
Towards Improving the Expressivity and Scalability of
Distributed Constraint Optimization Problems

William Yeoh
Department of Computer Science and Engineering

Washington University in St. Louis
wyeoh@wustl.edu

Abstract
Constraints have long been studied in centralized
systems and have proven to be practical and ef-
ficient for modeling and solving resource alloca-
tion and scheduling problems. Slightly more than
a decade ago, researchers proposed the distributed
constraint optimization problem (DCOP) formula-
tion, which is well suited for modeling distributed
multi-agent coordination problems. In this paper,
we highlight some of our recent contributions that
are aiming towards improved expressivity of the
DCOP model as well as improved scalability of the
accompanying algorithms.

1 Introduction
In a distributed constraint optimization problem (DCOP),
agents need to coordinate the assignments of values to their
variables in such a way that maximizes their aggregated util-
ities [Modi et al., 2005; Petcu and Faltings, 2005a]. They
are well suited for modeling multi-agent coordination prob-
lems where the primary interactions are between local sub-
sets of agents, such as in meeting scheduling [Maheswaran
et al., 2004b], sensor networks [Farinelli et al., 2014], multi-
robot coordination [Zivan et al., 2015], coalition formation
[Ueda et al., 2010], smart grid [Kumar et al., 2009; Fioretto
et al., 2017b], and smart home automation [Rust et al., 2016;
Fioretto et al., 2017a] problems.

When DCOPs were introduced slightly more than a decade
ago, research efforts were initially focused on the investiga-
tion of different algorithmic paradigms to solve the problem,
including exact search-based methods [Modi et al., 2005;
Gershman et al., 2009; Yeoh et al., 2010; Gutierrez et
al., 2011], exact inference-based methods [Petcu and Falt-
ings, 2005a; Vinyals et al., 2011], approximate search-based
methods [Maheswaran et al., 2004a; Zhang et al., 2005;
Zivan et al., 2014], approximate inference-based methods
[Farinelli et al., 2014; Zivan and Peled, 2012], and approx-
imate sampling-based methods [Ottens et al., 2017].

Since then, the field has substantially matured and re-
searchers have begun to propose generalizations to the model
and algorithms to better capture and exploit characteristics
of more complex applications. The goal of this paper is to
briefly highlight our recent contributions in this area. We

refer readers to our overview and survey articles [Yeoh and
Yokoo, 2012; Fioretto et al., 2018a] for a more comprehen-
sive perspective on the state of the art of DCOPs.

2 DCOP Model
A distributed constraint optimization problem (DCOP) [Modi
et al., 2005] is a tuple 〈A,X,D,F, α〉, where:
• A = {ai}pi=1 is a set of agents;
• X = {xi}ni=1 is a set of decision variables;
• D = {Dx}x∈X is a set of finite domains and each variable
x ∈ X takes values from the set Dx ∈ D;

• F = {fi}ki=1 is a set of constraints, each defined over a set
of decision variables: fi :

∏
x∈xfi Dx → R+

0 ∪ {−∞},
where infeasible configurations have −∞ utility, xfi ⊆ X
is the scope of fi; and

• α : X → A is a function that associates each decision
variable to one agent.

The goal is to find an optimal solution x∗ = argmaxx F(x),
where F(x) is the sum of utilities across all constraints.

3 Our Recent Contributions
We now briefly highlight several key contributions that we
have made in this area.

3.1 Hierarchical Decomposition for DCOPs
In most complex distributed multi-agent applications, each
agent typically needs to solve complex local subproblems
[Kim and Lesser, 2013; Giuliani et al., 2014; Amigoni et
al., 2015]. While these complex local structures can be cap-
tured by the regular DCOP model, through allowing an agent
to control multiple variables, unfortunately, many DCOP al-
gorithms commonly assume that each agent controls only
one variable. To cope with such restrictions, reformula-
tion techniques are commonly used to transform a regular
DCOP into one where each agent controls exclusively one
variable. There are two commonly used reformulation tech-
niques [Burke and Brown, 2006; Yokoo, 2001]: (i) Compila-
tion, where each agent creates a new pseudo-variable, whose
domain is the Cartesian product of the domains of all vari-
ables of the agent; and (ii) Decomposition, where each agent
creates a pseudo-agent for each of its variables. While both
techniques are relatively simple, they can be inefficient. In



compilation, the memory requirement for each agent grows
exponentially with the number of variables that it controls. In
decomposition, the DCOP algorithms will treat two pseudo-
agents as independent entities, resulting in unnecessary com-
putation and communication costs.

Therefore, we proposed a novel decomposition method,
called multi-variable agent (MVA) decomposition, to over-
come these limitations [Fioretto et al., 2016b]. Our MVA
decomposition enables a separation between the agents’ lo-
cal subproblems, which can be solved independently using
centralized solvers, and the DCOP global problem, which re-
quires coordination between the agents. Thus, it enables the
use of different centralized and distributed solvers in a hi-
erarchical and parallel way, where different agents can even
use different centralized solvers that exploit their local sub-
problem structures for efficiency gains. Not surprisingly, our
experimental results show that DCOP algorithms using our
MVA decomposition have reduced computation and commu-
nication costs compared to using the compilation and decom-
position methods.

3.2 Linear-space Sampling-based Algorithm
Distributed UCT (DUCT) [Ottens et al., 2017] is the first
sampling-based DCOP algorithm that was introduced. Un-
fortunately, its memory requirement per agent is exponen-
tial in the number of agents in the problem, which prohibits
it from some multi-agent applications like sensor networks,
where agents may have a very limited amount of memory.
In response to this limitation, we proposed the Distributed
Gibbs algorithm [Nguyen et al., 2013], which extends upon
the (centralized) Gibbs algorithm [Geman and Geman, 1984],
which is used to solve maximum a posteriori (MAP) estima-
tion problems in graphical models.

To do this, we first showed that one can map DCOPs to
MAP estimation problems [Kumar et al., 2011], where DCOP
variables and constraints correspond to random variables and
potential functions of MAP estimation problems. Then, any
algorithm that solves MAP estimation problems can theoret-
ically be used to solve DCOPs as well. However, as DCOP
algorithms must be distributed and agent oriented, MAP es-
timation algorithms, which are typically centralized, cannot
be directly applied to solve DCOPs. Thus, we extended the
well-known Gibbs algorithm to a distributed, agent-oriented
version to solve DCOPs. A key property of this algorithm is
that its memory requirement per agent is linear in the number
of agents in the problem in contrast to DUCT’s exponential
memory requirement.

3.3 Exploiting Parallelism using GPUs
Sampling-based DCOP algorithms, such as Distributed
Gibbs, perform a significant number of sampling operations
that are conditionally-independent operations. As such, in-
stead of performing these sampling operations sequentially,
they can be done in parallel and sped up through the use of
graphical processing units (GPUs) [Fioretto et al., 2016a].
We further show that when Distributed Gibbs is used in con-
junction with the MVA decomposition, we can achieve fur-
ther speedups as the local subproblems within each agent

can also be sampled in parallel [Fioretto et al., 2016b]. Fi-
nally, we also show that other inference-based DCOP algo-
rithms like DPOP can also be sped up through the use of
GPUs, as the computation of utility tables that are propa-
gated between agents can be decomposed into conditionally-
independent operations [Fioretto et al., 2018b].

The main challenge in this line of work is to parallelize the
algorithms in such a way that optimizes the speedup from
using GPUs. While it is relatively simple to develop cor-
rect programs (e.g., by incrementally modifying a sequen-
tial program), it is nevertheless challenging to design an ef-
ficient solution. Several factors are critical in gaining perfor-
mance. Memory levels have significantly different sizes and
access times, and various optimization techniques are avail-
able (e.g., accesses to consecutive global memory locations
by contiguous threads can be coalesced into a single memory
transaction). Thus, optimization of these programs requires a
thorough understanding of GPU hardware characteristics.

3.4 Constraint Propagation for DCOPs
Constraint propagation [Mohr and Henderson, 1986] is a
commonly used technique, especially in the constraint pro-
gramming community, to speed up the search for solutions in
constraint-based models. The key idea is that one can prune
portions of the search space if they do not satisfy some sub-
set of hard constraints (i.e., constraints that must be satis-
fied) in the problem. Motivated by their success in central-
ized constraint-based models, we proposed a new constraint
propagation technique that is tailored for DCOP inference al-
gorithms that use pseudo-trees. Our new branch consistency
approach [Fioretto et al., 2014] can be viewed as a generaliza-
tion of the more traditional arc consistency and a weaker ver-
sion of path consistency [Mohr and Henderson, 1986], where
it is customized for distributed operations of agents that can
communicate only with neighboring agents.

Instead of designing specialized constraint propagation
techniques, one can also leverage the advances made by other
communities to automatically propagate constraints. Towards
this end, we proposed the use of answer set programming
(ASP), developed by the logic programming community, in
solving DCOPs [Le et al., 2015; 2017]. When constraint util-
ities are described in functional form, they can be compactly
represented as ASP rules and propagated between agents ef-
ficiently, resulting in improved scalability through reduced
runtimes and reduced communication overheads. This line
of work is especially promising as continuous advancements
made by the logic programming community can be automat-
ically adopted to solve DCOPs with little effort.

3.5 Dynamic and Uncertain DCOPs
All our contributions described above are in the context of
solving regular DCOPs. However, many multi-agent coordi-
nation problems change dynamically over time and with un-
certainty. Early efforts in modeling such dynamic DCOPs
have been to represent them as sequences of regular DCOPs,
with changes between subsequent problems, and the goal is
to solve each individual DCOP optimally [Petcu and Falt-
ings, 2005b]. As changes between subsequent DCOPs can be
small, a large portion of the problem will remain unchanged



and, consequently, a large portion of the solution to the pre-
vious problem can be reused. With this observation in mind,
we proposed incremental search-based approaches that iden-
tify and reuse such reusable portions, and focus their search
efforts on solving the portion of the problem that changed
[Yeoh et al., 2015]. Results show that the speedup obtain is,
not surprisingly, correlated with the size of the reusable por-
tion of the previous solution.

In problems where only the constraint utilities change (the
agents, variables, domains, scope of constraints, etc. remain
unchanged), one can model the changes in utilities as a func-
tion of an underlying state that changes over time. For ex-
ample, in a sensor network application, a dynamically chang-
ing phenomena that the network is trying to observe can be
represented as an underlying state that changes over time.
To solve these problems, called Markovian dynamic DCOPs,
we proposed distributed reinforcement learning algorithms
that learn the underlying state transition function and, con-
sequently, the resulting constraint utilities, thereby allowing
them to find good solutions over time [Nguyen et al., 2014].
Finally, when the state transitions functions are known or
can be estimated a priori, we proposed proactive DCOP al-
gorithms that take them into account when searching for so-
lutions [Hoang et al., 2016; 2017].

3.6 Preference Elicitation for DCOPs
Existing DCOP algorithms typically assume that all con-
straint utilities are fully specified a priori as they are provided
as part of the problem definition. However, this assump-
tion does not hold in some applications such as smart home
scheduling problems [Fioretto et al., 2017a], where the utili-
ties of some constraints represent user preferences and should
thus be elicited from users. With this motivation in mind,
we proposed the preference elicitation problem for DCOPs,
which partitions the constraints into constraints with known
utilities and constraints with unknown utilities that must ei-
ther be elicited or approximated [Tabakhi et al., 2017]. We
then proposed several heuristics, including one based on min-
imax regret, to solve this problem.

Following up on this initial work, we also investigated the
use of matrix completion algorithms to identify which subset
of utilities to elicit in order to best approximate the remaining
unelicited utilities [Le et al., 2018]. Further, we model the
cognitive bother cost of the user associated with providing
the elicited utilities, and optimize the sequence of questions
to ask users such that the total bother cost is within some pre-
defined threshold. While both approaches are described for
general models, they were evaluated in the context of smart
home automation problems, where we show that they perform
better than random baseline methods.

3.7 Variable-to-Agent Mappings for DCOPs
Finally, the conventional DCOP model assumes that the map-
ping of variables to agents is part of the model description
and is thus given as an input. This assumption is reasonable
in many applications where there are obvious and intuitive
mappings. For example, in a smart home scheduling problem,
agents correspond to the different smart homes, and variables
correspond to the different smart devices within each home.

In this case, the agent controls all the variables that map to
the devices in its home. However, in other applications, there
may be more flexibility in the mapping of variables to agents.
For example, imagine an application where a team of un-
manned aerial vehicles (UAVs) need to coordinate with each
other to effectively survey an area. In this application, agents
correspond to UAVs and variables correspond to the differ-
ent zones in the area to be surveyed. The domain for each
variable may correspond to the different types of sensors to
be used and/or the different times to survey the zone. Since
a UAV can survey any zone, there are multiple possible as-
signments of zones to UAVs (i.e., there are multiple possible
mappings of variables to agents).

While choosing a good mapping is important as it can have
a significant impact on an algorithm’s runtime, choosing an
optimal mapping may be prohibitively time consuming as this
is an NP-hard problem [Rust et al., 2016]. Considering these
issues, coupled with the fact that this step is only a prepro-
cessing step prior to the execution of the actual DCOP al-
gorithm, we developed a generic heuristic-based algorithm
that can be executed in a centralized or decentralized manner
[Khan et al., 2018]. At a high level, the algorithm uses For-
tune’s algorithm [Fortune, 1987] to partition the DCOP graph
into p partitions, where p is the number of agents in the prob-
lem, in such a way where the number of high-degree nodes
(i.e., variables that are in the scopes of large numbers of con-
straints) is balanced across all partitions. Surprisingly, our
experimental results show that our heuristic-based approach
finds mappings that result in runtimes that are only within
10% of the runtimes found with optimal mappings for GDL-
based DCOP algorithms on random and scale-free graphs.

4 Conclusions and Future Directions
While the theoretical foundations and algorithmic improve-
ments for conventional DCOPs have matured significantly
over the past decade, their deployment to realistic applica-
tions is unfortunately lagging. To make this transition, we hy-
pothesize that researchers will need to make further progress
in generalizing the conventional DCOP model, adapting it to
specific applications, and, most importantly, developing effi-
cient algorithms for the corresponding extensions. Our efforts
described in this paper are motivated by this belief. Other
promising directions include investigations in the intersection
of DCOPs and game theory, such as the work by Chapman et
al. [2008], and the use of machine learning techniques for
DCOPs, such as the work by Kumar and Zilberstein [2011]
and Ghosh et al. [2015]. Additionally, orthogonal to any-
time [Zivan et al., 2014] and any-space algorithms [Petcu
and Faltings, 2007; Yeoh et al., 2009], any-communication
algorithms (i.e., algorithms that adapt the number, size, and
content of messages sent between agents based on the de-
gree of congestion in the network) should also be of interest,
especially in applications with potentially degraded commu-
nication channels.
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