The effect of nickel on the strength of iron nickel alloys: Implications for the Earth’s inner core

Mary M. Reagan⁴,*, Arianna E. Gleason⁵,⁶, Jin Liu⁷, Michael J. Krawczynski⁸, James A. Van Orman⁴, Wendy L. Mao⁴,⁹

¹ Department of Geological Sciences, 450 Serra Mall, Braun Hall, Building 320, Stanford University, Stanford, CA 94305, USA
² Department of Earth and Planetary Sciences, 1 Brookings Drive, Washington University, St. Louis, MO 63130, USA
³ Department of Earth, Environmental and Planetary Sciences, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
⁴ Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA

ARTICLE INFO

Keywords:
High pressure
Strength
Earth’s inner core
Deformation
FeNi alloy

ABSTRACT

We investigated the effect of nickel on the strength of iron nickel (FeNi) alloys at high pressure. Using radial X-ray diffraction coupled with literature results from nuclear resonance inelastic X-ray scattering measurements we determined the bulk strength of two FeNi alloys (Fe₈₈₈Ni₁₂ and Fe₀₈Ni₀₂) at high pressures up to 70 GPa. When extrapolated to Earth’s inner core conditions, the strength of these FeNi alloys is found to increase relative to pure Fe. For the likely composition and conditions of the inner core, we estimate that an FeNi alloy with ∼5.5 wt% Ni would have a strength that is ∼125% greater than estimates for pure Fe. As shear strength is a measure of a material’s resistance to flow, our results have implications for understanding the deformation processes inside planetary interiors and support dislocation creep as the dominant mechanism in the Earth’s inner core.

1. Introduction

The Earth’s inner core, located 5150–6370 km within the planet, is subjected to extreme pressure and temperature conditions that range from 330 to 364 GPa and ∼4000–7000 K (Antonangeli, 2016). It is primarily composed of iron with 5–15% nickel, and a certain amount of light element(s) (Birch, 1952, 1964; Hirose et al., 2013). At inner core conditions, iron-rich FeNi alloys likely crystallize in an hexagonal close packed (hcp) phase (e.g., Lin et al., 2002; Liu et al., 2016; Mao et al., 2006; Tateno et al., 2010; Tateno et al., 2012; Sakai et al., 2011), although one recent theoretical study suggests that the stable phase may be body centered cubic (bcc) (Belonoshko et al., 2017). The Earth inner core exhibits a complex structure with seismic anisotropy, where seismic waves travel ∼3% faster in the polar than the equatorial direction (Creager, 1992; Morelli et al., 1986; Shearer, 1994; Song and Helmberger, 1993; Tromp, 1993; Woodhouse et al., 1986), and lateral and hemispherical variations (Bréger et al., 2000; Cao and Romanowicz, 2004; Creager, 1999; Deuss et al., 2010; Irving, 2016; Song and Helmberger, 1995; Sun and Song, 2002; Vinnik et al., 1994). Gleason and Mao (2013) extrapolated the shear strength of pure iron to inner core conditions and determined it was weaker than previously thought, supporting that dislocation creep may be the dominant creep mechanism in the inner core. Pure Fe has been used as a proxy to understand the nature of the inner core including numerous studies on materials properties at high pressure and high temperature conditions (e.g. Struzhkin et al., 2004; Shen et al., 2004; Mao et al., 2008; Lin et al., 2005; Mao et al., 2001; Merkel et al., 2013; Tateno et al., 2010). There is a measured velocity-density profile discrepancy between the values of pure Fe and the those of the inner core, together with cosmochemical and geochemical observations, indicting the presence of Ni and other light elements (Birch, 1964), thus quantifying the effects of the addition of Ni on the geophysical properties of Fe is important. We examined the effect of varying nickel content on the strength of pure iron by studying Fe₈₈₈Ni₁₂ and Fe₀₈Ni₀₂ up to 70 GPa.

We define strength, τ, as the maximum shear stress a material can withstand before undergoing plastic deformation. All values were calculated by anisotropic linear elasticity theory using the following methodology developed by Singh and Balasingsh (1994) and Singh et al. (1998a, b). Non-hydrostatic pressure conditions produce lattice strains in a sample loaded into a diamond-anvil cell (DAC) that can be measured using radial X-ray diffraction, where the X-ray beam is nearly perpendicular to the compression axis. The geometry of a radial X-ray diffraction experiment is shown in Fig. 1. Samples in a DAC experience two stresses: axial stress, σ_a, and radial stress, σ_r. The deviatoric stress
component is given by \(t = \sigma_3 - \sigma_1 \), equivalent to the lower bound of the shear strength, which we refer to as \(t \). Line shifts in the diffraction pattern provide a measure of the deviatoric strain relative to the hydrostatic strain for a crystallographic orientation and lattice plane. The d-spacing measured under non-hydrostatic compression, \(d_{\text{dev}} \), is given by

\[
d_{\text{dev}}(hkl) = d_p(hkl) [1 + \left(1 - 3\cos^2 \psi \right) Q(hkl)],
\]

where \(d_p(hkl) \) is the d-spacing under hydrostatic condition, \(\psi \) is the angle between the diamond compression axis and the momentum transfer, and \(Q(hkl) \) is the differential strain. When \(\psi = 54.7^\circ \) gives \(d_p(hkl) \), the d-spacing equals that of hydrostatic conditions. Eq. (1) is valid for all crystal systems. The deviatoric strain produced by \(d(hkl) \) for a given \(\psi \) is given by

\[
\varepsilon_{\text{dev}}(hkl) = \frac{[d_p(hkl) - d_r(hkl)]}{d_p(hkl)}
\]

(2)

A material’s strength can be related to its shear modulus, \(G \), and the average value of the differential strain, \(< Q(hkl) > \), for all observed reflections by

\[
t = 6G(\langle Q(hkl) \rangle).
\]

(3)

2. Methods

The Fe\(_{0.88}\)Ni\(_{0.12}\) and Fe\(_{0.8}\)Ni\(_{0.2}\) starting materials were synthesized with Fe and bBNi nanopowders, along with a small amount (1.7 vol%) of Si nanopowder (supplier, Alfa Aesar). Two different powder mixtures were made, one with 80% Fe-20% Ni and the other with 88% Fe-12% Ni atomic abundances. The nanopowder mix was ultrasonicated in ethanol for several hours to mix thoroughly and dried in air. The powder mix was placed in a silica glass crucible, which was then inserted into a larger silica glass capsule. Between the inner crucible containing the sample and the outer capsule, we placed a powder consisting of a mixture of Fe with 1.6 wt% Si to ensure that the Fe\(_2\)O\(_3\) remained below the IW buffer during the synthesis. The assembly was evacuated of air and sealed with an oxyacetylene torch. After sealing the outer capsule, it was placed in a 1 atm muffle furnace, heated to 1100°C, and annealed for 3-4 days, then removed from the furnace and allowed to cool in air. Synthesized FeNi alloys were characterized by electron microprobe to ensure they were homogeneous.

Each sample was loaded into panoramic diamond anvil cells with 300 um flat culets in Be gaskets. Radial X-ray diffraction experiments were performed at Beamline 12.2.2 (\(\lambda = 0.4959\) Å) of the Advanced Light Source (ALS), Lawrence Berkeley National Laboratory (LBNL), and at HP-CAT, beamline 16-BM-D (\(\lambda = 0.4133\) Å) at the Advanced Photon Source (APS), Argonne National Laboratory (ANL). Pressure was determined using the equations of state for pure Fe (Dewaele et al., 2006) and Fe\(_{0.8}\)Ni\(_{0.2}\) (Mao et al., 1990). Data analysis was performed using fit2D (Hammersley, 1998), with each diffraction image integrated over 10° azimuthal intervals. A sample slice of the integrated pattern is shown in Fig. 2a. The d-spacings for the hcp phase were determined for each slice and are seen to change as a function of azimuthal angle, \(\eta \) (Fig. 2b, d). Using equations (1) and (2), values of \(Q(hkl) \) are obtained from plotting \(\varepsilon(hkl) \) vs. \((1-3\cos^2 \psi) \). Strength was calculated using equation (3) where \(G \) is obtained from Lin (2003) for Fe\(_{0.88}\)Ni\(_{0.12}\), and Kantor et al. (2007) for Fe\(_{0.8}\)Ni\(_{0.2}\).

3. Results and discussion

Strength measurements were collected up to 47 GPa for Fe\(_{0.88}\)Ni\(_{0.12}\) and 70 GPa for Fe\(_{0.8}\)Ni\(_{0.2}\). Fe\(_{0.88}\)Ni\(_{0.12}\) completed a transition to the hcp structure at 20 GPa and steadily increased in strength from 2.0 GPa to 2.8 GPa between 21 and 47 GPa. Fe\(_{0.8}\)Ni\(_{0.2}\) made a complete transition to hcp at 35 GPa. Strength measurements were collected up to 70 GPa and are seen to increase from 1.6 to 4.2 GPa (Table 1). Fig. 3 shows a comparison of the different strength measurements for Fe\(_{0.88}\)Ni\(_{0.12}\), Fe\(_{0.8}\)Ni\(_{0.2}\), and hcp Fe (Gleason and Mao, 2013). We found that over the same pressure range (~20–50 GPa), the strength of Fe\(_{0.88}\)Ni\(_{0.12}\) is approximately 6% higher than pure Fe, while the rate of increase in strength with increasing pressure for both materials is very similar. Fe\(_{0.8}\)Ni\(_{0.2}\) starts at comparable strength values to pure Fe and Fe\(_{0.88}\)Ni\(_{0.12}\) from 35 to 50 GPa, but increases in strength at higher pressures (54–70 GPa). At 65 GPa, Fe\(_{0.8}\)Ni\(_{0.2}\) is stronger than pure Fe by ~25%. Reflecting this, Fe\(_{0.8}\)Ni\(_{0.2}\)'s \(\Delta T \) is larger at 0.066 than both Fe\(_{0.88}\)Ni\(_{0.12}\) and Fe, whose values are 0.025 and 0.017 respectively.

We extrapolated our results to inner core pressures and temperatures using the Steinberg-Guinan model (Steinberg et al., 1980):

\[
G(P, T) = G_0 + \frac{\Delta G}{\Delta P} \left(\frac{P}{P_0} \right)^{1/3} + \frac{\Delta G}{\Delta T} (T-300)
\]

(4)

where \(\rho \) is density. First we solve for \(\Delta G/\Delta T \) by setting \(G(P, T) \) and \(\rho \) to a range of Preliminary Reference Earth Model (PREM) values corresponding to outermost \(P = 329 \text{ GPa} \) and center \(P = 364 \text{ GPa} \) of the inner core where \(G(P, T) = 157 \text{ GPa} \) or 176 GPa and \(T = 5500 \) and 6200 K respectively. \(G_0, \Delta G/\Delta P, \) and \(\Delta G/\Delta T \) are experimental values taken from Lin (2003) and Kantor et al. (2007). High pressure and temperature \(Q(hkl) \) is taken from a linear extrapolation and used to calculate \(t \). Fig. 4 shows the results of these extrapolations at fixed pressures of 329 GPa and 364 GPa from 3000 K to 6000 K. We find that with increasing nickel content at inner core conditions both compositions would likely exhibit higher strength than pure Fe. Increasing temperature decreases the strength for all compounds, decreasing the most for Fe\(_{0.8}\)Ni\(_{0.2}\) and additionally diminishes the difference between them. A comparison for the estimated strength values at the center of the inner core are summarized in Table 2. We note that while we found that nickel can have a dramatic effect on the strength of iron over the pressure range we investigated, our extrapolation to inner core conditions requires assumptions about how our measured values will continue to change with increasing pressure and at high temperature, thus highlighting the need for future experiments at core conditions.

Our work supports the assertion that dislocation creep dominates the majority of the inner core. Creep is the tendency for a material to plastically deform when subjected to long-term exposure to differential stress and is therefore directly related to its strength. Plastic deformation can occur through a variety of mechanisms (Poirier, 1985), however all involve the motion of dislocations, point defects and grain boundaries. The common mechanisms thought to be operating within...
the core include: diffusion creep caused by stress-induced diffusion of atoms, dislocation creep caused by thermally activated motion of dislocations and grain boundary processes where deformation occurs mainly at grain boundaries (Merkel et al., 2016). According to Reaman et al. (2011) the very top of the inner core, where grain sizes are small, experiences diffusion creep, while the majority of the inner core, where increasing depth leads to increasing grain size and decreasing stress and strain rates, dislocation creep will dominate. Material strength will impact both mechanisms but will have an order of magnitude larger effect on dislocation mobility. Strength measurements can be related to the dislocation velocity through combining

\[
v(\tau,T) = \frac{v_0 a b L}{w^2} \exp\left(\frac{-\Delta H_0}{kT}\right) \sinh\left(\frac{\Delta H_0 - \Delta H(\tau)}{kT}\right)
\]

(5)
and

\[\Delta H(\tau) = \Delta H_0 \left[1 - \left(\frac{\tau}{\tau_p} \right)^{3/4} \right]^{4/3} \] \hspace{1cm} (6)

where \(v(\tau,T) \) is the dislocation velocity, \(\nu_0 \) is the Debye frequency, \(a' \) is the Peierls barrier width, \(b \) is the Burgers vector, \(L \) is the length of the dislocation, \(w \) is the width of kink pairs, \(\tau \) is the applied stress, \(\Delta H \) is the activation enthalpy, and \(k \) is the Boltzmann constant. \(\tau_p \) is the Peierls stress, which measures the intrinsic lattice friction opposed to plastic shear (Nabarro, 2003, 2004). Setting \(\tau_p \) equal to \(\tau \), showing how dislocation velocity scales with strength, we find dislocation velocity rates for inner core conditions (\(\tau_p = 2.4 \text{ GPa}, 6200 \text{ K} \)) that are between \(10^{-4} \text{ m/s} \) and \(10^{-5} \text{ m/s} \), which are on the order of previous studies (Cordier et al., 2012; Gleason and Mao, 2013). Representative uncertainties for both compositions at \(\tau \text{P} \text{ pressure at 5500 K are shown at the top right.} \)

Acknowledgements

M.M. Reagan, A.E. Gleason, and W.L. Mao are supported by the NSF Geophysics Program (EAR-1446969); and LANL LDRD for Gleason. M. J. Krawczyński was supported by NASA grant NNX15AJ25G. We thank Changyong Park (APS), Martin Kunz (ALS), and Jinyuan Yan (ALS) for their assistance with the synchrotron experiments. Portions of this work were performed at beamline 12.2.2 of ALS, LBNL. ALS is supported by the Director, Office of Science, Office of Basic Energy Sciences (BES), of the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231. Portions of this work were also performed at HPCAT (Sector 16), APS, ANL. HPCAT operations are supported by DOE-NNSA approximately 4 GPa at the conditions in the center of our planet (Fig. 5). This is \(\sim 125\% \) greater than pure Fe at the same conditions. Future work should examine a wider variety of compositions (e.g., considering Ni with other light elements) to higher pressures and temperatures. While knowledge of the strength of FeNi alloys is not enough to fully constrain the inner core’s rheology, our data suggests that increasing Ni content in hcp Fe increases the material’s strength although most likely not enough to change the dominant deformation mechanism.

Table 1

<table>
<thead>
<tr>
<th>Sample</th>
<th>Pressure (GPa)</th>
<th>Strength (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe_{0.88}Ni_{0.12}</td>
<td>21 (± 0.1)</td>
<td>2.0 (± 0.2)</td>
</tr>
<tr>
<td></td>
<td>24 (± 0.1)</td>
<td>2.5 (± 0.5)</td>
</tr>
<tr>
<td></td>
<td>29 (± 0.2)</td>
<td>2.6 (± 0.3)</td>
</tr>
<tr>
<td></td>
<td>43 (± 0.3)</td>
<td>2.8 (± 0.5)</td>
</tr>
<tr>
<td></td>
<td>47 (± 0.3)</td>
<td>2.8 (± 0.2)</td>
</tr>
<tr>
<td>Fe_{0.8}Ni_{0.2}</td>
<td>39 (± 0.4)</td>
<td>2.6 (± 0.8)</td>
</tr>
<tr>
<td></td>
<td>43 (± 0.4)</td>
<td>2.4 (± 0.8)</td>
</tr>
<tr>
<td></td>
<td>51 (± 0.5)</td>
<td>2.8 (± 0.3)</td>
</tr>
<tr>
<td></td>
<td>53 (± 0.6)</td>
<td>3.0 (± 0.2)</td>
</tr>
<tr>
<td></td>
<td>57 (± 0.5)</td>
<td>4.0 (± 0.8)</td>
</tr>
<tr>
<td></td>
<td>60 (± 0.6)</td>
<td>4.1 (± 0.8)</td>
</tr>
<tr>
<td></td>
<td>64 (± 0.7)</td>
<td>3.5 (± 0.5)</td>
</tr>
<tr>
<td></td>
<td>69 (± 0.7)</td>
<td>4.2 (± 0.4)</td>
</tr>
<tr>
<td></td>
<td>70 (± 0.7)</td>
<td>4.0 (± 0.3)</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Sample</th>
<th>dG/dt (GPa)</th>
<th>TIC Strength, (\tau) (GPa)</th>
<th>CIC Strength, (\tau) (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>−0.10</td>
<td>1.8</td>
<td>−0.09</td>
</tr>
<tr>
<td>Fe_{0.88}Ni_{0.12}</td>
<td>−0.06</td>
<td>5.7 (± 11.0)</td>
<td>−0.05</td>
</tr>
<tr>
<td>Fe_{0.8}Ni_{0.2}</td>
<td>−0.09</td>
<td>8.3 (± 10.1)</td>
<td>−0.08</td>
</tr>
</tbody>
</table>

Fig. 3. A comparison of the strengths of pure Fe, Fe_{0.88}Ni_{0.12}, and Fe_{0.8}Ni_{0.2} at high pressure and room temperature. Trend for pure Fe was calculated from Gleason and Mao, 2013 (black line). Dotted lines are linear fits for Fe_{0.88}Ni_{0.12} (red) and Fe_{0.8}Ni_{0.2} (blue). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Steinberg-Guinan temperature extrapolation (Steinberg et al., 1980) for pure Fe (Gleason and Mao, 2013), Fe_{0.88}Ni_{0.12}, and Fe_{0.8}Ni_{0.2}. Strength calculations were based on the center of the inner core (CIC); 364 GPa and 6200 K, to top of the inner core (TIC) conditions; 329 GPa and 6200 K. Representative uncertainties for both compositions at TIC pressure at 5500 K are shown at the top right.
Fig. 5. Extrapolated strength values of hcp FeNi alloys with varying Ni content at the center of the core (364 GPa, 6200 K) conditions. Values from Gleason and Mao (2013) (black circle) and this study (red and blue circles). Green star is the estimated value for a likely inner core composition of 5.5% Ni. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

under Award No. DE-AC02-06CH11357.

References

Mao, H.K., Yu, Y., Chen, L.C., Shu, J.F., 1990b. Static compression of iron to 300 GPa and Fe0.5Ni0.5 alloy to 260 GPa – implications for composition of the core. J. Geophys. Res. 95 (B13), 21737. doi.org/10.1029/JB095iB13p21737.

Mao, H.K., Yu, Y., Chen, L.C., Shu, J.F., Jephcoat, P., 1990a. Static compression of iron to 300 GPa and Fe0.5Ni0.5 alloy to 260 GPa: Implication for composition of the core. J. Geophys. Res. 95 (90), 737–742.

