New Algorithms for Continuous Distributed Constraint Optimization Problems

Khoi D. Hoang
Washington University in St. Louis, USA
khoi.hoang@wustl.edu

Makoto Yokoo
Kyushu University, Japan
yokoo@inf.kyushu-u.ac.jp

William Yeoh
Washington University in St. Louis, USA
wyeoh@wustl.edu

Zinovi Rabinovich
Nanyang Technological University, Singapore
zinovi@ntu.edu.sg

ABSTRACT
Distributed Constraint Optimization Problems (DCOPs) are a powerful tool to model multi-agent coordination problems that are distributed by nature. The formulation is suitable for problems where variables are discrete and constraint utilities are represented in tabular form. However, many real-world applications have variables that are continuous and tabular forms thus cannot accurately represent constraint utilities. To overcome this limitation, researchers have proposed the Continuous DCOP (C-DCOP) model, which are DCOPs with continuous variables. But existing approaches usually come with some restrictions on the form of constraint utilities and are without quality guarantees. Therefore, in this paper, we (i) propose an exact algorithm to solve a specific subclass of C-DCOPs; (ii) propose an approximation method with quality guarantees to solve general C-DCOPs; (iii) propose additional C-DCOPs that are more scalable; and (iv) empirically show that our algorithms outperform existing state-of-the-art C-DCOP algorithms when given the same communication limitations.

KEYWORDS
Distributed Problem Solving; Distributed Constraint Optimization

1 INTRODUCTION
The Distributed Constraint Optimization Problem (DCOP) [9, 28, 31] formulation is a powerful tool to model cooperative multi-agent problems. DCOPs are well-suited to model many problems that are distributed by nature and where agents need to coordinate their value assignments to maximize the aggregate constraint utilities. DCOPs are widely employed to model distributed problems such as meeting scheduling [17, 26], sensor and wireless network coordination [8, 39], multi-robot coordination [44], smart home automation [11, 32], and cloud computing applications [20]. Recent advances improve the state of the art [1, 2, 4, 5, 10, 18, 21, 22, 24, 29, 30, 40, 42]; solve extensions like Asymmetric DCOPs [6, 7, 37, 43] and Dynamic DCOPs [17, 19]; and improve key metrics like privacy [14, 15, 35, 36]. Typically, DCOPs assume that the variables are discrete and the constraint utilities are represented in tabular form (i.e., a utility is defined for every combination of discrete values of variables). While these assumptions are reasonable in some applications where values of variables correspond to a set of discrete possibilities (e.g., the set of tasks of robots in multi-robot coordination), they make less sense in applications where values of variables correspond to a continuous range of possibilities (e.g., the range of sensor orientations in sensor networks or the range of frequencies in wireless networks).

These limitations have prompted Stranders et al. [33] to propose Continuous DCOPs (C-DCOPs), which extend DCOPs to allow for continuous variables. As variables can now take values from a continuous range, constraint utilities are also extended from tabular forms to functional forms. Approaches to solve C-DCOPs include Continuous MS (CMS) [33], Hybrid CMS (HCMS) [38], Particle Swarm Based Functional DCOP (PFD) [3], and Bayesian DPOP (B-DPOP) [13]. Both CMS and HCMS extend the discrete Max-Sum (MS) algorithm [8], where CMS approximate utility functions with piecewise linear functions and HCMS combines the discrete MS algorithm with continuous non-linear optimization methods. On the other hand, PFD uses particle swarm optimization techniques and B-DPOP combines the Bayesian optimization framework with Distributed Pseudo-tree Optimization Procedure (DPOP) [31] to solve C-DCOPs. A key limitation of the first three algorithms is that they do not provide quality guarantees on the solutions found. B-DPOP does guarantee that it will eventually converge to the global optimum for Lipschitz-continuous objective functions, but do not provide guarantees on intermediate solutions prior to convergence.

To overcome this limitation, we extend the inference-based DPOP algorithm to three extensions – Exact Continuous DPOP (EC-DPOP), Approximate Continuous DPOP (AC-DPOP); and Clustered AC-DPOP (CAC-DPOP). We also extend the search-based Distributed Stochastic Algorithm (DSA) [41] to Continuous DSA (C-DSA). While EC-DPOP provides an exact approach to solve C-DCOPs with linear or quadratic utility functions and are defined over tree-structured graphs, AC-DPOP, CAC-DPOP, and C-DSA solve C-DCOPs approximately with any smooth, differentiable utility functions and without restriction on graph structure. We also

1As we consider both convex and non-convex functions, optimization methods such as sub-gradient, interior-point and ellipsoid methods are not applicable. Even in the case that we deal with binary quadratic functions, we assume they can be either concave or convex.
provide theoretical properties on the error bounds of AC-DPOP and communication complexities of AC-DPOP, CAC-DPOP, and C-DSA. Finally, we show that these algorithms outperform HCMS in randomly generated instances when given the same communication limitations.

2 BACKGROUND

We now provide background on DCOPs as well as DPOP and DSA, which we extend later to solve Continuous DCOPs.

DCOPs: A Distributed Constraint Optimization Problem (DCOP) [9, 28, 31] is a tuple \((A, X, D, F, \alpha)\), where

- \(A = \{a_i\}_{i=1}^n\) is a set of agents.
- \(X = \{x_i\}_{i=1}^n\) is a set of variables.
- \(D = \{D_x\}_{x \in X}\) is a set of finite domains and each variable \(x \in X\) takes values from the set \(D_x\).
- \(F = \{f_i\}_{i=1}^m\) is a set of utility functions, each defined over a set of variables: \(f_i : \prod_{x \in X} D_x \rightarrow \mathbb{R} \cup \{-\infty\}\), where infeasible configurations have \(-\infty\) utilities and \(x^f_i \subseteq X\) is the scope of \(f_i\).
- \(\alpha : X \rightarrow A\) is a mapping function that associates each variable to one agent.

In this paper, we assume that each agent controls exactly one variable and thus use the terms “agent” and “variable” interchangeably. We also assume that all utility functions are binary functions between two variables.

A **solution** \(\sigma\) is a value assignment for a set \(x_\sigma \subseteq X\) of variables that is consistent with their respective domains. The utility \(F(\sigma) = \sum_{f \in F, \alpha(f) \subseteq \sigma} f(\sigma)\) is the sum of the utilities across all the applicable utility functions in \(\sigma\). A solution \(\sigma\) is complete if \(x_\sigma = X\). The goal is to find an optimal complete solution \(x_\sigma^* = \arg\max_x F(x)\).

A **constraint graph** visualizes a DCOP, where nodes in the graph correspond to variables in the DCOP and edges connect pairs of variables appearing in the same utility function. A **pseudo-tree arrangement** has the same nodes and edges as the constraint graph and satisfies that (i) there is a subset of edges, called tree edges, that form a rooted tree and (ii) two variables in a utility function appear in the same branch of that tree. The other edges are called backedges. Tree edges connect parent-child nodes, while backedges connect a node with its pseudo-parents and its pseudo-children.

DPOP: Distributed Pseudo-tree Optimization Procedure (DPOP) [31] is a complete inference algorithm that is composed of three phases:

- **Pseudo-tree Generation:** In this phase, all agents start building a pseudo-tree [16] (line 1).
- **UTIL Propagation:** Each agent, starting from the leaves of the pseudo-tree, computes the optimal sum of utilities in its subtree for all variables in its separator.\(^2\) It does so by adding the utilities of its functions with the variables in its separator and the utilities in the UTIL messages received from its children (line 5). The agent then projects out its variable (line 7) and sends the projected function in a UTIL message to its parent (line 8).
- **VALUE Propagation:** Each agent, starting from the root of the pseudo-tree, determines the optimal value for its variable and then sends the optimal value to its children and pseudo-children.

\(^2\)The separator of \(x_i\) contains all ancestors of \(x_i\) in the pseudo-tree that are connected to \(x_i\) or to one of its descendants.

Algorithm 1: DPOP()

1. \(T_i \leftarrow \text{PseudotreeGeneration}()\)
2. UTIL-Propagation\((T_i)\)
3. VALUE-Propagation\((T_i)\)

Procedure UTIL-Propagation\((T_i)\)

4. receive UTIL\(_i\)(\(f_i\)) from each \(a_c \in \text{Children}_i\)
5. \(f_{\text{agent_view}} \leftarrow \text{Add}\left(\frac{f_i}{a_c \in \text{separator}}, f_j\right)\)
6. if isRoot() is False then
7. \(f_{p_i} \leftarrow \text{Project}(f_{\text{agent_view}}, x_i)\)
8. send UTIL\(_i\)(\(f_{p_i}\)) msg to Parent\(_i\)

Procedure VALUE-Propagation\((T_i)\)

9. if isRoot() then
10. \(v_i \leftarrow \arg\max_{x_i} f_i(x_i)\)
11. send VALUE\(_i\)(\(v_i\)) msg to all \(a_c \in \text{Children}_i\)
12. else
13. receive VALUE\(_j\)(\(v_j\)) msg from Parent\(_i\)
14. \(v_i \leftarrow \arg\max_{x_i} f_i(x_i, x_j = v_j, \ldots, x_{jn} = v_{jn})\)
15. send VALUE\(_i\)(\(v_i\)) msg to all \(a_c \in \text{Children}_i\)

The root agent does so by choosing the values of its variables from its UTIL computations, and send them as VALUE messages.

DSA: Distributed Stochastic Algorithm (DSA) [41] is an incomplete, synchronous search algorithm. In DSA, each agent, after initially choosing a random value, loops over a sequence of steps until the termination condition is met. In each loop, the agent exchanges the information about its latest values with all neighboring agents. Then, the agent will choose the value with the largest gain in its local utility with neighboring agents, and decide stochastically to change its assignment to the new value or keep the current value. The process repeats until the termination condition is met such as timeout or the solution quality doesn’t improve.

3 CONTINUOUS DCOP MODEL

The Continuous DCOP (C-DCOP) model generalizes the regular discrete DCOP model by modeling the variables as continuous variables [33]. It is defined by a tuple \((A, X, D, F, \alpha)\), where \(A, F, \) and \(\alpha\) are exactly as defined in DCOPs. The key differences are:

- \(X = \{x_i\}_{i=1}^n\) is now a set of continuous variables.
- \(D = \{D_x\}_{x \in X}\) is now a set of continuous domains. Each variable \(x \in X\) takes values from the interval \(D_x = [L_B, U_B]\).

The objective of a C-DCOP is the same as that of DCOPs – to find an optimal complete solution \(x_\sigma^* = \arg\max_x F(x)\).

4 C-DCOP ALGORITHMS

We now introduce four C-DCOP algorithms: Exact Continuous DPOP (EC-DPOP), Approximate Continuous DPOP (AC-DPOP), and Clustered AC-DCOP (CAC-DPOP), which are based on DPOP; and Continuous DSA (C-DSA), which is based on DSA. These algorithms
which are two EC-DPOP operations extended from the
which is an exact algorithm. EC-DPOP solves C-DCOPs that are

\[\text{ADD-Functions}(f_{pw}, g_{pw}) \]

16 Initialize a piecewise function \(h_{pw} \)
17 \((x, d) \leftarrow \text{GetCommonVariablesAndRanges}(f_{pw}, g_{pw})\)
18 \textbf{foreach} domain \(d \in d \text{ do} \)
19 \quad \textbf{foreach} \(f \in f_{pw} \text{ with domain } d_f \text{ do} \)
20 \quad \quad \textbf{foreach} \(g \in g_{pw} \text{ with domain } d_g \text{ do} \)
21 \quad \quad \quad \textbf{if} \(d \text{ is a sub-domain of } f \text{ and } g \text{ then} \)
22 \quad \quad \quad \quad \textbf{h} \leftarrow f + g
23 \quad \quad \quad d_h = d \cup d_f \cup d_g
24 \quad \quad \text{Add } h \text{ with domain } d_h \text{ to } h_{pw}\)
25 \textbf{return} \(h_{pw} \)

\[\text{PROJECT-Function}(f_{pw}, x_i) \]

26 Initialize a piecewise function \(h_{pw} \)
27 \textbf{foreach} \(f \in f_{pw} \text{ do} \)
28 \quad Solve \(\frac{\partial f}{\partial x_i} = 0 \) for closed-form solutions \(x_i = g^*(x) \)
29 \quad Compute \(g(x) = f(x) \text{ if } x = x_i \)
30 \quad Compute \(g(x) = f(x) = U.B_{x_i} \text{ if } x \neq x_i \)
31 \quad Solve \(g, \hat{g}, \text{ and } \hat{g} \text{ pairwise for intersection range set } r \)
32 \textbf{foreach} \(r \in r \text{ do} \)
33 \quad Determine either \(\hat{g} \text{, } \hat{g}, \text{ or } \hat{g} \text{ is the largest on range } r \)
34 \quad \text{Add the function with range } r \text{ to } h_{pw}\)
35 \textbf{return} \(h_{pw} \)

extend the capability of their original algorithms such that they can solve C-DCOPs with continuous variables and utility functions.

\section{4.1 Exact Continuous DPOP}

In this section, we propose \textit{Exact Continuous DPOP} (EC-DPOP), which is an exact algorithm. EC-DPOP solves C-DCOPs that are defined over tree-structured graphs with linear or quadratic utility functions. The algorithm extends the two primary operations of DPOP in the UTIL propagation phase - \textit{ADD} and \textit{PROJECT}. Those modification are modified such that they can be applied to C-DCOPs in the context of continuous variables and real-valued functions.

In the UTIL propagation phase of DPOP, each agent \textit{adds} the utilities in UTIL messages received from its children together with the utilities of constraints that the agent shares with the agents in its separator. Then, it \textit{projects} out its own variable and sends the projected utilities as a UTIL message to its parent. Both of these processes are straightforward as utility functions are represented in tabular form, thereby allowing the agents to enumerate through all possible value combinations, aggregate their corresponding utilities, and optimize over them. However, this process is more complicated in C-DCOPs, where utility functions are represented in functional form. We now describe \textit{ADD-Functions} and \textit{PROJECT-Function}, which are two EC-DPOP operations extended from the \textit{ADD} and \textit{PROJECT} operations of DPOP respectively.

\textit{ADD-Functions}: In EC-DPOP, each UTIL message contains a piecewise function that is derived from the \textit{PROJECT-Function} operation (described below). The addition of two piecewise functions is done by adding their sub-functions, which may have different domains. We will use the following two functions for illustration:

\[f_{12}(x_1, x_2) = \begin{cases} f_{12}^a & \text{if } x_1 \in [0, 4], x_2 \in [0, 6] \\ f_{12}^b & \text{if } x_1 \in [4, 10], x_2 \in [0, 6] \\ f_{12}^c & \text{if } x_2 \in [4, 10], x_2 \in [0, 6] \end{cases} \]

When adding two piecewise functions, we first identify the common variables between the two functions and create a new set of atomic ranges for the variables (line 17). For example, when adding the functions \(f_{12} \) and \(f_{23} \) above, the only common variable is \(x_2 \), and the atomic ranges for \(x_2 \) are \([0, 3], [3, 6], \) and \([6, 10]\). The ranges of the other variables remain unchanged from their original functions. We then take the Cartesian product of the range sets of all common variables and associate the appropriate function to that range. For example, adding \(f_{12} \) and \(f_{23} \) will result in \(f_{123} \) (line 18-24):

\[f_{123}(x_1, x_2, x_3) = \begin{cases} f_{12}^a + f_{23}^a & \text{if } x_1 \in [0, 4], x_2 \in [0, 3], x_3 \in [0, 7] \\ f_{12}^b + f_{23}^b & \text{if } x_1 \in [4, 10], x_2 \in [0, 3], x_3 \in [0, 7] \\ f_{12}^c + f_{23}^c & \text{if } x_1 \in [4, 10], x_2 \in [3, 10], x_3 \in [3, 7] \\ \ldots \end{cases} \]

\textit{PROJECT-Function}: Projecting out a variable \(x_i \) from a piecewise function means projecting out \(x_i \) from every sub-function \(f(x_1, x_2, \ldots, x_{i-1}, x_{i+1}, \ldots, x_k) \):

\[g(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_k) = \max_{x_i} f(x_1, x_2, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_k) \] (1)

First, we solve the following for closed-form solutions (line 28):

\[\frac{\partial f}{\partial x_i}(x_1, x_2, \ldots, x_k) = 0 \] (2)

Let \(\hat{x}_i = g^*(x_1, x_2, \ldots, x_k) \) be the solution to the above equation, one candidate function for \(g \) is (line 29):

\[g(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_k) = f(x_1, x_2, \ldots, x_{i-1}, \hat{x}_i, x_{i+1}, \ldots, x_k) \] (3)

We then compute other two candidate functions (line 30-31):

\[\hat{g} = f(x_1 = LB_{x_i}, x_1, x_{i+1}, \ldots, x_k) \] (4)

\[\hat{g} = f(x_1 = U.B_{x_i}, x_1, x_{i+1}, \ldots, x_k) \] (5)

Next, we need to find the intervals where each of the functions \(\hat{g}, \hat{g}, \) and \(\hat{g} \) is the largest (line 32-35). Those intervals are the intersections between the three functions and, thus, we solve each of the equations below to find them:

\[\hat{g}(x_1, \ldots, x_k) = \hat{g}(x_1, \ldots, x_k) \] (6)

\[\hat{g}(x_1, \ldots, x_k) = \hat{g}(x_1, \ldots, x_k) \] (7)

\[\hat{g}(x_1, \ldots, x_k) = \hat{g}(x_1, \ldots, x_k) \] (8)

The result of this process is the set of intervals where either \(\hat{g}, \hat{g}, \) or \(\hat{g} \) is the largest. The projected function \(g \) is the piecewise function that consists of \(\hat{g}, \hat{g}, \) and \(\hat{g} \) with the intervals that they are the largest in.

Unfortunately, it is not always possible to find closed-form solutions to the partial derivative in Equation (2). We discuss below two types of functions – binary linear and quadratic functions –
where it is possible to find closed-form solutions. We assume that all coefficients are non-zero.

- Binary linear functions of the form \(f(x_i, x_j) = ax_i + bx_j + c \). By following the monotonicity property of linear functions, we can find \(g(x_i) = \max_{x_i} f(x_i, x_j) \) at the two extremes:
 \[
g(x_i) = \begin{cases}
 f(x_i = LB_{x_i}, x_j) & \text{if } a > 0 \\
 f(x_i = UB_{x_i}, x_j) & \text{otherwise}
 \end{cases}
\]

- Binary quadratic functions of the form \(f(x_i, x_j) = ax_i^2 + bx_i + cx_j^2 + dx_i + ex_ix_j + f \). We first take the partial derivative and setting it to 0 to find the critical point:
 \[
 \frac{\partial f(x_i, x_j)}{\partial x_i} = 0
 \]
 \[
 \hat{x}_i = \frac{-b - ex_{ni}}{2a}
 \]

As \(\hat{x}_i \) has to belong to the interval \([LB_{x_i}, UB_{x_i}]\), we solve the inequalities below to find the range \(x_i \) as the domain of \(\hat{g}(x_i) \):
\[
LB_{x_i} \leq \frac{-b - ex_{ni}}{2a} \leq UB_{x_i}
\]

Example 1: Consider that agent \(a_1 \) projects out its variable \(x_1 \) from the sub-function \(f(x_1, x_2) \):
\[
f(x_1, x_2) = -2x_1^2 + 4x_1 + 2x_2^2 + x_2 + 7x_1x_2 - 10
\]
where \(x_1 \in [-5, 5] \) and \(x_2 \in [-10, 10] \). The agent needs to find the piecewise function \(g(x_1) = \max_{x_1} f(x_1, x_2) \). The two functions at the bounds of \(x_1 \)'s range are:
\[
\hat{g}(x_1) = f(x_1 = -5, x_2) = 2x_2^2 - 34x_2 - 80 \quad x_2 \in [-10, 10]
\]
\[
\hat{g}(x_1) = f(x_1 = 5, x_2) = 2x_2^2 + 36x_2 - 40 \quad x_2 \in [-10, 10]
\]

First, we find the critical point of \(f \) by taking the partial derivative:
\[
\frac{\partial f(x_1, x_2)}{\partial x_1} = 0
\]
\[
-4x_1 + 4 + 7x_2 = 0
\]
\[
x_1 = \frac{7x_2 + 4}{4}
\]
Since \(x_1 \in [-5, 5] \), we need to find the appropriate range of \(x_2 \):
\[
-5 \leq x_1 \leq 5
\]
\[
-5 \leq \frac{7x_2 + 4}{4} \leq 5
\]
\[
-\frac{24}{7} \leq x_2 \leq \frac{16}{7}
\]

Now, we get the function \(\hat{g}(x_2) \) at the critical point \(x_1 = \frac{7x_2 + 4}{4} \):
\[
\hat{g}(x_2) = f(x_1 = \frac{7x_2 + 4}{4}, x_2)
\]
\[
= \frac{65}{8}x_2^2 + 8x_2 - 8
\]

where \(x_2 \in [-\frac{24}{7}, \frac{16}{7}] \).

Next, we will find all intersection points of \(\hat{g}, \hat{g} \) and \(\hat{g} \) by solving them pairwise. By solving \(\hat{g} = \hat{g} \), we have:
\[
\hat{g}(x_2) = \hat{g}(x_2)
\]
\[
2x_2^2 - 34x_2 - 80 = 2x_2^2 + 36x_2 - 40
\]
\[
x_2 = -\frac{4}{7}
\]

Solving \(\hat{g} = \hat{g} \):
\[
\hat{g}(x_2) = \hat{g}(x_2)
\]
\[
2x_2^2 - 34x_2 - 80 = \frac{65}{8}x_2^2 + 8x_2 - 8
\]
\[
x_2 = -\frac{4}{7}
\]

After finding all intersection points of the three functions, we combine them with the bounds of \(x_2 \)'s range. This will result in a set of ranges: \([-10, -\frac{24}{7}], [-\frac{24}{7}, -\frac{4}{7}], [-\frac{4}{7}, \frac{16}{7}], \frac{16}{7}, 10]\). In each range, by choosing an arbitrary point and evaluating the functions \(\hat{g}, \hat{g} \), and \(\hat{g} \), we can determine which one is the largest on that range. Finally, the projection of the utility function \(f(x_1, x_2) \) is:
\[
g(x_2) = \max_{x_1} f(x_1, x_2)
\]
\[
= \max_{x_1} \left(-2x_1^2 + 4x_1 + 2x_2^2 + x_2 + 7x_1x_2 - 10\right)
\]
\[
= \left\{ \begin{array}{ll}
2x_2^2 - 34x_2 - 80, & x_2 \in [-10, -\frac{24}{7}] \\
\frac{65}{8}x_2^2 + 8x_2 - 8, & x_2 \in [-\frac{24}{7}, -\frac{4}{7}] \\
\frac{65}{8}x_2^2 + 8x_2 - 8, & x_2 \in [-\frac{4}{7}, \frac{16}{7}] \\
2x_2^2 + 36x_2 - 40, & x_2 \in [\frac{16}{7}, 10]
\end{array} \right.
\]

4.2 Approximate Continuous DPOP

In general C-DCOPs, it is not always possible to find a closed-form solution to Eq. (2) (e.g., it is a multivariate equation). Therefore, an approximation approach is desired for C-DCOPs.

In this section, we introduce Approximate Continuous DPOP (AC-DPOP), which is an approximation algorithm that can solve C-DCOPs without any restriction on the functional form of the constraint utilities. AC-DPOP is similar to DPOP in that the algorithm has the same three phases: pseudo-tree generation, UTIL propagation, and VALUE propagation. The pseudo-tree generation phase is identical to that of DPOP, and the UTIL and VALUE propagation phases share some similarities.

We now describe how these two propagation phases work at a high level. In the UTIL propagation phase, like DPOP, agents in AC-DPOP first discretizes the domains of variables and sends up UTIL tables that contain utilities for each value combination of values of separator agents. However, unlike DPOP, agents in AC-DPOP perform local optimization of these values by “moving” them along the gradients of relevant utility functions in order to improve the overall solution quality. As such, the addition and projection operators have to be updated as well. In the VALUE propagation phase, like DPOP, agents in AC-DPOP send down their best value down to their children in the pseudo-tree. However, unlike DPOP, agents in AC-DPOP may receive values of ancestors that do not map to computed utilities. As such, the agents must perform local interpolation of the utilities value in this phase.

We now describe the algorithm in more detail, where we focus on the UTIL and VALUE propagation phases of the algorithm.
Procedure AC-UTIL(\(T_i\))

if isLeaf() then
 \(V \leftarrow \text{DISCRETIZEPPDOMAIN}()\)
 \(V' \leftarrow \text{LeafMoveValues}(V)\)
 \(T_{pi} \leftarrow \text{CREATEUtilTable}(V')\)
else
 receive \(\text{Util}(T_k)\) from each \(a_e \in \text{Children}_i\)
 Add additional tuples and interpolate utilities for all \(T_e\)
 \(\text{UTIL}_i \leftarrow \text{ADD}(\sum_{a_e \in \text{Separator}_i, a_e \in \text{Children}_i} f_i^+(x_{\text{Separator}_i} \cdot T_e)\)
 \(V' \leftarrow \text{NonLeafMovePPValues}([V_2])\)
 \(T_{pi} \leftarrow \text{INTERPOLATE}(V', \text{UTIL}_i)\)
send \(\text{Util}(T_{pi})\) to Parent\(i\)

UTIL Propagation: In this phase, each leaf agent first discretizes the domains of agents in its separator (i.e., its parent and pseudo-parents) and then stores the Cartesian product of these discrete values in set \(V\) (line 38). Therefore, each element \(v \in V\) is a tuple \((v_{i_1}, \ldots, v_{i_k})\), where \(v_{i_j}\) is the value of separator agent \(a_{i_j}\).

Then, for each tuple \(v \in V\), the agent “moves” each value \(v_{i_j}\) in the tuple along the gradient of each function that is relevant to agent \(a_{i_j}\) (line 39). Specifically, the agent updates value \(v_{i_j}\) for each separator agent \(x_{i_j}\) of the leaf agent \(x_i\):

\[
v_{i_j} = v_{i_j} + \alpha \frac{\partial f_{i_j}(x_i, x_{i_j})}{\partial x_{i_j}} \cdot \argmax_{v_{i_j}} U_{i_j}(x_i, v_{i_1}, \ldots, v_{i_k})
\]

where \(f_{i_j}(x_i, x_{i_j})\) is the utility function between the leaf agent \(x_i\) and the separator agent \(x_{i_j}\), and \(\alpha\) is the learning rate of the algorithm. The agent “moves” the values until they have either converged or a maximum number of iterations is reached. Then, the updated values in \(V'\) and their corresponding utilities define the UTIL table that is sent to the parent agent in a UTIL message (line 40).

As in DPOP, each non-leaf agent will first wait for the UTIL messages from each of its children. When all the UTIL messages are received, the agent processes the UTIL tables in the UTIL message from each child. Note that in regular DPOP, the CARTESIAN product of the values of agents are consistent across the UTIL tables of all children (i.e., if the values of an agent \(a\) exists in the CARTESIAN product of two children, then those values are identical). The reason is because all agents agree on the discretization of the domain of agent \(a\) and do not update the value of that agent (such as through Eq. (13)). Therefore, each agent can easily add up the utilities in the UTIL tables received together with the utilities of constraints between the agent and its separator.

In contrast, since the values of agents are updated according to Eq. (13) in AC-DPOP, these values may no longer be consistent across different UTIL tables received. To remedy this issue, each agent first adds additional tuples to each UTIL table received such that the CARTESIAN product of the values of agents are consistent across all the UTIL tables. Then, it approximates the utilities of the newly added tuples by interpolating between the utilities of the existing tuples. Finally, since the UTIL tables are now all consistent, the agent adds up the utilities in the UTIL tables of children together with the utilities of constraints between the agent and its separator in the same way as DPOP. However, if some variables in the separator are missing, the agent will discretize and add their domains to the UTIL table (line 43-44).

After the utilities are added up, similar to leaf agents, the agent \(x_i\) will proceed to repeatedly update the values \(v_{i_j}\) of the separator \(a_{i_j}\) in the updated Cartesian product \(V\) using:

\[
v_{i_j} = v_{i_j} + \alpha \frac{\partial f_{i_j}(x_{i_j}, x_{i_k})}{\partial x_{i_k}} \cdot \argmax_{v_{i_j}} U_{i_j}(x_{i_j}, v_{i_1}, \ldots, v_{i_k})
\]

where UTIL\(_i\) is the utility table that is constructed from the summation of the children’s utilities and the utilities of constraints between the agent \(x_i\) with its separator set (line 45). The key difference between this Eq. (14) and the Eq. (13) used by leaf agents is that the substitution of \(f_{i_j}(x_{i_j}, v_{i_j})\) with \(U_{i_j}(v_{i_1}, \ldots, v_{i_k})\). The reason for this substitution is that the utilities in the UTIL tables of leaf agents only have a function of constraints with their separator agents and the functional form of those constraints are known. Therefore, leaf agents can optimize exactly those functions to get accurate gradients. In contrast, utilities in the UTIL tables of non-leaf agents are also a function of the constraints between its descendant agents and its separator agent, and the functional form of those constraints are not known. They are only represented by samples within the UTIL tables received and are now integrated into the UTIL table of the non-leaf agent. Therefore, in Eq. (14), the agent approximates its maximum value \(x_i\) by choosing the best value of under the assumption that the values of the other separator agents are exactly the same as in the tuple \((v_{i_1}, \ldots, v_{i_k})\) that is being updated.

After these values are all updated, the agent approximates their corresponding utilities by interpolating between known utilities and sends these utilities up to its parent in a UTIL message (line 46). These UTIL messages propagate up to the root agent, which then starts the VALUE phase.

VALUE Propagation: The root agent starts this phase after processing all the UTIL messages received from its children in the UTIL phase. It chooses its best value based on its computed UTIL table and sends this value down to its children. Like in DPOP, each agent will repeat the same process after receiving the values of its parent and pseudo-parents. However, unlike DPOP, an agent may receive the information that its parent or pseudo-parent is taking on a value that doesn’t correspond to an existing value in the agent’s UTIL table due to the values being moved during the UTIL propagation phase. As a result, the agent will need to approximate the utility for this new value received and it does so by interpolating between known utilities in its UTIL table.

Once all the leaf agents receive VALUE messages from their parents and choose their best values, the algorithm terminates.

Example 2: Given the following constraint functions of the pseudo-tree where \(x_1\) is the parent of the only child \(x_4\), both \(x_2\) and \(x_3\) are leaves, are the children of \(x_4\) and are the pseudo-children of \(x_1\):

\[
f_{15}(x_1, x_3) = 16x_1^3 + 13x_1 + 12x_2^2 + 18x_3 + 9x_1x_3 - 13
\]

\[
f_{14}(x_1, x_4) = -3x_1^2 + 18x_1 - 8x_4^2 + 8x_4 + 2x_1x_4 + 12
\]

Agent \(x_3\) discretizes its domain \([-100, 100]\) into the set of values \(V = \{-100, -50, 0, 50, 100\}\), and computes the CARTESIAN product of \(x_1\) and \(x_4\)’s values \(V \times V = \)
}\{-100, -100\}, \{-100, -50\}, . . . \{0, 0\}, . . . \)}$. To move values of x_1 and x_4 in the tuple $\{0, 0\}$, the agent follows the Eq. (13):

$$v_{x_1} = v_{x_1} + \alpha \frac{\partial f(x_1, x_4)}{\partial x_1} \text{argmax}_{4} f_{13}(x_1=v_{x_1}, x_4)$$

$$= 0 + 0.001 (32x_1 + 9x_3 + 13) |_{x_1=100}$$

$$= 0.913$$

Similarly, x_3 moves value of its parent x_4:

$$v_{x_3} = v_{x_3} + \alpha \frac{\partial f(x_3, x_4)}{\partial x_4} \text{argmax}_{4} f_{13}(x_1, x_4=v_{x_3})$$

$$= 0 + 0.001 (-16x_4 + 2x_3 + 8) |_{x_3=1}$$

$$= 0.014$$

Example 3: With the same pseudo-tree from Example 2, consider $f_{14}(x_1, x_4) = x_1^2 + 19x_1 + 3x_2^2 - 4x_4 + 16x_1x_4 - 8$ and x_4 receives the following UTIL messages from x_3 and x_2:

(a) $\text{UTIL}^{x_4}_{14}$

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_4</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.3</td>
<td>-1.4</td>
<td>22.79</td>
</tr>
<tr>
<td>2.1</td>
<td>1.8</td>
<td>23.49</td>
</tr>
<tr>
<td>2.2</td>
<td>0.4</td>
<td>19.09</td>
</tr>
</tbody>
</table>

(b) $\text{UTIL}^{x_4}_{14}$

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_4</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2.3</td>
<td>-1.4</td>
<td>19.57</td>
</tr>
<tr>
<td>1.5</td>
<td>0.82</td>
<td>26.28</td>
</tr>
</tbody>
</table>

To find the argmax value, the agent adds up the two UTIL messages, which now have identical value 75. Then, approximate their utilities using local interpolation. Then, x_4 adds up the two UTIL messages, which now have identical value tuples, with the constraint function $f_{14}(x_1, x_4)$. This process results in the table $\text{UTIL}^{x_4}_{14}$:

(a) $\text{UTIL}^{x_4}_{14}$

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_4</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.3</td>
<td>-1.4</td>
<td>22.79</td>
</tr>
<tr>
<td>2.1</td>
<td>1.8</td>
<td>23.49</td>
</tr>
<tr>
<td>2.2</td>
<td>0.4</td>
<td>19.09</td>
</tr>
</tbody>
</table>

(b) $\text{UTIL}^{x_4}_{14}$

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_4</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2.3</td>
<td>-1.4</td>
<td>19.57</td>
</tr>
<tr>
<td>1.5</td>
<td>0.82</td>
<td>26.28</td>
</tr>
</tbody>
</table>

Now, the agent x_4 moves its parent x_1’s values:

$$v_{x_1} = v_{x_1} + \alpha \frac{\partial f(x_1, x_4)}{\partial x_1} \text{argmax}_{4} \text{UTIL}^{x_4}_{14}(x_1=v_{x_1}, x_4)$$

$$= 2.2 + 0.001 (2x_1 + 16x_4 + 19) |_{x_1=1}$$

$$= 2.25$$

4.4 Continuous DSA

Continuous DSA (C-DSA) is an approximation C-DCOP algorithm that is based on DSA. Similar to DSA, each agent in C-DSA initially chooses a random value and loops over a sequence of steps that improves the solution quality. Agents also stochastically decide to keep their current values or change them to new values. The difference between C-DSA and DSA lies in the way agents choose their values. Instead of choosing from a discrete domain, each C-DSA agent now chooses from a continuous range by computing the maximum of the aggregate utility functions given the current values of neighboring agents. Specifically, after receiving messages containing the current values of neighbors, each agent evaluates the corresponding multivariate utility functions, resulting in a unary function for each constraint. Then, by adding all the unary functions together and computing its maximum, agents choose the value that has the largest gain.

5 THEORETICAL PROPERTIES

For each reward function $f(x_1, x_2, \ldots, x_k)$ of an agent x_i and its separator agents x_j, \ldots, x_k, assume that agent x_i discretizes the domains of the reward function into hypercubes of size m (i.e., the distance between two neighboring discrete points for the same agent x_i is m). Let $\nabla f(v)$ denote the gradient of the function $f(x_i, x_j, \ldots, x_k)$ at $v = (v_i, v_j, \ldots, v_k)$:

$$\nabla f(v) = (\frac{\partial f}{\partial x_1}(v_1), \frac{\partial f}{\partial x_i}(v_i), \ldots, \frac{\partial f}{\partial x_k}(v_k))$$

Furthermore, let $|\nabla f(v)|$ denote the sum of magnitude:

$$|\nabla f(v)| = |\frac{\partial f}{\partial x_1}(v_1)| + |\frac{\partial f}{\partial x_i}(v_i)| + \ldots + |\frac{\partial f}{\partial x_k}(v_k)|$$

Assume that $|\nabla f(v)| \leq \delta$ holds for all utility functions in the DCOP and for all v.

Theorem 5.1. The error bound of discrete DPOP is $|\delta| m^d$.

Proof. First, we prove that the magnitude of the projection of function f is also bounded from above by δ. Let $x_i = v_i$ be the
with the proof of the bound for discrete DPOP, the error bound is for AC-DPOP, as the values of an agent are "moved" by their children variable nodes and one function node and, thus, it takes 4 messages for DPOP, the message size complexity is \(k \) the pseudo-tree, and is identical to that of DPOP – each agent sends one UTIL message to its parent and one VALUE message to each of its children in the edge in one iteration and, thus, requiring \(4 \) messages. Sum algorithm \[8 \]. Every edge of the constraint graph has two HCMS has the same number of messages as that of the Max-ber of messages of \(|F| \) m, where \(|F|\) is the number of utility functions in the problem. \[□ \] Theorem 5.2. The error bound of AC-DPOP is \(|F| m |A| k \alpha \delta \), where \(k \) is the number of times each agent "moves" values of its separator by calling Eqs. (13) or (14).

Proof. After each "move" by either Eqs. (13) or (14), the maximum size of the hypercubes increases by \(a \delta \), where \(a \) is the learning rate. Since each agent performs this update only \(k \) times, the largest increase in the size of the hypercube is \(k \alpha \delta \). Finally, since the value of an agent can be updated by any of its children or pseudo-children, the total increase in the size of the hypercube is thus \(|A| k \alpha \delta \), where \(|A|\) is the number of agents in the problem. Therefore, this combined with the proof of the bound for discrete DPOP, the error bound is thus \(|F| (m + |A| k \alpha \delta) \delta \). \[□ \]

Theorem 5.3. In a binary constraint graph \(G = (X, E) \), the number of messages of HCMS and C-DSA with \(k \) iterations is \(4k|E| \) and \(2k|E| \), respectively. The number of messages of discrete DPOP, AC-DPOP, and CAC-DPOP is \(2|X| \).

Proof. HCMS has the same number of messages as that of the Max-Sum algorithm \[8 \]. Every edge of the constraint graph has two variable nodes and one function node and, thus, it takes 4 messages per edge in one iteration. The total number of messages in HCMS is thus \(4k|E| \). On the other hand, C-DSA requires 2 messages per edge in one iteration and, thus, requiring \(2k|E| \) messages in total.

The number of messages required by AC-DPOP and CAC-DPOP is identical to that of DPOP – each agent sends one UTIL message to its parent and one VALUE message to each of its children in the pseudo-tree. Since pseudo-trees are spanning trees, the number of messages is thus \(2|X| \). \[□ \]

Theorem 4. The message size complexity of discrete DPOP, AC-DPOP and CAC-DPOP is \(O(d^n) \), \(O(d(|X|)^w) \), and \(|A| k \), respectively, where \(d \) is the number of points used by each agent to discretize the domain of its separator agents, \(w \) is the induced width of the pseudo-tree, and \(k \) is the number of clusters used by CAC-DPOP.

Proof. For DPOP, the message size complexity is \(O(d^n) \) \[31 \]. For AC-DPOP, as the values of an agent are "moved" by their children and pseudo-children, in the worst case, all the values are unique and the maximum number of such values is \(O(d|X|) \). The message sizes are then similar to discrete DPOP with \(O(d|X|) \) values per agent. Therefore, its message size complexity is \(O((d|X|)^w) \). For CAC-DPOP, the message size complexity of UTILITY messages is \(O(k) \) since only the utilities of the centroids of \(k \) clusters are sent. And the message size complexity of VALUE messages is \(O(|A|) \), such as in a fully-connected graph where an agent sends the values of every agent from the root of the pseudo-tree down to itself in a VALUE message to its child. Therefore, the message complexity of the algorithm is the \(O(\max(|A|, k)) \). \[□ \]

6 EXPERIMENT RESULTS

We empirically evaluate EC-DPOP, AC-DPOP, CAC-DPOP, and C-DSA\(^3\) against (discrete) DPOP and HCMS on both random trees and random graphs. We adapt the (discrete) DPOP algorithm to solve C-DCOPs by discretizing the continuous domain into discrete representative points.

We measure the quality of solutions, simulated runtimes \[34 \] as well as the number of messages taken by the algorithm. Since HCMS and C-DSA are iterative algorithms that may take a long time and a large number of messages before converging, in order for fair comparisons, we initially planned to terminate the two algorithms after it sends as many messages as the DPOP-variants. However, in a single iteration, HCMS requires more messages than the DPOP-variants, and C-DSA requires the exact number of messages as the DPOP-variants. We thus let HCMS and C-DSA terminate after one iteration. We did not report the actual number of messages since they could be trivially computed via Theorem 5.3.

Tables 1 and 2 show the reported solution qualities in a unit of 1,000 and simulated runtimes in milliseconds and seconds (ending with s) on random trees and graphs, respectively, where we vary the number of agents \(|A|\) and every algorithm discretizes the domains of variables into three points. We also vary the number of times AC-DPOP and CAC-DPOP agents "move" a point (by calling Eqs. (13) or (14)) from 5 to 20. Tables 3(a) and 3(b) show the results on random trees and graphs, respectively, where we set the number of agents \(|A|\) to 20 and vary the number of discrete points from 1 to 9. In all our experiments, we set the domain of each agent to be in the range \([-100, 100]\). We generate utility functions that are binary quadratic functions, where the signs and coefficients are randomly chosen. Our experiments were performed on a 2.1GHz machine with 8GB of RAM. Results are averaged over 20 runs, each with a timeout of 30 minutes.

Random Trees: We omit the results of CAC-DPOP from Table 1 since it finds identical solutions to AC-DPOP on trees – there is no need to perform any clustering on trees since an agent does not receive utilities for value combinations of its parent from its children since there are no backedges in the pseudo-tree.

Not surprisingly, EC-DPOP finds the best solution since it is an exact algorithm. However, it could only solve the smallest of instances – due to memory limitations, the agents could not store the necessary number of piecewise functions to accurately represent the utility functions after adding functions and projecting out\[^3\]We use DSA-B and set \(p = 0.6 \).
variables. In general, AC-DPOP finds better solutions than DPOP, C-DSA, and HCMS but at the cost of higher runtimes. AC-DPOP finds better solutions than DPOP because AC-DPOP spends more time on updating the value of representative points before propagating up the pseudo-tree. In contrast, the values chosen by DPOP is fixed from the start. HCMS performs poorly because a single iteration is insufficient for it to converge to a good solution. Interestingly, a single iteration is sufficient for C-DSA to find solutions that are comparable in quality to those found by DPOP. Additionally, as expected, the quality of solutions found by AC-DPOP improves with increasing number of times points are “moved” by the algorithm.

We omit the results of EC-DPOP from Table 3(a) as it failed to solve these instances and we omit the results of CAC-DPOP because it finds identical solutions to AC-DPOP on trees. We do not include C-DSA in the experiment because it does not discretize the domains. Not surprisingly, the quality of solutions found by all the three algorithms and their runtimes increase with increasing number of points. The reason is that the agents can more accurately represent the utility function with more points.

Random Networks: The trends in Table 2 are similar to those in random trees, except that CAC-DPOP finds solutions with qualities between that of AC-DPOP and DPOP. The reason is that CAC-DPOP clusters the points into k clusters and only propagates a representative point from each cluster. Therefore, the k points represent the utility functions less accurately than the full number of unclustered points that AC-DPOP uses. However, this reduced number of points propagated also improves the scalability of CAC-DPOP, where it is able to solve problems larger problems than AC-DPOP and DPOP.

The trends in Table 3(b) are again similar to that in random trees, except that both AC-DPOP and DPOP ran out of memory with 9 points. Interestingly, CAC-DPOP also finds better solutions than AC-DPOP when they use only 1 point.

7 CONCLUSIONS

Motivated by applications where agents choose their values from continuous ranges, researchers have proposed C-DCOPs to model continuous variables. However, existing methods suffer from the limitation that they do not provide quality guarantees. We remedy this limitation by introducing (i) EC-DPOP, which finds exact solutions for C-DCOPs with linear or quadratic utility functions and are defined over tree-structure graphs; (ii) AC-DPOP, which finds error-bounded solutions for general C-DCOPs; (iii) CAC-DPOP, which limits the message size of AC-DPOP to a user-defined parameter k; and (iv) C-DSA, which is a scalable local search C-DCOP algorithm. Experiment results show that our algorithms find better solutions than HCMS, an existing state-of-the-art algorithm, when given the same communication limitations. Moreover, these algorithms combined extend the applicability of DCOPs to more applications that require quality guarantees on the solutions found as well as those that require limited communication capabilities.

ACKNOWLEDGMENTS

Hoang and Yeoh are partially supported by NSF grants 1812619 and 1838364, Yokoo is partially supported by JSPS KAKENHI grant JP17H00761, and Rabinovich is supported by Singapore MoE AcRF Tier-1 RG24/18 (S).