012). In this paper, we provide systematic evidence for the effect of terrorist attacks on the number of supporters in the context of the Islamic State (IS). We contribute to the empirical literature of terrorism by providing an answer about which effect dominates among those segments of the population that are on the cusp of being outsiders and insiders regarding a terrorist organization. We do so by exploring the dynamics in those groups relative to IS on their most important communication and recruitment tool: Twitter.

In particular, we argue that the number of followers of IS-linked Twitter accounts reveals crucial information about the internal mobilization and demobilization dynamics regarding the relationship between the terrorist organization and the society. While we are not able to move beyond the follower-non-follower dichotomy, we provide a useful framework from which to theoretically think about who moves across the insider-outsider boundary when we observe shifts in the overall number of followers. Hence, we begin by providing a theoretical mapping of Twitter followers in the following categories: 1) leaders; 2) active supporters (active members who unconditionally support the organization); 3) passive supporters (latent sympathizers who may either turn into active supporters in the future or withdraw their support from the organization); and 4) observers (non-supporters who follow the group to
acquire information, such as media reporters, or individuals fighting against IS, but who would never support the organization). The former three groups are the insiders of the organization in the sense that they “follow” the organization and have shown a degree of sympathy towards it; the fourth group – as well as a fifth group composed of the entire population of Twitter non-followers – constitute the outsiders.

We contend that a terrorist attack is a shock that involves a re-positioning of some individuals across these five categories, some people moving upward in their commitment to the organization – what we call mobilization effects –, and some people moving downward in their expressed dedication to the organization – what we call disengagement effects. Further, they can be divided by whether these movements are internal, meaning, they occur among the insider group (e.g., already supporters becoming more or less supportive), or external, in other words, across the insider-outsider boundary (e.g., non-followers becoming passive supporters or passive supporters becoming non-followers). Importantly, the external processes of mobilization and disengagement determine the size of the Twitter audience; that is, the number of people that can be regularly reached by the organization for propaganda and recruitment purposes. Because of their strategic importance for terrorist organizations, this paper empirically focuses on the effects of terrorist attacks on the external kind of mobilization and disengagement effects.¹

Focusing on these external processes, we can see that overall changes in the number of followers before an attack and after an attack reflect three movements across categories. First, non-followers may become observers. Second, non-followers may turn into insiders. Third, passive supporters may stop following IS-related accounts. While the first two movements imply an upward shift in the number of Twitter followers after a terrorist attack, the last movement implies a reduction in the number of followers. We empirically estimate whether the disengagement effect (movement of type 3) dominates the mobilization effect (movement of type 1) and attention effect (movement of type 2), by estimating the causal

¹Henceforth, we use the terms of disengagement and mobilization to refer to their external components only.
impact of IS’s terrorist attacks on the number of followers in IS-related Twitter accounts.

To test the theoretical inequality of interest, we have implemented an automatic routine that collected the daily reports made by Anonymous on IS-related Twitter accounts and extracted key information on these accounts over 127 days – from March 14 to July 22, 2016. Altogether, we collected information on 300,842 observations, account-date data points, on 13,321 unique Twitter accounts.\(^2\) Then, we merged these with the data on real-world data on terrorist attacks around the world that occurred during our period of study. Using this constructed dataset, we examine whether terrorist attacks linked to IS exert an impact on the number of followers of IS-related accounts by combining observational and quasi-experimental research designs.

Different methodological perspectives provide a strong empirical regularity: IS’ terrorist attacks decrease the number of followers of IS-related Twitter accounts in the aftermath of an attack. The estimated effect regarding Twitter followers is both statistically and quantitatively significant. We employ two empirical strategies with identical conclusions.

First, we test our main hypothesis by using an interrupted time series analysis. In this case, we explore the discontinuous changes in the number of followers around two major attacks in our dataset: the Brussels bombing on 22 March 2016 and the attack in Nice on 14 July 2016. Second, we exploit the panel structure of our dataset to examine the effect of the intensity of a terrorist attack on the number of followers in their accounts using several model specifications, including random and fixed effect models, which exploit only variation in the number of followers within each account. By doing this, we observe that terrorist attacks precede fluctuations over time in the number of followers in IS’s terrorist attacks; this is true especially for attacks that occurred on European soil as compared to other attacks in Asia and Africa for which the effect is still negative and significant, but smaller in magnitude. Though we detect a surge in the number of accounts that are reported to Twitter for their potential links to IS, our estimated effects of terrorist attacks remain negative and significant after

\(^2\)For our empirical analysis, we will only be able to use 239,434 account-date observations on 10,554 accounts to ensure the quality of our dataset. For additional details, see the data section below.
adjusting for such activity. Hence, both analyses consistently point to the negative effect of the attacks on the number of followers of the terrorist organization on Twitter.

Our core finding provides evidence of a disengagement effect of terrorist attacks on the followers who support the organization, the third class of movement in the typology specified above. This effect is particularly strong considering that we only observe the net effect: the disengagement effect is discounted for the opposite positive mobilization and attentional effects. Yet, the disengagement effect is not entirely homogeneous but it consists of two clear components: the disengagement effect, the action of un-following the organization due to a change in supporters’ beliefs in the aftermath of an attack; and, the deterrence effect, the act of un-following the organization to avoid being tracked after an attack—so-called, “going dark”. To evaluate the distinct mechanisms, we examine whether the disengagement effects are, as the deterrence mechanism would suggest, stronger for accounts likely located in countries where governments’ counter-terrorist activities are more active, that is, Western countries and/or the region of the attack. Instead, we find that the terrorist attacks have no effect on the number of followers in the sub-sample of accounts that we can identify with a high probability to be in Europe. Hence, we conclude that the disengagement effect – a change in beliefs – is the most plausible explanation for the disengagement effects of terrorism on the organizations’ supporters.

Overall, this paper speaks to several strands of literature. First, we offer a critical theoretical account on the types of effects that terrorist attacks may have on terrorist organization, as well as its relationship to the population. Second, we present, to the best of our knowledge, the first systematic study on the impact of terrorist attacks on the disengagement of probably terrorist supporters. Though there is some prior empirical research on the consequences of terrorism on some relevant political outcomes, including people’s attitudes and ideology (e.g., Gadarian, 2010; Getmansky and Zeitzoff, 2014; Peffley, Hutchison and Shamir, 2015) and governmental policies (e.g., Abrahms, 2012; Thomas, 2014), the study on its impact on the organization and its potential supporters has thus far not been driven
by empirical data. Secondly, our work contributes to the growing literature that employs big data to answer long-standing questions in political science (e.g., Barberá, 2015; Barberá et al., 2015; King, Pan and Roberts, 2014a,b, 2016) by using a novel dataset on IS-related Twitter accounts. In addition, our work connects to the heated debate in political science on whether big data and causal inference are contradictory trends by employing big data in a quasi-experimental framework (Monroe et al., 2015).

1 Terrorist Attacks: Mobilization, Disengagement and Deterrence

There are several possible explanations for the relationship between terrorist attacks and the size of terrorist organizations. The variation in the terrorist activities of the political groups may be explained by a number of factors, including the psychology of individual terrorists (e.g., Horgan, 2005; Post et al., 2009; Victoroff and Kruglanski, 2009), adherence to religious ideals (Pargament, Magyar-Russell and Murray-Swank, 2005), socialization processes (Turk, 2004), contextual socioeconomic factors (Krueger and Malečková, 2003; Mitra et al., 2008; Piazza, 2011), or their organizational structure (Asal and Rethemeyer, 2008).

In this paper, we focus on the impact of violent activity on reshuffling the supporters of an organization.

An influential view on the purpose of terrorist attacks in political science suggests that terrorist groups use violence either as a costly signal to show strength and capacity (Hoffman and McCormick, 2004; Kydd and Walter, 2006; Siegel and Young, 2009).3 Though the effectiveness of groups’ strategies is a matter of scholarly debate,4 terrorist attacks cer-

3See, for instance, Abrahms (2008) and (Moghaddam, 2005) for an argument that terrorism sometimes pursue non-instrumental goals.
4Using all suicide terrorist attacks between 1980 and 2003, Pape (2005) finds that half of the suicide terrorist attacks have achieved some policy concessions with the targeted states, although see Acosta and Childs (2013); Moghadam (2008) for contrary evidence. Also, Abrahms (2012) shows that terrorist attacks are not effective at extracting policy concessions when attacks are targeted to the civilian population.
tainly change the political position of the group through the provision of new information about them to either the government, the people or both. Violent activity provides new information about the effectiveness and objectives of the organization, which results in two simultaneous process that leads to opposed forces for mobilization and de-mobilization.

On the one hand, terrorist attacks may mobilize supporters by increasing the perceived group efficacy. Terrorist violence can be seen as a strategic mobilization tool that aims at ensuring a “self-sustaining rate of [political mobilization]” (Acosta, 2014a), solidifying the loyalty of the already militant members, and broadening the base of supporters to ultimately institutionalize the organization (Acosta, 2010, 2014a, 2016; Bueno de Mesquita and Dickson, 2007). In this sense, Doosje et al. (2016) argue that an increase in the levels of perceived group efficacy is a crucial determinant in the micro-level process of radicalization. The declaration of the Islamic States in Iraq and Syria, for instance, arguably increased the perceived capacity of the IS, which helps to explain the large number of foreign fighters who travelled to IS-controlled areas.

On the other hand, not only does the nature of the attacks signal strength to the people to achieve their ends, but it also conveys relevant information to their supporters about the kind of strategies they use, the character of their members, and the goals of the organization (Bueno de Mesquita and Dickson, 2007; Hoffman and McCormick, 2004). The new information about the organizational capabilities, the character, and its goals provided by violent terrorist attacks may backlash and lead to disengagement. Some individuals who might have sympathized with the organization in the past may come to realize that they cannot cope with new levels of violence. Though idealistic expectation about the organization may have led some to follow or actively engage in its activities, terrorist acts may lead once-supporters to believe that violence has gone too far.

5For instance, Kydd and Walter (2006) suggest that groups pursue five goals via the costly signaling of terrorist attacks: attrition, intimidation, provocation, spoiling, and outbidding. Though each goal has distinctive characteristics, all of them share the underlying mechanism of providing new information to either the government, the people or both. In addition, notice that even if some terrorist groups may not have full control over all violent activities on the ground, their execution on behalf of the organization – regardless of the organization’s prior consent – should be sufficient to imply their political and social consequences.
Qualitative empirical evidence suggests that disengagement is a common process among members of terrorist organizations. In their work with exit programs in northern Europe, Bjørgo (2011) showed that individuals who belonged to extreme-right movements often exited those organizations because they felt that too much violence. Studies of the determinants that led to a reduction in the number activists linked to the basque terrorist group Euskadi Ta Askatasuna (ETA), Alonso (2011) and Reinares (2011) report evidence showing that many fighters exited the organization because of disagreements with the violent tactics of the organization. In a similar vein, Moghadam’s (2012) in-depth study of the decline of the Red Army Faction revealed that disagreements over tactics and strategies led to an update of beliefs about the organization that initiated their disengagement with the organization.

Another driver of behavioral changes after terrorist attacks is deterrence. The perception of prosecution and surveillance among supporters of terrorist organizations may increase after violent activity. In this regard, Alonso (2011) report changes in beliefs among members and sympathizers of ETA in the aftermath of violent attacks due to fear from the attack or successful police prosecution in its aftermath. However, deterrence is less likely to work in cases where terrorists do not have a known address (Schmid, 2013). However, the effectiveness of deterrence is not the same across all countries, but it depends on the credibility of a state to punish and credibly threaten to retaliate against members of the organization (Wenger and Wilner, 2012). Hence, the credibility to exert deterrence on terrorists is likely to depend on the national material capabilities of states to allocate resources in security, defense and intelligence services. In the context of modern terrorist organization that place a great degree of their activity through online tools of communication and recruitment, all users can potentially be tracked by intelligence services. Consequently, post-attack deterrence processes are likely to change the behavior of some supporters of the organizations by leading them to go offline out of fear of being tracked, especially in those countries where intelligence service are more credible to threaten retaliation.
An increasing number of terrorist groups make an intensive use of mass media and social media to disseminate their messages. The availability of these new technologies has made it far easier to distribute the groups’ films and images: terrorist attacks and violent scenes are reproduced live uncensored, which has led to an unprecedented stream of online violence. Besides the use of regular television channels to promote their films in the news, terrorist organizations have begun to be highly involved in a number of decentralized digital platforms through social media networks like Twitter or Facebook; peer-to-peer messaging apps like Telegram and Surespot; and, content sharing systems like JustPaste.it (Clark, 2016). While this has been the case for a large number of terrorist organizations worldwide, the Islamic State has intensively used Twitter for both propaganda and recruitment purposes. In this regard, FBI Director James Comey argued in July 2015 that IS’s strategy consists in “broadcasting on Twitter, get people to follow them, then move them to Twitter Direct Messaging”. After a short screening of whether the follower is a likely recruit, then “they’ll move them to an encrypted mobile-messaging app so they go dark to us” (Aspen, 2015).

From this perspective, we could classify Twitter users into five types according to their relationship with IS: 1) IS’s leader members: they constitute a number of owners of IS-linked accounts and form a share of the followers of the IS-related accounts; 2) IS’s active supporters (active engagement): they may or may not have IS-related accounts themselves, but they are surely a share of the followers of IS-related accounts; 3) IS’s passive and likely-supporters (passive engagement): they do not have IS-related accounts, but they are passive consumers of IS’s information, are susceptible to converting into active supporters, and constitute a great share of the friend-followers of the IS-related accounts; 4) the observers: they are the people who do not support, but follow their accounts because they are consumers of IS’s information (e.g., media reporters who follow the latest news in Syria through IS’s Twitter accounts) or people fighting IS; and, 5) the non-followers: they are all other users on Twitter.
who do not follow and do not support IS’s activities currently, yet all of them could turn into IS’s passive or active supporters in future periods. This group constitutes the vast majority of Twitter users.

With this categorization of Twitter users, we conceptualize an attack as a shock that reshuffles the number of people in each of the five types of groups. There are two opposing forces that define movements across categories: the mobilization effect, which leads to movements toward the group of the leaders (e.g., non-followers to passive, passive to active, active to leader, etc.), and the disengagement effect, which leads to movements toward the non-followers (e.g., leader to simply active, active to passive, passive to non-followers, etc.).

For reasons of empirical identification, we further classify the types of mobilization and disengagement as internal and external. Table 1 reports the dynamics that occur before and after a terrorist attack at the individual level both internally and externally, and Table 2 reports the external processes alone at the level of aggregate effects, those which will be observable to us. Internal effects refer to changes across categories within the organization, which can be either positive – stronger commitment – or negative – weaker commitment. If the change is a stronger commitment within the organization, then this is an *internal mobilization effect*. This occurs when an individual that was passive becomes more active and, for instance, becomes more engaged in terrorist activities, such as propaganda diffusion. It would also be an example of internal mobilization when an active member increases his or her loyalty by taking positions of responsibility within the organization. However, movements can also be defined as *internal discouragement effects* when people decide to reduce their commitment. For instance, IS fighters returning home may move from being a leader to a mere active or passive supporter. Similarly, a member who used to be highly engaged may become less active for a number of reasons.

\[\text{Table 1 about here}\]

\[\text{Figure 2 about here}\]

External effects refer to movements to and from following IS-related Twitter accounts.
External encouragement effects have two components. The most relevant of the two for theories of terrorism is the mobilization effect. This occurs when a non-follower becomes an explicit supporter of the organization by following it on some of their related accounts. Naturally, we should expect that the external mobilization process is more likely to occur across adjacent categories because the process of radicalization is not immediate. Therefore, we believe that an external mobilization process is likely to take place when non-followers become passive supporters of the organization. In a second place, attentional effects define aggregate movements of observers toward IS-related Twitter accounts; they are non-followers who begin following their accounts with the simple purpose of obtaining first-hand information on the organization and their activities (e.g., media reporters), yet they have no chance of becoming supporters of the organization.

There may also be an external discouragement process, in which passive supporters update their beliefs over the organization and, some of them may realize that the organization does not fulfill their desires, so they withdraw their mild support (a disengagement effect). In addition, some previous IS’s followers may become discouraged from following IS-related accounts out of fear of being tracked by intelligence agencies (a deterrence effect). Both processes are reflected in the movement to the category of non-followers. In short, our first hypothesis reflects the existence of these two rival sub-hypothesis and, thus, the existence of an encouragement or a disengagement effect.

The nature of the treatment effect should not be regarded as the terrorist attack alone, but we should conceptualize in a broad sense. To the discrete event of the attack, the actual treatment effect includes all of the causal chain that a terrorist attack triggers, which includes, for instance, the reactions to the attack by other citizens, media, politicians, institutional figures, and the like. This compounded treatment is obviously larger as the number of casualties increases and the geographic location of the attack is in a Western country. Hence, if the attack is the actual cause a change in the IS-related number of followers on Twitter, then we should also expect that these attacks exert larger effects, whether positive
or negative, when they occur in Western countries compared to elsewhere. This is our second hypothesis.

In addition to establishing the net effect of terrorist attacks on the number of followers, we tease out the logic behind disengagement and deterrence to explore the mechanism of the negative effect. The crucial distinction between disengagement and deterrence is whether the change in individuals’ behavior is the result of learning from the attacks and, thus, a shift in beliefs; or, the consequence of fear or threat of prosecution. Though we do not have data to directly observe neither of these two mechanisms, we lay out a key empirical observation for the deterrence effect, and then subject it to examination.

According to the deterrence effect, terrorist attacks increase the beliefs among followers that their online behavior may become noticeable and tracked by security agencies. Thus, IS’s supporters, whether passive or active, may become dark on Twitter by un-following or shutting their accounts after a terrorist attack, which would explain the decrease in the average number of followers that we observe. Ye, if the deterrence effect dominates our negative result, then we should observe that those followers located in the region of the attack and/or in countries with a more credible threat to prosecute or retaliate against online activists, so countries with greater material capabilities, should be more likely to drop from following IS-related accounts in the aftermath of an attack, compared to the rest of our sample. Testing this hypothesis means testing for the relevance of the deterrence over the disengagement mechanism conditional on finding a negative effect in our main hypothesis.

In sum, the logic of the external processes gives rise to the following expectations:

Hypothesis 1 (main hypothesis: encouragement versus discouragement)

Hypothesis 1.1 The number of followers on IS-related accounts increases (decreases) after a terrorist attack.

Hypothesis 1.2 The effect of terrorist attacks in either Europe or the United States is stronger than the effect of attacks occurring elsewhere.

Hypothesis 2 (conditional on discouragement: disengagement mechanism)
The number of followers on IS-related accounts decreases after a terrorist attack, yet the effect is not larger among accounts located in countries with strong material capabilities.

These external processes are crucial for information spread and recruitment purposes because they determine the size of the Twitter audience. Twitter audience can be defined as the set of people who can be reached through the network of IS-related accounts. Hence, they are more likely to be susceptible to IS’s propaganda and to be recruited than the general population. In terms of our classification, the Twitter audience is composed of leaders, active and passive supporters, and observers. Therefore, the net effect of the two opposing external processes, mobilization and discouragement, determines changes in the size of the Twitter audience.6 This now turn to describe our data and empirical strategy to evaluate the size of the net effect and to tease out the distinct mechanisms.

\section{Data}

\subsection{Information on IS-linked Accounts}

The data used in this paper were obtained by following “the reports” of the anti-IS Twitter bots set up by the international hacker initiative Anonymous. This hacker group declared cyber war on IS almost immediately after the IS attack in Paris on November 13, 2015. The horrible event took place on six sites of this European capital and eventually took the lives of 130 people, leaving 368 injured (Mosbergen, 2015; Ellyat, 2015). Having said to IS “We will let you down” in their famous video,7 the initiative started to work in multiple directions, one of which was to report IS-related accounts in Twitter.

This paper makes use of 300,843 reports from the anti-IS Anonymous bots collected over the period from 03/16/2016 to 07/20/2016. Each report is a Twitter account. Most of

6In the online Appendix A, we develop an analytical strategy that allow us to make sense of our observation in the changes in the number of followers in IS-related Twitter accounts.

7For the full video, see https://www.youtube.com/watch?v=5UjIqwf9fyk.
the accounts in this data set have been reported multiple times and eventually got suspended (hence, there is a clear life-cycle of the accounts in the sample: they were reported the first time, then they were reported a couple of more times, then they were suspended). Each time when a certain Twitter account was reported, its profile information was collected. The gathered data is an unbalanced panel, in which \(n \) is a reported Twitter account and \(t \) is the date of this report. Overall, the final dataset has information on 13,321 unique accounts.\(^8\)

Crucially for our analysis, each entity in the data contains information on the number of followers, friends, the date of the report, and the language of the account.\(^9\) Our dependent variable is the number of followers in an account in date \(t \). To test our third hypothesis, we need to create a dummy variable that takes into account whether an account is located within Europe or North America, or elsewhere. While we cannot geo-locate the accounts with their profile information, the language of the accounts can be used to identify those accounts that have a high probability of being located in Europe if their language is exclusively spoken within Europe and North America.\(^10\) Thus, we divide all our accounts into two types: 1) accounts whose language is only spoken in countries within Europe and North America alone,\(^11\) and, 2) all other accounts.\(^12\) This information allows us to construct an European-

\(^8\)We clean the raw dataset before using it for our analysis. Specifically, our final sample for analysis excludes observations that have extreme activity rates. Accounts with a high ratio of following accounts over followed accounts are likely to be bots, and accounts with a low ratio of following accounts over followed accounts are likely to be media. Because they may behave differently than regular accounts and their behavior may be too influential for our results, we have chosen to exclude the lowest and the highest decile. Our final sample size is, thus, 239,434 user-date from 10,554 accounts. While trimming the dataset on the extremes aims at cleaning the data of extreme observations, the findings presented in this paper are the same if we include all of the observations.

\(^9\)The raw data collection process was performed using a couple of specific Python scripts running on a remote server and gathering information 24/7. Then, the data refinement and aggregation was performed on a stand-alone machine via a C# .Net application in Visual Studio 2015; the application was developed particularly for this project.

\(^10\)The language is automatically generated by Twitter when the user sets up an account.

\(^11\)Czech (< 0.01%), Danish (0.16%), Dutch (1%), Finnish (0.04%), German (1%), Italian (< 0.17%), Norwegian (0.04%), Polish (< 0.01%), Russian (0.71%), Swedish (0.25%), and Turkish (< 4.40%); total accounts with an European-only language constitute a 7.2% of all accounts. Also, we should note that recoding Russian and Turkish user accounts to the category of non-European-only languages does not change any of the results presented in this section.

\(^12\)The majority of users whose language is not exclusively spoken in Europe and North America fall in one of the following categories: Arabic (45.7%), English (32.5%), French (10.7%), Indonesian (2.5%), and Spanish (0.47%).
only language dummy that we will use to test our third hypothesis.

3.2 The Cumulative Lagged Measure of Terrorist Attacks

We complement the information extracted from the accounts reported by Anonymous with data on daily terrorist incidents linked to IS. An incident is included in our dataset if an authoritative figure, such as a country’s president or vice-president, addresses the nation by stating or strongly suggesting that an attack is committed by the Islamic State of Iraq and Syria (IS), also known as Islamic State of Iraq and the Levant (ISIL) or Daesh. In the absence of direct information from a governmental authoritative figure, we include episodes that have been connected to IS by reliable media sources within a few hours of the attacks. Notice that the inclusion criterion of a case depends on the general perception of the attack in the immediate aftermath of the attack, as opposed to the result of formal investigations.\(^\text{13}\)

Our assumption is that the effectiveness of either a discouragement or a mobilization strategy should be greater as the impact of the attack is larger. Thus, this impact factor is likely to be related to two components: the number of casualties and the location of the incident. For this reason, we construct two independent variables for each day in our period taking into account these two parameters. Firstly, we compute the number of deaths from terrorist attacks linked to IS that occurred in the United States and Europe. Secondly, we do the same for the number of deaths outside the United States and Europe. Hence, our independent variables do not reflect just whether there is an attack on a particular day, but they weight each attack for the number of deaths that it generates, and differentiate between those in Europe and the US and elsewhere. If our empirical strategy reflects our theoretical reasoning, then we should observe that the effect of the number of victims in the US and Europe should be larger than the effect of casualties located elsewhere geographically.\(^\text{14}\)

\(^{13}\text{See online Appendix B for a list of all terrorist incidents included in our analysis.}\)

\(^{14}\text{There are no attacks in the US in our dataset, although we include a mention to the US throughout the paper because we would have included attacks in the US in a separate category with Europe. In addition, we refer to attacks in European soil to those attacks within our period that occurred in Belgium, France, Germany, and Turkey. However, if we exclude Turkey from this category, the results for the variable of}\)
However, the assumption of an instant effect of a terrorist attack lasting only one day is unrealistic. Hence, a smoothing temporal approach for effect is a logical decision. Indeed, media coverage and news stories linger for some days after an attack. Many people may find out about events one or two days later. Consequently, we should expect to have the consequences of an attack on the same day of the attack and over its immediate aftermath, although, probably, decreasing in magnitude. For this reason, we have chosen to implement a smoothing decreasing curve after the shock by applying a discount factor of 50%, 75%, and 100% to the number of deaths. For each day in our dataset, we compute the cumulative mortality parameter, \(cd_t \); it aggregates all previous deaths from the terrorist attacks with a discount factor:

\[
cd_t = \sum_{i=1}^{I} \frac{deaths(i)I(t \geq t(i))}{(1 + r)^{(t-t(i))}},
\]

where \(i \) is a terrorist attack on day \(t(i) \) and \(deaths(i) \) is the number of deaths it caused; \(r \) is the discount rate applied, and \((t - t(i)) \) is the number of days since the incident. This is summed for all incidents before \(t \).

For example, we estimate the cumulative mortality parameter around the Brussels bombings on March 22, 2016, with \(r=0.5 \) as having values of 0, 36, 24, 16, 10.67, and so on, for the days between 21th to 25th March, respectively. Figure 1 shows how this discount pattern parallels the changes in the keywords “Brussels bombing” reported by Google Trends. On the date of the occurrence, Google trends reports a value of 100 (its standardized base value), a decrease to 7 one week later, and a further decrease to 0 two weeks later, for both attacks. Similarly, if we applied a discount factor of, for example, 50% to an event with 100 deaths – as the base in Google trends for comparison –, then the trend would be 100 in the same day, 5.85 a week later, and 0.34 two weeks later.\(^{15}\)

\(^{15}\) The correlation of Google attention to the event and our cumulative value is above 0.90 within a one-month window around the event. Other attacks in the sample do not differ in the evolution of their attention over time, but some of them had obviously less overall attention. It is worth noting that choosing a greater number of deaths for the discount factor could lead to a more accurate representation of the actual impact of the attack.
To illustrate the incidence of violence linked to IS within our period of study, Figure 3 reports the cumulative lagged measure of deaths from terrorist attacks linked to IS from our initial extraction date (03/16/2016) to the end of the data collection period (07/20/2016). Altogether, there are two major attacks in European soil: on 22nd March in Brussels, Belgium; and on 14th July in Nice, France.\footnote{The attack in the Attaturk airport in Istanbul, Turkey, is another attack that is coded as in European soil, although it is unclear whether it should be computed in Europe or outside Europe. Notice, however, that including it in the dataset as Europe or outside Europe does not alter any of the results presented in the paper.} Outside European soil: the major attack was the two coordinated bomb attacks in the Karrada district in Baghdad, Iraq, on the 3rd of July, with over 300 deaths.

4 Empirical Strategy

Exploiting the temporal variation in terrorist attacks throughout our period of study, we use a pre-post approach to estimate their effects on the number of followers in the IS-related Twitter accounts. More specifically, for account a on day t, we estimate the models of the form:

$$Y_{at} = \beta_0 + \beta_1 cd_t + \alpha_a + \epsilon_{at},$$

where Y_{at} denotes the log of followers of account a on day t. As noted previously, cd_t is the continuous variable that equals the number of terrorist victims in day t, smoothed with a discount rate of 50%, 75%, or 100%. The parameter of interest in our model equation is β_1.

Our main specification includes user-account fixed effects (α_a). With regards to the plausibility of the identification condition, account fixed-effects are important because there are strong differences across accounts – language, geographic location of the user, demographic characteristics, as well as other observed and unobserved covariates. The major discount parameter does not alter any of the results presented in the paper.
danger of an empirical strategy without account fixed effects is selection bias in the sample before and after an attack. This can arise as a result of shifts in either the type of accounts that Anonymous targets, which may be different in a period before and after an attack, or shifts in the behavior of users, including the opening or closing of accounts. The inclusion of account fixed effects allow us to remove all time-invariant heterogeneity across accounts (e.g., average number of followers throughout the period, language, geographic location) and focus on the average variation within accounts over time.

For the interpretation of the parameter \(\beta_1 \) as a causal estimate of the effect of terrorist attacks on the number of followers, we need to assume that timing of the terrorist attacks is exogenous to the pre-attack number of followers in Twitter accounts linked to IS. While a violation of the assumption is more likely when using long periods of time, we believe the assumption of the exogenous timing of terrorist attacks is highly plausible, because our sample period is comprised of a short time span of only 127 days. For instance, the likelihood of a terrorist attacks in 2012 may be very different from that of a terrorist attack in 2016 for reasons that we do not fully understand. However, the chance of a terrorist attack in a given day within the 127-day period of our analysis – from 16th March to 20th July, 2016 – is likely to be approximately constant within short periods from the perspective of Twitter followers and non-followers. In practical terms, this means that the exact day of the attack is generally not known in advance.

In short, for the causal parameter that we estimate to be biased, not only does it require the chance of an attack to vary over time, but to vary as a function of the number of followers in the periods immediately before an attack, or without an attack.\(^{17}\) Thus, the parameter \(\beta_1 \) can be interpreted as a causal estimate of the effect of terrorist attacks on the number of followers of IS-related accounts because the uncertainty related to the precise timing and nature of the attack provides an identification mechanism for our empirical tests.

\(^{17}\)When we refer to an attack day, we are actually referring to the attack day and a number of days in the aftermath of the attack that are affected by the attack
5 Results

The results section is divided into three subsection. We begin with implementing an interrupted time series analysis on the two most important attacks in European soil that fall within our time period of study: The Brussels bombing on March 22 and the Nice attack on July 14th, both in 2016. This allows us to provide a first empirical evaluation of relationship by employing a quasi-experimental research design with a strong internal validity. Second, we move to the panel data analysis where we combine daily Twitter data with terrorist attacks worldwide during our entire period. With estimates based on account fixed-effects, this design enables us to generalize the prior findings to all other terrorist events with models that convincingly estimate a causal effect. Finally, we explore the mechanism of the negative association found in the first two subsections.

5.1 An Interrupted Time Series Analysis of Two Major Attacks

To first assess the causality of the relationship, we employ an interrupted time series analysis, a type of regression discontinuity design (RDD) in which the running variable is defined by time (Morgan and Winship, 2014; Percoco, 2014; Shadish, Cook and Campbell, 2002). The terrorist data and the information on Twitter accounts is ideal for this approach because of the large number of accounts that we have collected in every single day throughout our period of analysis, which statistically empowers small bandwidths, and the well-defined moment of the attack.

In brief, there is a potential outcome Y_j for each account-observation j – the number of followers of an account; a treatment assignment variable W_j – observation observed in the pre- or post-treatment period –, which determines the potential outcome we eventually observe, so $Y_j(W_j)$, i.e., either $Y_j(1)$ or $Y_j(0)$; a forcing variable t_j, which is a running co-variate – time to the attack in our case –; and, finally, a cutoff value c, which establishes the interruption in the time series, which is set at 0 (the attack date in our case). Hence, the...
treatment assignment is given by:

\[W_j = \begin{cases}
W_j = 1 & \text{if } t_j \geq c \\
W_j = 0 & \text{if } t_j < c
\end{cases} \]

Therefore, the primary quantity of interest is the immediate change in the number of followers represented by \(\tau \) in the following equation:

\[\text{followers}_j = \alpha + \tau W_j + f(t_j) + \epsilon_j \]

where \(\text{followers}_j \) indicates the number of followers in an account-observation, \(\alpha \) is an intercept of the model, \(\text{Attack}_j \) is an indicator for whether an observation falls in the day of the attack or later, \(f(t_j) \) is a smooth function of the running variable time in days from the day of the attack, which can be positive or negative, and \(\epsilon_j \) is an error term. To estimate \(f \), we use a non-parametric estimation (local linear regression).

A crucial step in this approach is the decision about the bandwidth – in this application, the window period of analysis. In general terms, there is usually a trade-off between precision and bias. On the one hand, a strategy that uses a large bandwidth would allow us to precisely estimate a causal effect because it would use a large number of observations ranging from many days before and many days after the attack. The risk of this approach is the lack of validity due to omitted variable bias. Because it allows data points that are far from the attack to be used in the estimation of the outcome in both the control and treated period, differences across units may arise because they were generated in different environments. On the other hand, we would like to minimize the bias of our estimate by subsetting our temporal focus to a narrow temporal window, and thereby removing those observations that are far from the day of the attack. Yet, the general downside of this strategy is that we end up working with a reduced sample size, which reduces the precision of our estimates. In our model specifications, we choose a baseline bandwidth following the parameters suggested by Imbens and Kalyanaraman (2012) (IK) and test the sensitivity of the estimates by using
different bandwidth, ranging from the bandwidth suggested by IK to only one day before and after the attack. In the estimation procedures, we use triangular kernel, as recommended by Lee and Lemieux (2010) and Lee and Lemieux (2010), which is equivalent to estimating a weighted linear regression over the interval on both sides of the cutoff point, giving more weight to those observations closer to the cutoff point.

5.1.1 Attack on Brussels, Belgium

On 22 March 2016, two blasts hit the main terminal of Zaventem international airport, in the north-east of central Brussels, and another explosion struck the Maelbeek metro station in the area where several European institutions are located. These three coordinated suicide bombings killed thirty-two civilians and three of the perpetrators, and more than 300 people were injured. Shortly after the explosions, IS claimed responsibility for the attacks in a statement released via Twitter, Telegram, and other social media.

To evaluate the impact of the attacks on the number of followers, we subsetted our dataset to only those observations that are observed more than once and fall within the window of 15 days before and after the attack.\(^\text{18}\) As our data collection procedures were initiated on March 16, the pre-attack period is six days before the attack and the post-attack period is 15 days after the attack.\(^\text{19}\)

Table 2, Panel A, presents the main estimates of the impact of the terrorist attack in Brussels on the number of followers in the accounts linked to IS. Table 2 shows the findings from our above-mentioned estimation equation by local linear regression, using the number of followers as the dependent variable. As indicated above, our treatment variable is \(\text{Attack}_i\), a dummy that indicates whether the observation is in a pre-treatment or post-treatment period. Therefore, the coefficient \(\tau\) on \(\text{Attack}\) captures the effect on the number of followers of being in the pre-attack period versus the post-attack period, i.e., it measures the effect

\(^\text{18}\)We excluded all observations with the extreme number of followers – the top 1% percentile. However, the results are not driven by these decisions.

\(^\text{19}\)This decision of choosing a specific time window is not relevant analytically because the bandwidth used is systematically narrower than this time range.
of crossing the threshold – the attack date, from left to right – on the number of followers, Column (3) provides the estimated effect based on the preferred specification, which uses the bandwidth suggested by Imbens and Kalyanaraman (2012).

[Table 2 about here]

Under this specification, the attack in Brussels decreased the number of followers by 37 followers, which is equivalent to a 9.9% decrease from the mean number of followers of the twelve-day period – six days to the left and six days to the right on the attack’s timeline. Importantly, the estimated negative effect is consistent significantly and quantitatively similar across different bandwidth specifications, whether doubling or halving the IK bandwidth. Moreover, even if we focus on the two-day period centered around the attack day (bandwidth = 1), one day before and the attack day, the effect is also significantly negative. Figure 4a graphically shows the discontinuous jump around the attack date. This provides substantial evidence of the causal impact of the Brussels attack on the number of Twitter users following IS-related accounts.

[Figure 4 about here]

5.1.2 Attack on Nice, France

This subsection explores whether we see a similar effect for the largest terrorist attack on Western soil during our period of study. On the night of July 14, 2016, a man driving a 19-ton refrigerated truck and carrying an automatic pistol deliberately drove into crowds that were celebrating the Bastille Day on the Promenade des Anglais in Nice, France. The attack resulted in the deaths of 86 people and 434 injuries. On the morning of July 15, 2016, a few hours after the attack, the French president, Francois Hollande, addressed the nation in a televised speech, stating that the attack was terrorist in nature and linking it to the Islamic State by saying: “all of France is being menaced by Islamic fundamentalist terrorism.” Further evidence for this explicit link being made by the President was that he also used his televised speech to announce “the strengthening of [...] the actions in Syria and
Iraq” (Mestre, Revault d’Allonnes and Bissuel, 2016). On July 16, IS, via its news agency, the Amaq News Agency, claimed responsibility for the attack by stating that a “soldier of the Islamic State” executed “a new, special operation using a truck”, and warning that “no matter how much they enforce their security measures and procedures, it will not stop the mujahideen from striking” (France24, 2016; Williams, 2016).

To evaluate the impact of this attack on the number of followers, we subsetted our dataset to only those observations that are observed more than once and fall within the window of 15 days before and after the attack, as we did for the Brussels attack. In this case, however, our period of analysis stops a few days after the attack, on 20th July 2016, and, consequently, we have a 15-day pre-treatment period and a 7-day post-treatment period. Given that the bandwidths that we will use are narrower than this time window, this will not affect our estimates.

Table 2, in Panel B, presents the main estimates of the impact of the terrorist attack in Nice on the number of followers in the accounts linked to IS.20 As we did for the Brussels bombing, our favorite specification is reported in column (3) because it uses the bandwidth suggested by Imbens and Kalyanaraman (2012). Under this specification, the Nice attack decreases the number of followers by 40 followers, which is equivalent to a 15% decrease from the mean number of followers throughout the eight-day period – four days to the left and four days to the right of the attack’s timeline. Additionally, the effect is consistently negative and statistically significant across bandwidths – the IK’s bandwidth, its half, or its double –, although the effect decreases as we incorporate data points that are further apart from the attack date. Interestingly, if we focus on the difference between the date before the attack and the attack date (bandwidth equals 1), the effect is also significantly negative. Figure 4b illustrates the discontinuous jump downwards that occurs between the date before and after the attack. Next, we explore whether these negative effects are consistent with a more general pattern of a causal and negative effect of attacks on the number of followers in

20To avoid repetition, this estimates follow the same logic as Panel A for the case of Brussels.
accounts associated with IS using all the available data.

5.2 Main Analysis

Table 3 reports the impact of the number of victims in IS attacks on the number of followers of IS in Twitter on the day of the attack and in its immediate aftermath. Panels in the Table show the results across different discount rates. Models 1 and 4 report OLS regression estimates with no user-account fixed effects. Models 2 and 5 report varying-intercept multilevel models where day-intercepts are modeled as a function of attacks perpetrated by IS. Finally, models 3 and 6 report includes fixed effect at the level of the account. In addition, models 4 through 6 also control for Anonymous’ daily intensity of its reporting activities.

The set of OLS and multilevel models show that the effect of the number of victims in the US and Europe is negatively related to the log of the number of followers of Twitter-related accounts. However, these models may be biased due to distinct sample composition in the pre-attack and the post-attack periods. Thus, the second set of models in columns 3 and 6 focus exclusively on the within-account variation. This specification is closest to identifying a causal effect because it incorporates an intercept for each account and, consequently, controls for all between-account heterogeneity. Consistently, IS’ deadly attacks decreases the number of followers in IS-related Twitter accounts. Moreover, changes in the intensity of the reporting activity by Anonymous is not confounding this relationship.

If these models are capturing a true causal effect of bombing, we should expect that the effect of an extra victim in the United States and Europe should be stronger than the effect of a victim elsewhere. As expected, models in columns 1 through 6 also show that the effect of a victims outside Europe and the United States is negative but the magnitude of the effect is significantly smaller than a victim in Europe or the United States. In particular, the effect of an individual death in Europe and the US leads to a decrease in the log of followers in that same day is between -0.0045 and -0.00392, yet the impact of a victim outside the
US and Europe is between -0.00009 and -0.00076, respectively; that is, 5 times smaller. In other words, a terrorist attack outside Europe and the US requires about 5 deaths to achieve the equivalent effect to a single death within the US or Europe on the number of followers.

Altogether, these results empirically support the thesis that the discouragement effect from the attacks dominates its mobilization effect since we are able to detect a significant negative effect on the number of followers in the aftermath of these events. While the results are statistically significant, we now turn to discuss whether the magnitude of the effect is substantive. Certainly, the large size of our sample allows us to detect effects that are very small in magnitude. Therefore, it is pertinent to discuss whether our parameter of interest captures a causal effect that is substantively meaningful. Before moving to the discussion of the magnitude of the effect, we should bear in mind that the estimated parameter does not capture the full impact of discouragement, but only the net effect of discouragement after subtracting it from a potential mobilization effect. If we assume that both effects may be strictly positive in absolute values, then the estimated discouragement effect should be interpreted as a lower bound of its true effect.

Figure 5 reports the predicted value of the number of followers in IS-related Twitter accounts as a function of the number of deaths associated with a particular day in the sample. The number of followers in Twitter accounts related to IS is predicted to be close to 137 if there has not been an attack on that day nor on the dates immediately following. However, an attack in the US or on European soil would imply a decrease in the number of followers in that day and in its aftermath, and this decrease depends on the intensity of and the proximity to the attack. Approximately, each 25 victims leads to an average decrease of 2 followers in their accounts. By contrast, the magnitude of the decrease in the number of followers is much weaker because it requires an attack with 100 deaths to generate a change in the predicted value of 1 follower less in IS’s Twitter accounts.

[Figure 5 about here]

In the interpretation of these results, we should take into account that the variable
“number of deaths” does not truly account for the number of victims in a given day because the variable is measured in a way that allows for lingering effects of a given terrorist attack over time. Thus, to explore the actual impact of a discrete attack in the number of followers, we should assess not only the effect it has on a particular day but the cumulative effect it has throughout the period in the aftermath of the attack. To illustrate the shifts in the predicted values as a function of the number of deaths in an attack, Table 4 reports the five most bloody attacks within our period of study, the date they occurred, their location, their death toll, and the predicted change in the number of followers caused by an attack alone.

[Table 4 about here]

The values in the last column are the predicted cumulative percentage change in the number of followers as a result of actual death toll related to attacks observed within our period of study. As a reminder, this means that the effect of the Brussels bombing had a value of 36 on 22 March 2016, 24 on March 23, 11 on March 24, 3 on March 25, 1 on March 26, and values indistinguishable from 0 thereafter. Hence, the simulation exercise involves summing these actual values in the variables produced by single attacks to obtain the change in the predicted value expected from each discrete attack. The results show that the largest impact was generated by the case of the attack in Nice with an average accumulative change of a 7.5% decrease in the number of followers. Another important impact is caused by an expected 6.6% decrease in the number of followers that would be expected from the Karrada bombings, a coordinated attack that killed 341 people on 3 July 2016 in Baghdad, Iraq. Even though not so important in magnitude, the attack in Istanbul and Brussels killing 44 and 36 people would be expected to cause a 3.8% and 3.2% decrease.

This simulation exercise allows us to illustrate that the magnitude of the effects observed in our models are significant statistically, but also quantitatively. To put these percentages in perspective, a 7% decrease from a starting point of 137 means an average of 9 fewer followers. Taking into account that there are about 10,554 accounts related to IS throughout our period of study, this quantitatively means an expected drop of 94,986 in the absolute number of
followings to IS. This is a substantial reduction in the size of IS’s Twitter audience. Overall, this finding is entirely consistent with the interrupted time series analysis provided above.

5.3 Exploring the Mechanism: Disengagement or Deterrence?

In this section, we try to tease out the logic behind the negative effect of terrorist attacks on the number of followers on Twitter between the two potential explanations: the disengagement and deterrence effect. In particular, our evidence suggests that the disengagement effect constitutes a great proportion of the total negative effect found in our main results. We utilize the known geographic location of some accounts to test the deterrence effect. Hence, if the deterrence effect is the only driver of our main findings, then we should see that the negative effect is significantly larger among those accounts located in Europe and North-America, so closer to countries with stronger counter-terrorist agencies. Testing this means testing our third hypothesis. To approximate the geographic location of accounts, we use the accounts’ language to separate those accounts whose language is spoken only within Europe and North America from all other accounts.

To test the empirical prediction of the deterrence mechanism, Table 5 reports three model specifications with varying degrees of pooling across accounts, although results are not sensitive to the specification. Overall, the effect of terrorist attacks on the number of followers for all those who do not use an European-only language accounts ranges from -0.00050 (p-value < 0.001) (column 3: within-account variation) to -0.0042 (p-value < 0.001) (column 1: between-account variation). Yet, there is an important differential effect of attacks among those users that do use an European-only language. In particular, the effect of terrorist attacks among accounts that use an European-only language ranges from -0.00011 (p-value = 0.74) (column 3: within-account variation) to -0.0017 (p-value < 0.05) (column 1: between-account variation). In other words, the effect of attacks to accounts with

21 This does not take into consideration that one user can be counted more than once because it may withdraw from following several posting accounts at the same time. Therefore, this should be interpreted as an upper bound estimate of the average decrease in the number of users.

22 see more details in the ”Data” section above
European-only language is about one-fifth (22%), one-third (35%), and two-fifths (40%) of the effect on all other accounts. Though the difference in slopes is also significant for attacks outside Europe and the US, the magnitude of the overall effect of these makes problematic any substantive inference the first place (see above, Figure 5).

[Table 5 about here]

Overall, we see that the key prediction from the deterrence mechanism for that accounts closer to European countries should be more affected by attacks on European soil is not supported by the results. Thus, the finding that the negative effect of terrorist attacks among accounts with an European-only language is weaker than the effect on all other observations, which is contrary to the expectation based on the deterrence mechanism. This suggests that the disengagement rather than the deterrence mechanism is likely to be at work in our main analysis.

6 Conclusion

Twitter has become a crucial communication and recruitment tool for the Islamic State. This paper offers an innovative approach to learning about the characteristics of IS by tracking the reports made by Anonymous on their Twitter accounts. The new data allows our study to explore on an important question in political science in general and the terrorism literature in particular: what are the consequences of terrorist attacks? While providing a full answer to this issue is beyond the scope of this research, we have provided new empirical evidence on the impact of terrorist attacks on the number of supporters of a terrorist organization.

Our results shed light on the dynamics between those on the border between mild sympathizers - passive supporters - and those outside the organization. In particular, a strong empirical regularity has emerged from our analysis: terrorist attacks lead to a decrease in the size of IS’s Twitter audience in the aftermath of an attack that is both statistically and
substantively significant. These results speak directly to the literature of the effectiveness of violence for terrorist organizations, by showing that the disengagement effect among passive supporters dominates both the mobilization and the attentional effects that terrorist attacks have on them. Hence, if a terrorist organization seeks to broaden its base of explicit supporters through violent activities, we show that this strategy is counter-productive because not only does the Twitter audience not increase, but it significantly decreases.

Assuming rationality among terrorists, then the unaddressed puzzle is: why would terrorist organizations engage in violent activities if this causes a decrease in the number of people that will be reach or potentially recruited? We can speculate that the reduction in their Twitter audience is the price terrorists have to pay to accrue two benefits from attacks. First, attacks may not aim at broadening the base of supporters (external mobilization), but to increase the loyalty of those who were already members (internal mobilization); in other words, they might trade quantity for quality by radicalizing already-supporters at the expense of losing moderate supporters. In our research design, this is something that is unobserved. We do not see whether supporters move from passive to active, or from active to leader after terrorist attacks, because they are followers of the observed accounts both before and after an attack.

Finally, while attacks backfire by reducing the size of the Twitter audience, they may aim at infusing terror in the civil population. This may benefit the organization in terms of exerting influence over foreign governments, as suggested by a body of scholarship (e.g., Bueno de Mesquita, 2005; Bueno de Mesquita and Dickson, 2007). Possibly, infusing terror among the population may increase the likelihood of governments to either provide policy concessions (Thomas, 2014), or provoke an excessive response of government for the advantage of the organization (Bueno de Mesquita, 2005; Bueno de Mesquita and Dickson, 2007). Thus, the cost paid in a reduction in the number of people that can be reached through Twitter may be either worth taking or not the product of instrumental rationality. While this research focuses on a particular aspect of the relationship between the organization and
society, we acknowledge that further research is required to fill the theoretical and empirical gaps that remain in this literature to fully understand the incentives of pursuing violent activities. In addition, this study has focused on the organization that is perhaps the most influential in today’s politics, Islamic State. However, future research should explore whether our findings can generalize to other types of terrorist organizations.

References

URL: goo.gl/nDQFuY

Ellyat, Holly. 2015. “Anonymous' Hackers Declare War on ISIS in Video Message.”.

Mosbergen, Dominique. 2015. “Anonymous Declares War On ISIS After Paris Attacks.”.

Table 1: Dynamics across categories (individual-level dynamics)

<table>
<thead>
<tr>
<th>Mobilization</th>
<th>Disengagement</th>
</tr>
</thead>
<tbody>
<tr>
<td>External</td>
<td>Internal</td>
</tr>
<tr>
<td>Non-follower ⇒ Passive supporter</td>
<td>Passive supported ⇒ Active supporter;</td>
</tr>
<tr>
<td>Passive supported ⇒ Active supporter;</td>
<td>Active supporter ⇒ Leader</td>
</tr>
</tbody>
</table>
Table 2: Local Average Treatment Effects of Timing of the Attack on the Number of Twitter Followers

<table>
<thead>
<tr>
<th>PANEL A: Terrorist Attack in Brussels</th>
<th>Dependent Variable: Number of Followers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>LATE: (\bar{\tau})</td>
<td>-25.0*</td>
</tr>
<tr>
<td></td>
<td>(13.0)</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>1 day</td>
</tr>
<tr>
<td></td>
<td>(half-IK)</td>
</tr>
<tr>
<td>Observations</td>
<td>3,744</td>
</tr>
<tr>
<td>Pre-treatment N</td>
<td>2,858</td>
</tr>
<tr>
<td>Post-treatment N</td>
<td>2,825</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PANEL B: Terrorist Attack in Nice</th>
<th>Dependent Variable: Number of Followers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>LATE: (\bar{\tau})</td>
<td>-58.6***</td>
</tr>
<tr>
<td></td>
<td>(14.1)</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>1 day</td>
</tr>
<tr>
<td></td>
<td>(half-IK)</td>
</tr>
<tr>
<td>Observations</td>
<td>3,744</td>
</tr>
<tr>
<td>Pre-treatment N</td>
<td>2,003</td>
</tr>
<tr>
<td>Post-treatment N</td>
<td>1,741</td>
</tr>
</tbody>
</table>

*Note: *p<0.1; **p<0.05; ***p<0.01. IK refers to Imbens and Kalyanaraman’s (2012) bandwidth.*
Table 3: The Impact of the Number of Victims in Attacks on the Number of Followers in IS-related Twitter Accounts

<table>
<thead>
<tr>
<th>PANEL A:</th>
<th>Discount rate: 50%</th>
<th>(\text{Dependent variable: Number of Followers (log scale)})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1.1)</td>
<td>(1.2)</td>
</tr>
<tr>
<td>Number of victims (US & Europe) ('00)</td>
<td>-0.392***</td>
<td>-0.064***</td>
</tr>
<tr>
<td>(0.021)</td>
<td>(0.018)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>Number of victims (outside US & Europe) ('00)</td>
<td>-0.076***</td>
<td>-0.012**</td>
</tr>
<tr>
<td>(0.006)</td>
<td>(0.005)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>Number of reports ('000)</td>
<td>0.041***</td>
<td>0.003</td>
</tr>
<tr>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.006)</td>
</tr>
<tr>
<td>RE user-account</td>
<td>x</td>
<td>✓</td>
</tr>
<tr>
<td>FE user-account</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PANEL B:</th>
<th>Discount rate: 75%</th>
<th>(\text{Dependent variable: Number of Followers (log scale)})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(2.1)</td>
<td>(2.2)</td>
</tr>
<tr>
<td>Number of victims (US & Europe) ('00)</td>
<td>-0.394***</td>
<td>-0.063***</td>
</tr>
<tr>
<td>(0.023)</td>
<td>(0.021)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>Number of victims (outside US & Europe) ('00)</td>
<td>-0.073***</td>
<td>-0.011*</td>
</tr>
<tr>
<td>(0.007)</td>
<td>(0.006)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>Number of reports ('000)</td>
<td>0.043***</td>
<td>0.003</td>
</tr>
<tr>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.006)</td>
</tr>
<tr>
<td>RE user-account</td>
<td>x</td>
<td>✓</td>
</tr>
<tr>
<td>FE user-account</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PANEL C:</th>
<th>Discount rate: 100%</th>
<th>(\text{Dependent variable: Number of Followers (log scale)})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(3.1)</td>
<td>(3.2)</td>
</tr>
<tr>
<td>Number of victims (US & Europe) ('00)</td>
<td>-0.391***</td>
<td>-0.062***</td>
</tr>
<tr>
<td>(0.024)</td>
<td>(0.022)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>Number of victims (outside US & Europe) ('00)</td>
<td>-0.071***</td>
<td>-0.010*</td>
</tr>
<tr>
<td>(0.007)</td>
<td>(0.006)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>Number of reports ('000)</td>
<td>0.044***</td>
<td>0.003</td>
</tr>
<tr>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.006)</td>
</tr>
<tr>
<td>RE user-account</td>
<td>x</td>
<td>✓</td>
</tr>
<tr>
<td>FE user-account</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

N total | 239,434 | 239,434 | 218,727 | 239,434 | 239,434 | 218,727 |
N accounts | 10,554 | 10,554 | 8,320 | 10,554 | 10,554 | 8,320 |
N days | 127 | 127 | 127 | 127 | 127 | 127 |

Note: *\(p<0.1 \); **\(p<0.05 \); ***\(p<0.01 \). Constants omitted from the output. Columns 1 and 4: OLS regressions. Columns 2 and 5: Random effects model with varying-intercept at the level of user-account and day, with day-intercepts modeled as a function of IS’s attacks and Anonymous’ intensity of its reporting activity. Columns 3 and 6: Fixed-effects model at the account-level with panel corrected standard errors. The number of observations in the fixed effects models is lower because accounts with one observation are excluded from the dataset for identification purposes. In all models, we have excluded extreme observations in the dependent variable – the top 1% percentile, yet results are unaltered if we include them.
Table 4: Predicted Percentage Change in the Number of Followers After Some Important Terrorist Events within our Sample Period

<table>
<thead>
<tr>
<th>Terrorist Attack</th>
<th>Date of the Attack</th>
<th>Location</th>
<th>Number of deaths</th>
<th>Predicted Cumulative % Change in the Number of Followers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brussels bombings</td>
<td>22 March 2016</td>
<td>Brussels, Belgium</td>
<td>36</td>
<td>-3.00%</td>
</tr>
<tr>
<td>Yemen bombings</td>
<td>23 May 2016</td>
<td>Aden, Yemen</td>
<td>45</td>
<td>-0.8%</td>
</tr>
<tr>
<td>Ataturk airport attack</td>
<td>28 June 2016</td>
<td>Istanbul, Turkey</td>
<td>44</td>
<td>-3.6%</td>
</tr>
<tr>
<td>Karrada bombings</td>
<td>3 July 2016</td>
<td>Baghdad, Iraq</td>
<td>341</td>
<td>-5.6%</td>
</tr>
<tr>
<td>Nice attack</td>
<td>14 July 2016</td>
<td>Nice, France</td>
<td>86</td>
<td>-7.1%</td>
</tr>
</tbody>
</table>

Note: Simulated values are based on the fixed-effects models from column 3 in Table 3.
Table 5: The Impact of the Number of Victims in Attacks Linked to IS on their Number of Followers in Twitter

<table>
<thead>
<tr>
<th></th>
<th>Number of Followers (log scale)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td></td>
</tr>
<tr>
<td>EUR-only language account</td>
<td>0.387***</td>
<td>0.069***</td>
<td>0.032**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.010)</td>
<td>(0.014)</td>
<td>(0.015)</td>
<td></td>
</tr>
<tr>
<td>Number of victims (US & Europe)</td>
<td>−0.004***</td>
<td>−0.001***</td>
<td>−0.001***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0002)</td>
<td>(0.0002)</td>
<td>(0.00003)</td>
<td></td>
</tr>
<tr>
<td>Number of victims (outside US & Europe)</td>
<td>−0.001***</td>
<td>−0.0001**</td>
<td>−0.0001***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0001)</td>
<td>(0.00005)</td>
<td>(0.00001)</td>
<td></td>
</tr>
<tr>
<td>EUR-only language account X Number of victims (US & Europe)</td>
<td>0.002***</td>
<td>0.0004***</td>
<td>0.0004***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.0001)</td>
<td>(0.0001)</td>
<td></td>
</tr>
<tr>
<td>EUR-only language account X Number of victims (outside US & Europe)</td>
<td>0.0002</td>
<td>0.0001***</td>
<td>0.0001***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0002)</td>
<td>(0.00002)</td>
<td>(0.00002)</td>
<td></td>
</tr>
</tbody>
</table>

RE user-account X ✓ X
FE user-account X X ✓

N total 239,434 239,434 218,727
N accounts 10,554 10,554 8,320
N days 127 127 127

Note: *p<0.1; **p<0.05; ***p<0.01. Constants omitted from the output. Column 1: OLS regressions. Column 2: Random effects model with varying-intercept at the level of user-account and day, with day-intercepts modeled as a function of attacks perpetrated by IS. Columns 3: Fixed-effects model at the account-level with panel corrected standard errors with the number of victims interacted with a time-invariant characteristic of the accounts, language of the account. Model is column 3 is also referred as hybrid model because it provides variation in a time-invariant variable (language of the account) because of its interaction with a time-variant variable (number of victims), while maintaining any other characteristic of the account constant. Just as for the main analysis, the number of observations in the fixed effects models is lower because accounts with one observation are excluded from the dataset for identification purposes. In all models, we have excluded extreme observations in the dependent variable – the top 1% percentile, yet results are unaltered if we include them.
Figure 1: A Comparison of Google Trends to the Cumulative Lagged Measure of Deaths

Brussels Bombings (keywords “Brussels Bombing”)

Figure 2: External processes (aggregate-level dynamics)

External Processes
\[
\begin{align*}
&\text{Mobilization (+:} & \{& \text{Mobilization effects} \\
&\text{Attentional effects} \\
&\text{Deterrence effects} \\
&\text{Disengagement effects} \\
&\text{disengagement (-:}
\end{align*}
\]
Figure 3: Cumulative Lagged Measure of Deaths from Terrorist Attacks by IS (03/16/2016 – 07/20/2016)
Figure 4: Interrupted Time Series of Followers by Two Major Attacks

(a) IS Attack in Brussels, Belgium (March 22, 2016) (b) IS Attack in Nice, France (July 14, 2016)

Figure 5: Predicted Values of the Number of Followers Depending on the Number of Deaths and the Geographic Location of Terrorist Attacks