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Abstract. We analyze a dynamic matching mechanism developed for the UEFA Cham-
pions League, the largest and most-watched football club competition worldwide. First,
we theoretically characterize the assignment rule developed by UEFA by solving a complex
constrained assignment problem with a publicly verifiable draw. Then, using a structural
model of the assignments and data from the UEFA Champions League 2004 and 2019 seasons
we show that the constraints cause quantitatively large spillovers to unconstrained teams.
Nevertheless, we conclude that the UEFA draw is close to a constrained-best in terms of
fairness. Moreover, we find that it is feasible to substantially reduce the distortions by only
marginally slacking the constraints.

1. Introduction

When designing an institution economists typically prioritize theoretical properties, some-

times to the extent that the resulting mechanism can become too complex for participants

to understand and trust. In contrast, in some high-stake public settings the focus is placed

on transparency and simplicity, potentially (but not necessary) at a cost to the mechanisms’

theoretic goals. In the present paper, we examine a randomized matching procedure designed

to solve a complex assignment problem in a way that is transparent and comprehensible to

the general public. The designed draw assembles football-team pairs in a sport tournament

with huge public interest: the Union of European Football Association’s (UEFA) Cham-

pions League (UCL). While the randomization’s transparent procedure helps maintain the

integrity of the draw under a series of non-trivial combinatoric constraints, we show—via a
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recent market-design tool—that to all practical extents the UEFA randomization procedure

is a constrained-best in terms of ex ante fairness.

The UCL is one of the most successful pan-European ventures, and certainly the one with

the most enthusiasm from the fans and the general public. The tournament brings together

football clubs from across the continent (and beyond) that normally play within their own

country-level associations. Selection into the competition is limited to the highest-performing

clubs from each nation, where countries with a deeper history of success are allotted more

places. A series of initial qualifying rounds whittle the number of participating teams down

to 32 group-stage participants. From there, half of the clubs advance to a knockout stage

that begins with the Round of 16 (R16), followed by four quarterfinals, two semifinals, and

a final that determines a European champion. Outside of the World Cup, the UCL final

game is one of the most-watched global sporting events, eclipsing even the viewership of the

Superbowl in the United States.

Because the UCL is under a magnifying glass, from both the teams, fans and the media,

UEFA has a clear interest in creating impartial, meritocratic, and publicly verifiable rules for

the tournament. While a fair assignment rule with a public randomization would be simple

to design in many situations—for instance, matching teams through urn draws without

replacement—the tournament’s problem is complicated due to three constraints imposed on

match pairs: (i) Each pairing must be between a group winner and a group runner-up (the

bipartite constraint); (ii) Teams that played one another in the prior group stage cannot be

matched (the group constraint); (iii) Teams from the same national association cannot be

matched (the association constraint).

In order to address the need for a transparent public randomization over a constrained as-

signment UEFA designed a novel matching procedure. The chosen randomization assembles

each R16 team pairing through a dynamic public draw of balls from an urn, where the urns’

composition adapts dynamically in order to respect the assignment constraints. Our paper

sets out to analyze the properties of this chosen assignment mechanism, using the main tools

of market design: theory, estimation, and computer simulation (Roth, 2002).

To begin our study we first theoretically formalize the natural to follow but combinatorically

complex UEFA draw procedure. Next, we quantitatively analyze the constraint effects,

showing that exclusions of same-nation match-ups (the association constraint) generate large

distortions in teams’ progression probabilities within the tournament. For example, we find

that the constraints affect the chances of advancing to the tournament’s semifinals by up to

20 percent, with an effect on expected tournament winnings of up to one million euros.
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Of particular analytical interest is the indirect effect of the matching constraints, where

spillovers from other team-pair exclusions disproportionately alternate the likelihoods of

other teams’ matches. A natural question is whether an alternative constrained-matching

procedure exists that would result in a fairer randomization. Using an objective function

focused entirely on the spillovers between otherwise equally treated teams, we use a recent

theorem from the market-design literature (Budish et al., 2013) to operationalize this norma-

tive design question. Specifically, the theorem allows us to relax (without loss of generality)

the combinatorically complex problem of looking for randomizations over constrained assign-

ments through a switch in focus to the computationally tractable problem of finding expected

assignments satisfying the constraints. The conclusion from our analysis of the UEFA as-

signment rule across the past 16 years shows that even though marginal improvements are

possible, the tournament’s transparent assignment procedure comes very close to achieving

the same outcomes as the spillover-minimizing designs.

While our search for a superior constrained assignment procedure suggests only minimal

scope for improvement—and with large potential costs from forgoing UEFA’s simple-to-

follow procedure—a related question is the extent to which better outcomes are possible

from slacking the imposed constraints. As a constructive exercise, we conclude the paper

by showing that a relatively small relaxation of the association constraint can go a long

way towards reducing the distortions. In particular, we constructively show that slacking

the constraints can be obtained with only minimal adjustment to the current matching

procedure, retaining all the beneficial features of the transparent dynamic draw.

In summary, our paper documents a solution to a constrained matching procedure with three

desirable properties: (i) a simple-to-follow sequential draw procedure; (ii) randomizations

carried out through public draws from an urn, helping to dispel doubts about the designer

cherry-picking realizations; and (iii) expected assignments that are close to optimal in terms

of minimizing the constraint spillovers. Hence, in contrast to many other assignment mecha-

nisms, our application’s design achieves its theoretic objectives while remaining transparent

and verifiable to all parties. This suggests that generalizations of this procedure might be

useful in market-design applications, where openness and fairness in the randomization are

paramount.

In terms of organization, Section 2 provides a brief review of the related literature. In Section

3, we describe the background of the UCL and discuss the constraints imposed on the R16

matching. In Section 4, we formalize the UEFA mechanism and some theoretic properties.
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In Section 5, we provide a description of the data used in estimating our goal-outcome model,

and then present our quantitative results. Finally, Section 6 concludes.1

2. Literature review

Our paper contributes to two main strands of economic literature: market design and tour-

naments. While there is large theoretic literature on the incentive effects of tournaments

(see Prendergast, 1999) our paper is more closely related to a growing body of applied

work exploiting sports-tournament outcomes as naturally occurring experiments. In recent

years, using sports data from football through cricket to golf, the applied literature has

provided evidence both for consistency with theory (Walker and Wooders, 2001; Chiappori

et al., 2002; Palacios-Huerta, 2003) and behavioral biases (Bhaskar, 2008; Apesteguia and

Palacios-Huerta, 2010; Pope and Schweitzer, 2011; Foellmi et al., 2016).

Where the literature on sports tournaments has been centered around various positive aspects

of players’ behavior, our paper instead emphasizes normative features of the tournament. In

this sense, our work is more closely related to the market design literature, and a handful of

applied papers examining well-structured environments. Key examples here are: Fréchette

et al. (2007), demonstrating the problem of inefficient unraveling in a decentralized market

through US college football bowls; Anbarci et al. (2015), designing a fairer mechanism for

penalty shootouts in football tournaments; Baccara et al. (2012), investigating spillovers

across participants in a faculty office assignment and the subsequent inefficiency of the pro-

cedure; Budish and Cantillon (2012), studying the superiority of a manipulable mechanism

to the strategy-proof mechanism using data from a course assignment procedure in a busi-

ness school. In each of these cases, market design conclusions are driven by the combination

of theory and a structural analysis of the application data. Similarly, our paper analyzes

the optimal procedure through a combination of theory tools, estimation techniques, and

simulation within the application (see Roth, 2002).

The main insights for our application are made possible through the core theorem in Budish

et al. (2013)—showing sufficiency for an analysis via expected assignment matrices as long

as the constraints satisfy a biheirarchy separability condition.2 This result allows us to show

near-optimality of the existing UEFA assignment rule. To our knowledge our paper is one of

the first ones to apply this market-design tool in a normative assessment of a procedure in

1An Appendix presents proofs of propositions together with additional (theoretical and empirical)
results for interested readers. Full data, programs, and the Online Appendix are available at
https://sites.google.com/site/martaboczon.
2Also see Hylland and Zeckhauser (1979) and Bogomolnaia and Moulin (2001), each of which are focused on
assignments with individual choice, where our paper is focused on the alternative randomization procedures.
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the field. While our tournament setting is of standalone interest,3 the focus on constraints in

matching is also related to topics in school choice such as the implementation of affirmative-

action constraints (for example, Dur et al., 2016). Last but not least, our paper introduces

a novel design consideration to a literature that is primarily focused on fairness, efficiency

and strategy proofness (see Abdulkadiroğlu and Sönmez, 2003, and references thereof). In

our setting instead of manipulation by participants, the main design consideration is that of

minimizing the potential for deceptive behavior on the part of principals by removing any

opaque or manipulable features in the randomization. This leads to an additional and non-

trivial challenge: designing a matching procedure that incorporates substantial combinatoric

complexity through the constraints, where the randomization is transparent to the general

public, and as fair as possible to the participants in expectation.4

3. Application Background

The UCL is the most prestigious worldwide club competition in football. Its importance

within Europe is similar to that of the Superbowl in the United States, though with stronger

global viewership figures (details below). The tournament is played annually between late

June and the end of May by the top-division teams from 57 national associations across

Europe, featuring most of the sports’ star players.

In the 2017 tournament, 6.8 million spectators attended UCL matches and more than 65,000

attended the final game alone.5 In addition to the in-stadium audience the tournament has

vast media exposure through television and the Internet. The UCL final game is globally

the most-watched annual sporting event, where the 2015 final had an estimated 400 million

viewers across 200 countries, with a live audience of 180 million. For comparison, the average

Super Bowl viewership in the United States was equal to 103 million in 2018, 111 million in

2017, and 112 million in 2016.6

In financial terms, UEFA’s revenues mainly arrive from the sale of broadcast and commercial

rights to its three major club competitions: the UCL, the UEFA Europa League, and the

UEFA Super Cup. In the 2017 season, UEFA generated a total revenue of 2.84 billion euro,

3In addition, our paper contributes to a literature on optimal tournament design in sports, see Dagaev and
Sonin (2018), Guyon (2018, 2015), Ribeiro (2013), Scarf and Yusof (2011), Scarf et al. (2009), and Vong
(2017).
4See also Bó and Chen (2019), which examines the importance of simplicity and transparency in a historical
random assignment mechanism designed for civil-servant matching in Imperial China.
5Since each UCL season spans across two calendar years, for clarity and concision we refer to a particular
season by the year of its final game; so 2019 would indicate the 2018–19 season.
6Furthermore, the UCL proves a massive success on social media. In the 2017 season, the UCL official
Facebook page became the worlds’ most followed for a sporting competition with 63 million fans, 300 million
video views, and 98 million interactions over the final game alone.
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where 75 percent of that amount was paid out to clubs and associations participating in

UEFA competitions.7 Clubs that made it to the UCL group stage were awarded 12.7 million

euro each, while those that reached the R16 garnered a further 6 million. Beyond the R16,

quarter-finalists won an additional 6.5 million euro, semi-finalists 7.5 million, and finalists

11 million (with the winner receiving a bonus of 4.5 million).8

Introduced in 1955 as a European Champion Club’s Cup (and consisting only of the na-

tional champion from each association) the tournament has evolved over the years to admit

multiple entrants from each national association (at most five).9 The last major change to

the tournament’s design took place in the 2004 season. As such, in our empirical analysis

we focus our attention on the seasons between 2004 and 2019 (the latest completed season

at the time of writing).

Since the 2004 season, the UCL consists of a number of pre-tournament qualifying rounds

followed by a group and then a knockout stage, similar in format to the World Cup, but

played concurrently with the association’s club seasons.10 In the group stage, 32 teams are

divided into eight groups of four.11 Beginning in September each team plays the other three

group members twice (once at home, once away). At the end of the group stage in December,

the two lowest-performing teams in each group are eliminated, while the group winner and

runner-up advance to the knockout stage. The knockout stage (except for the final game)

follows a two-legged format, in which each team plays one leg at home, one away. Teams

that score more goals over the two legs advance to the next round, where the remaining

teams are eliminated.12

7The first-order beneficiaries are clubs participating in the group stage and onward. The remaining UEFA
revenue is distributed among second- and third-order beneficiaries, which are clubs participating in the
qualifying rounds and non-participating clubs, respectively. The solidarity payments made to the latter
teams are distributed via national associations and allocated for the most part to youth training programs.
8“UEFA Champions League Financial Report 2016/17,” 42nd Ordinary UEFA Congress, Bratislava, 28 Feb-
ruary 2018, available at www.uefa.com.
9For more details regarding the format changes, see Table 3 in the Appendix.
10“Regulations of the UEFA Champions League 2015-18 Cycle” and “Regulations of the UEFA Champions
League 2012-15 Cycle,” available at www.uefa.com.
11Prior to the 2015 season, seeding was entirely determined by the UEFA club coefficients calculated based
on clubs’ historical performance, with the titleholder being automatically placed in Pot 1. Starting from
the 2016 season, the titleholder together with the champions of the top-seven associations based on UEFA
country coefficients are placed in Pot 1. The remaining teams are seeded to Pots 2-4 based on UEFA club
coefficients. The eight groups are then assembled by making sequential draws from the four pots with a
restriction that teams from the same association cannot be drawn against each other, enforced in a similar
way to the R16 match we detail in the paper.
12Technically, the scoring rule is lexicographic over total goals, and goals away from home. A draw on both
results in extra time, followed by a penalty shootout if a winner is is still not determined.
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Our focus in this paper is on the assignment problem of matching the 16 teams at the begin-

ning of the knockout phase into eight mutually disjoint pairs.13,14 If the problem consisted

simply of matching two equal-sized sets of teams under the bipartite constraint, the assign-

ment could be conducted with two urns (one for group winners, one for runners-up) and

sequential draws of team pairs without replacement. However, the presence of the group

and association constraints prohibits such a simple mechanism for two reasons. First, after

drawing a team to be partnered, the urn containing eligible partner draws must not contain

any directly excluded teams. Second, a match with a non-excluded partner must not force

an excluded match at a later point in the draw. While the first concern is easy to address,

the second one requires a more-complicated combinatoric inference.

For illustration, consider a dynamic draw from two pots, one with teams A, B and C; one

with teams d, e and f . Suppose that the matches Ad and Be are excluded. An initial draw

from the first pot selects team A. The subsequent draw must directly exclude d. Assume

f is selected from the two remaining valid partners. In the second round, C is chosen from

the first pot. Although C has no directly excluded partners, the constraints indirectly imply

that C cannot match with d. The reasoning is that if Cd is formed, B will have no valid

partners in the third and final round. As such, given the initial Af draw, (Af,Ce,Bd) is

the unique matching satisfying the constraints.

Although this logic is easy to follow when matching three teams to three teams, with eight

teams on each side and many more constraints, the combinatorics become quite involved.

While matchings could be easily formed via fully computerized draws, UEFA opts to make

much of the randomization transparent through urn draws. The dynamic draw procedure

UEFA developed randomizes the R16 tournament matching as follows: (i) eight blue balls

representing eight runners-up are placed in the first urn and one ball is drawn without

replacement; (ii) a runner-up is drawn and a computer algorithm determines the exhaustive

set of group winners that can possibly match with the drawn runner-up given all constraints

and any previous draws; (iii) white balls representing the possible match partners determined

in the previous step are placed into the second urn and one ball is drawn without replacement;

(iv) a pairing of the two drawn teams (one winner and one runner-up) is added to the

aggregate R16 matching. This procedure repeats until all eight matches are formed. In

what follows, we refer to the above algorithm as the constrained dynamic R-to-W draw,

where W and R stand for the sets of group winners and runners-up, respectively.

13Note that the quarter- and semifinal draws are free from seeding and association protection, and as such,
are conducted in a standard fashion by drawing balls from an urn without replacement.
14A political constraint also excludes Russian teams from being drawn against Ukrainian teams. In what
follows, we re-interpret this restriction as an extended association constraint.
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Figure 1. Possible matchings against the number of same-nation exclsions
(2004–19)

Key features of the UEFA procedure are its simplicity and transparency with respect to

the interim draw, and each specific urn draw. While representatives from each R16 team

attend the draw ceremony, the event also draws substantial attention from the media and

general public. The 20-minute draw ceremony is streamed live by UEFA over the Internet

and broadcast by many national media companies. Examining the viewership figures for

the Internet stream, the most recent UCL R16 draw attracted 935,000 viewers on UEFA.tv

alone.15 While this figure is small relative to game-day TV audiences, it is a huge viewership

when considering a centralized assignment.

In the absence of the association constraint, the tournament has 14,833 possible matchings

for the R16 teams where each same-nation exclusion significantly reduces the number of

valid assignments. Across the 16 most-recent seasons, the number of valid assignments

ranged from 2,988 in the 2009 season through 6,304 in 2011 to 9,200 in 2006. We graph

the relationship between the number of possible matchings and the number of exclusions

implied by the association constraint in Figure 1. While the number of valid assignments is

not purely a function of the number of exclusions (it depends on their arrangement too) the

relationship in question can be approximated by a linear function that decreases by 1,400

matchings for each same-nation exclusion.16

15Online audiences have increased for the draw ceremony over time. In the 2015 season the R16 draw was
watched by 262,000 viewers, in 2016 by 415,000, in 2017 by 618,000, and in 2018 by 935,000.
16See Table 6 in the Appendix for the constraints in seasons 2004–19.
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4. Theory for the Current Matching Procedure

We now turn to the theory for the current procedure, where we describe a generalized version

of the dynamic mechanism used by UEFA to draw assignments satisfying the constraints.

After characterizing the effective lottery over matchings induced by the dynamic draw, we

show that the randomization in question is distinct from simpler static implementations, as

well as from a number of dynamic variants. Finally, we demonstrate that the constraints

enforced by UEFA satisfy the Budish et al. (2013) separability condition, which allows us to

simplify our search for better assignment mechanisms on the more-computationally tractable

space of expected assignments.

4.1. Constrained Dynamic Draw. Let W = {w1, w2, ..., wK} and R = {r1, r2, ..., rK}
denote the sets of group winners and runners-up, respectively. Let V be the set of all

possible perfect (exhaustive one-to-one) matchings betweenW andR. We examine a random

assignment mechanism ψ : 2V → ∆V that takes as input any subset Γ of V (a set of admissible

matchings) and as output a probability distribution over the elements of Γ. The mechanism

used by UEFA assembles a matching in the following manner:

Algorithm (Constrained R-to-W dynamic draw). Given an input set of admissible match-

ings Γ ⊆ V, the algorithm selects a matching ψ(Γ) in K = |W| steps.

Initialization: Set R0 = R, and Γ0 = Γ.

Step-k: (for k = 1 to K)

(i) Randomly choose vRk ∈ R through a fair draw over Rk−1;

(ii) Randomly choose vWk ∈ W through a fair draw over the set of admissible partners for

vRk , Wk :=
{
w ∈ W

∣∣∃V ∈ Γk−1 s.t. vRk w ∈ V
}

;

(iii) Construct the sets of currently unmatched runners-up Rk = Rk−1 \ {vRk } and valid

assignments given current draw Γk =
{
V ∈ Γk−1

∣∣vRk vWk ∈ V }.

Finalization: After K steps the algorithm returns a vector of K match pairs

v = (vR1 v
W
1 , . . . , v

R
Kv
W
K ) .

The unordered matching
{
vR1 v

W
1 , . . . , v

R
Kv
W
K

}
is set as the realization of ψ(Γ).

This dynamic procedure as an interim output produces an ordered sequence of K matches,

v. In order to characterize the probability of the unordered matching V we define: (i) P(V ),
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the set of all possible order-permutations for V ; and (ii) Wk(v), the set of admissible match

partners for runner-up vRk selected at Step-k(i) in the permutation v.17

Proposition 1. Under the constrained R-to-W draw the probability of any matching V ∈ Γ

is given by

Pr {ψ (Γ) = V } =
1

K!

∑
v∈P(V )

K∏
k=1

1

Wk(v)
.

Proof. For any matching V ∈ Γ, each of the K! possible permutations of V has a strictly

positive probability, so Pr {V } =
∑

v∈P(V ) Pr {v} , which can be rewritten using the chain

rule as

Pr {V } =
∑

v∈P(V )

K∏
k=1

(
Pr{vRk |vk−1} · Pr{vWk

∣∣vRk ,vk−1}
)
,

where vk−1 denotes the matches selected in steps 1 through k − 1. Since the randomization

is fair at each step, Pr{vRk |vk−1} simplifies to 1
K−k+1

and Pr{vWk
∣∣vRk ,vk−1} = 1

Wk(v)
. �

Proposition 1 shows that the mechanism’s probability distribution over Γ requires K!× |Γ|
calculations. Even though the cardinality of Γ can be substantially lower than K!, the exact

computation of Pr {V } involves between K! and (K! )2 steps, and can be taxing even for our

application with K = 8.

Though the above assignment rule is combinatorically involved, the UEFA draw procedure

has three useful features. First, all draws are conducted using an urn, and thus each individ-

ual randomization is fair/uniform. Second, the number of possible realizations in each draw

is always less than eight, implying that each individual draw is easy to comprehend, with a

clear urn composition. Finally, all nontrivial elements of the draw conducted opaquely by

the computer (the calculation of the set of valid partners at each step) can be checked ex

post, and thus the draw procedure is fully verifiable by a viewer. Consequently, as long as

the urn draws are conducted fairly and publicly,18 it is not possible for the designer to cherry

pick realizations, inoculating the mechanism against corruption on the part of the principal.

Given the characterization in Proposition 1, one question is the extent to which the above

calculation can be simplified.

17That is: Wk(v) :=
∣∣{w ∈ W ∣∣∃V ∈ Γ s.t. vRk w ∈ V and ∧k−1j=1

(
vRj v

W
j ∈ V

)
,
}∣∣ .

18Unlike many state lotteries which use mechanical randomization devices to draw urn outcomes, the UEFA
draw is conducted by human third-parties (typically famous footballers). Pointing to football fans’ distrust
in the process, the human draw has led to plausible allegations of UEFA rigging draws with hot/cold balls
(here made by former FIFA president Sepp Blatter in an interview with Argentine newspaper La Nacion,
June 13th, 2016).
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We define two randomization mechanisms as being equivalent if they induce the same prob-

ability distribution over matchings V , and distinct if they differ.

Proposition 2. The constrained dynamic R-to-W draw is distinct from:

(i) The constrained uniform draw over Γ.

(ii) The constrained dynamic procedure that fairly draws admissible pairs.

(iii) The constrained W-to-R dynamic draw.

Proof. See Appendix for counter-examples. �

The first two parts of Proposition 2 are essentially negative results, indicating that our

environment is not equivalent to algorithmically simpler fair draws over complete matchings

or individual matches, where the third part shows the procedure is asymmetric. While

the main takeaway from Proposition 2 is negative, it does demonstrate three potentially

constructive design channels, analogous to the reversal of the proposing sides in the National

Resident Matching Program (NRMP) algorithm detailed in Roth and Peranson (1997).19

4.2. Relaxing the UEFA Constrained Assignment Problem. Above we characterize

a generalized version of the dynamic draw employed by UEFA to assemble the R16 matching.

Within this family of randomization procedures, the actual UEFA draw defines the admissible

matchings Γ via a set of match exclusions H ⊂ R × W , where the overall exclusion set

H = HA ∪HG is the union of the association-level exclusions HA and group-level exclusions

HG. The precise set H varies across seasons depending on the composition of teams reaching

the R16 stage and the group-level assignment. The admissible matching set for the UEFA

implementation of the constrained dynamic draw is defined by

ΓH := {V ∈ V |V ∩H = ∅} ,

where the draw induces the random matching ψ(ΓH).

While our paper first analyzes the effects of the specific constraints in H on expected draw

outcomes, we also examine the extent to which fairer random assignments might exist. To

aid us in this endeavor we employ the core result in Budish et al. (2013) that guarantees the

existence of an equivalent randomization over assignments in ΓH for every feasible expected

19However, while distinct, we later show that in our particular setting the three draw procedures lead to only
marginally different outcomes, where the fair draw over Γ has a computational advantage for approximating
assignment probabilities. The standings of the UCL groups are only fixed two days before the draw is carried
out. While analytic calculation of the exact matching probabilities for the draw would take approximately
two months on a powerful desktop, probabilities for the fair draw over feasible assignments can be calculated
in fractions of second.
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assignment. This allows us to relax the constrained assignment problem over discrete final

matches to the one of finding expected assignments allowing for fractional (and continuous)

assignments of objects.

First, notice that any assignment V can be rewritten as a matrix X(V ) ∈ {0, 1}K×K with

a generic entry xij(V ) = 1 {riwj ∈ V } indicating whether or not runner-up ri is matched to

winner wj. Since V represents a perfect matching between R andW , X(V ) is a rook-matrix

where each row and column have exactly one unit-valued entry with all other entries equal

to zero. Second, for any random draw over ΓH , the expected assignment matrix is defined as

A := EX(V ) =
∑

V ∈ΓH
Pr {V }·X(V ), with the generic entry aij representing the probability

of the (riwj) match.

An expected assignment matrix A is defined as satisfying the exclusion constraints H if:

∀ij ∈ H : aij = 0; ∀i ∈ R, j ∈ W : 0 ≤ aij ≤ 1,
∑K

k=1 akj =
∑K

k=1 aik = 1. That is, an

expected assignment matrix A is said to satisfy the exclusion constraint set H if each of its

entries is a non-negative real number representing a probability, all rows and columns sum

to exactly one, and the excluded matches take value zero. While satisfying the exclusion

constraint set H is clearly a necessary condition for any expected assignment resulting from

a randomization over assignments in ΓH , it is also sufficient:

Proposition 3 (Implementability). For any expected assignment matrix A satisfying the

exclusion constraints H there exists an equivalent randomization over the constrained as-

signment set ΓH .

Proof. The matching exclusions can be grouped into two distinct sets: (i) the singleton

exclusions in H and the K row constraints; and (ii) the K column constraints.20 As such

the matching constraints satisfy the bihierarchy condition in Budish et al. (2013) Theorem

1. �

Proposition 3 implies that when we search for elements of ∆ΓH that optimize some objective,

instead of searching directly in a space with O(K! ) degrees of freedom, we can focus without

loss of generality on the search for expected assignments with O(K2) degrees of freedom.

For the specific UEFA application with K = 8, the number of degrees of freedom is thereby

reduced from 2,000–10,000 to 30–40.

A trivial corollary to the above result is that:

20The quotas for each element aij are therefore a min and a max of zero for the excluded singletons; a min
of zero and a max of one for the non-excluded singletons; a min and a max of one for the row sum; and a
min and a max of one for the column sum.
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Corollary 1. Any expected assignment matrix satisfying the exclusion constrains H is im-

plementable by randomizing over a finite collection of J constrained dynamic R-to-W draw

mechanisms {ψ (Γj)}Jj=1, with each feasible assignment set Γj ⊆ ΓH .

Proof. Set J = |ΓH | < K! and for each entry Vj ∈ ΓH set Γj = {Vj}. By Proposition 3,

there exists a probability pj of selecting each admissible matching Vj that is equivalent to

for any implementable expected assignment matrix satisfying the constraint exclusions H.

The result follows from setting Pr {Γj} = pj. �

While Proposition 3 facilitates the examination of whether better randomizations might

exist, Corollary 1 provides us with a direct tool for implementing a randomization by a

pre-draw over the input set of admissible assignments. After drawing a subset of the feasible

assignments, the previously outlined dynamic matching procedure can be used to realize a

specific matching.

5. Quantifying the Constraint Effects

In this section, we first quantify how the current UEFA mechanism affects expected as-

signments in the UCL R16, and how the spillovers from others’ exclusions impact oth-

erwise equally treated teams. Second, we examine the normative question of whether a

fairer randomization mechanism is possible. Finally, after showing that substantially better

mechanisms do not exist given the maintained constraints, we turn to the extent to which

substantially fairer outcomes can be achieved through a slight relaxation of the matching

constraints.

5.1. Distortions in the Current UEFA Mechanism. We start our empirical analysis

with an illustrative example from the UCL R16 draw in 2018. The expected assignment

matrix for the UEFA dynamic draw procedure is given in Table 1. Each row represents

a group winner, and each column a runner-up, so the row-i–column-j cell indicates the

probability the (ij)-pair is selected within the realized R16 matching.21

The constraints in the 2018 draw are as follows: First, along the diagonal, the probabilities

of each match are zero, reflecting the eight group constraints.22 Second, seven same-nation

matches are excluded reflecting the 2018-specific association constraint. Finally, all rows

21We calculate all probabilities with a Monte Carlo simulation of size N = 106. At this size, 95 percent
confidence intervals for each probability are within ±0.001 of the given coefficient (see Proposition 4 in the
Appendix).
22The bipartite and group constraints on their own impose symmetric restrictions, leading to an equal
probability of matching with every non-excluded partner. Consequently, without the association constraint,
the expected assignment would have a one-in-seven chance for each off-diagonal entry.
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Table 1. Expected assignment matrix for the 2018 R16 draw

Basel Bayern

Munchen

Chelsea Juventus Sevilla Shakhtar

Donetsk

Porto Real Madrid

Manchester United 0. 0.148 0. 0.183 0.183 0.155 0.148 0.182
Paris Saint-Germain 0.109 0. 0.294 0.128 0.128 0.108 0.105 0.128

Roma 0.159 0.151 0. 0. 0.189 0.160 0.152 0.189

Barcelona 0.149 0.144 0.413 0. 0. 0.150 0.144 0.
Liverpool 0.159 0.151 0. 0.189 0. 0.160 0.152 0.189

Manchester City 0.156 0.148 0. 0.183 0.184 0. 0.148 0.183

Besiktas 0.109 0.105 0.293 0.128 0.128 0.108 0. 0.129
Tottenham Hotspur 0.160 0.152 0. 0.189 0.189 0.159 0.151 0.

Note: Probabilities derived from a simulation (N = 106) of the UEFA draw procedure.

and columns sum to exactly one, as each represents the marginal match distribution for the

respective team through the bipartite constraint. 23

Despite having fair urn draw at each point in time, the likelihoods of two teams playing each

other are not uniform due to asymmetry in the constraints. For illustration, consider Paris

Saint-Germain (PSG) in 2018, the second row of Table 1. As PSG is the only French team

in the R16 in this season it has no same-nation exclusions and thus, seven feasible match

partners. However, the likelihoods of each of the possible match-ups varies substantially,

with the probability of PSG playing Chelsea almost three times larger than that of PSG

playing either Basel, Shaktar, or Porto.

In what follows, we quantify the effects of distortions induced by the constraints in the R16

matching, using a structural model of game outcomes estimated using historical (and out-

of-sample) data from the 2004 to 2019 UCL seasons. By simulating the R16 draws and all

subsequent games within the tournament, we show that tournament matching constraints

have major effects on teams’ expected earnings and progression probabilities within the

tournament. Finally, we outline a fairness objective function designed to isolate the indirect

spillovers from enforcing the constraints, and demonstrate that even though the spillovers

are sometimes substantial, the UEFA draw procedure comes very close to a constrained-best.

5.2. Data and Estimation of Game-Outcome Model. In order to account for variation

in teams’ ability while examining potential effects driven by the tournament’s constraints,

we estimate one of the most commonly used structural models for soccer outcomes in the

sports economics literature: the bivariate Poisson (Maher, 1982; Dixon and Coles, 1997).

Model. Let Si and Sj be the random variables for the number of goals scored by home-team

i and guest-team j in a given game. In a bivariate Poisson model with parameters (λ1, λ2, λ3)

23Note that the constraints are not mutually exclusive and consequently, even though the expected assignment
is an 8× 8 matrix, it has 34 degrees of freedom. The expected assignment matrices for the R16 draw in the
other 15 seasons can be found in the paper’s Online Appendix.
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the realized scoreline (si, sj) has a joint probability distribution given by

P(Si,Sj) (si, sj) = exp {− (λ1 + λ2 + λ3)} λ
si
1

si!

λ
sj
2

sj!

min(si,sj)∑
k=0

(
si
k

)(
sj
k

)
k!

(
λ3

λ1λ2

)k

,

where E (Si) = λ1 + λ3, E (Sj) = λ2 + λ3 and Cov (Si, Sj) = λ3.

In our specification we follow Karlis and Ntzoufras (2003) and assume that lnλ1 = µt + ηt +

αt
i−δtj, lnλ2 = µt +αt

i−δtj, and λ3 = ρt, where αt
k and δtk measure the idiosyncratic offensive

and defensive abilities for team k in season t (positive direction indicating greater ability),

µt denotes a season-specific constant term, and ηt the season-specific home-advantage pa-

rameter.

We estimate the above bivariate Poisson model via constrained maximum likelihood sep-

arately for each season t between 2004 and 2019. For scale identification we impose two

sum-to-zero constraints in each season, assuming that
∑

k α
t
k =

∑
k δ

t
k = 0. The model

estimation uses scoreline data from the current tournament’s group stage (season t) together

with game-level data from the group and knockout stages (except for the final game which

is played on a neutral soil) in seasons t− 1 and t− 2.24

In Figure 2, we graph the estimated defense parameters on the horizontal axis and the

corresponding estimated attack parameters on the vertical axis (for all R16 teams across all

seasons between 2004 and 2019). The strongest teams have large positive values for both

the attack and defense parameters; see for example FC Barcelona or FC Shalke in 2011

in the first quadrant. Conversely, low-performing teams have either a negative value of the

attack parameter (low offense) or for the defense parameter (low defense): see FC Lokomotiv

Moskva in 2004 in the second quadrant or AC Sparta Praha in 2004 in the fourth quadrant.

Teams of low-to-medium-strength with small but positive values of both attack and defense

parameters are centered at zero in the first quadrant.25

Finally, in Table 2, we present summary statistics for the estimated attack and defense

parameters broken out by the stage of the competition. We find that the eight teams

that progress to the quarterfinals are stronger both offensively and defensively than the

teams eliminated in the R16. Similarly, the four teams advancing to the semifinals have

better offensive and defensive performance relative to those knocked out in the quarterfinals.

24This results in a total of 408 game-level observations used in the 2004 estimation, 376 observations for the
2005 season, and 348 observations for each season between 2006 and 2019. The differences in the number of
observations result from a change to the tournament design in the 2004 season, where a second group stage
feeding into the quarterfinals was replaced by the R16. Table 7 in the Appendix provides summary statistics
for the UCL game outcomes in all seasons between 2002 and 2019.
25Table 8 in the Appendix provides estimates for the constant term, the home-advantage parameter, and
the correlation coefficient between the number of goals scored by opposing teams in seasons 2004–19.
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Figure 2. Estimated attack and defense parameters for the UCL teams (2004–19)

Table 2. Summary statistics for estimated parameters

Stage Attack parameter Defense parameter

Mean Med. Min Max Mean Med. Min Max

Eliminated in R16 0.62 0.51 -0.20 2.25 0.27 0.17 -0.58 10.99
Eliminated in QF 0.69 0.64 -0.51 2.67 0.31 0.26 -0.73 2.00
Reach SF 0.78 0.74 -0.43 2.28 0.66 0.44 -0.43 11.52

Moreover, the two-sample Kolmogorov-Smirnov test suggests that the empirical distributions

of attack and defense parameters in the R16 and the semifinals are statistically different (at

1 percent significance level). Interestingly, the same holds for the empirical distribution

of defense parameters in the semi- and quarterfinals, what suggests that team’s defensive

(rather than offensive) skills are critical to its overall tournament success.

5.3. Constraint effects in the UCL draw. In what follows, we separately quantify the

total and spillover effects from the constraints on two main metrics for teams’ outcomes: their

expected prize money and the probability of reaching the semi-final stages of the competition

(and beyond). In summary, we find that:

Result 1. The association constraint in the R16 generates substantial effects: (i) altering

expected tournament prizes by millions of euro; (ii) significantly affecting the chances of
16



●●

●

●

●

●

● ●

●

●

●

●●

●●

●

Figure 3. Expected prize money versus realized prizes under actual con-
straints (2018)

reaching later stages of the tournament; and (iii) creating spillovers to the matching chances

of otherwise equally treated teams.

Evidence: We combine our model of the exact draw procedure and the estimated bivariate

Poisson model to calculate expected tournament outcomes for each R16 team i in each

season t. We conduct our calculations twice, once under the actual set of UEFA constraints

(the bipartite, group, and association constraints), and once under a counterfactual set of

constraints that drops the association constraint (so enforcing just the bipartite and group

constraints).26,27

First, looking across all 16 seasons, we find that expected prize money under the model is

strongly correlated with realized prizes (ρ = 0.639). A linear regression on the 256 team-year

observations (16 teams across 16 seasons) finds expected prizes to be highly predictive of

out-of-sample realized prizes (p < 0.000). Figure 3 provides an illustration of a relationship

26In detail, for both the actual and counterfactual calculations we proceed by first drawing J = 1, 000

R16 matchings,
({
V t
j

}J
j=1

)
, using the exact R-to-W dynamic draw mechanism and fixing the realized R16

teams. For each R16 draw V t
j , we then simulate the remaining tournament outcomes S = 1, 000 times

(the R16 home/away games, quarter- and semifinal home/away games, and the final game on neutral soil).
Consequently, each season is simulated one million times.
27Given the form of the simulation, we also calculate accurate metrics for the expected prize money condi-

tional on each simulated R16 draw V t
j as Ê

(
πit
∣∣V t

j

)
:= 1

S

∑S
s=1 πit,js. The unconditional expected prize is

calculated as Êπit := 1
J

∑J
j=1 Ê

(
πit
∣∣V t

j

)
.
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between the simulated and realized tournament prize money in the 2018 season (with the

red line indicating a regression fit).28

Second, in terms of the importance of the R16 draw, we quantify the effects from a very good

or very bad R16 draw on each team’s expected performance. The bivariate Poisson model

allows us to calculate the expected prize money conditional on any realized R16 draw V ,

Πit(V ) = Ê
(
πA
it |V

)
. Through simulation of the dynamic draw procedure we approximate

the distribution of Πit(V ), and then measure the range in expected outcomes between the

90th and 10th percentiles of the Πit(V ) distribution. In Figure 4(A) we graph the uncon-

ditional expected tournament prize money ÊπA
it for each team i in each season t under the

current UEFA draw against the difference between the 90th and 10th percentile draws for

the conditional expected prize money over the the draw realization. The figure indicates a

strong link between a team’s strength, and how affected they are by a good versus bad R16

draw. For clubs most likely to be eliminated at the very start of the knockout stage (and so

expected to earn less than 20 million euro) the difference between a good (90th percentile)

and bad (10th percentile) draw does not exceed a quarter million euro. Conversely, for the

teams most likely to win the tournament (and so earning more than 30 million euro in ex-

pectation), the difference between a good and a bad R16 realization is three times larger.

Hence, the realization of the R16 draw is of greater importance to the best-performing teams

in the competition.

While Figure 4(A) illustrates the variability in prize money outcomes induced by the R16

draw, Figure 4(B) shows a complementary picture of the effects of the draw on another

metric: the probability of reaching the competition’s semifinals. For an upper-quartile team,

a favorable R16 draw increases the chances of advancing to the semifinals by about five

percentage points. On the extreme, even a best-case draw does not increase the chances for

a lower-quartile-team by more than a percentage point. While similar results follow from

alternative metrics, henceforth we focus on the prize money effects. While a monetary unit

has obvious benefits of being practical and economically comprehensible, it has the added

benefit of also being an objective measure for how the tournament organizers weigh reaching

each stage of the competition.

Finally, having demonstrated that the model is predictive of realized prize money outcomes,

and that the R16 draw matters to the teams (particularly those with higher-ability), we now

turn to quantifying how the association constraint distorts the tournament outcomes. For

each team i in season t we calculate the association constraint effect as the difference in

28Overall the expected prizes calculated under the model explain 41 percent of the total variation in realized
prizes. Moreover, the remaining variability matches the intrinsic variability we would expect under the
estimated Poisson model.
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expected prizes from enforcing the association constraint, ∆πt
i := Êπ̄A

it − Êπ̄B
it , where Êπ̄A

it

and Êπ̄B
it are expected earnings under the current UEFA procedure and the counterfactual

mechanism that drops the same-nation exclusions, respectively. Teams with a positive value

of ∆πt
i are those benefiting from the association constraint, whereas those with a negative

value are being disadvantaged. Across all 16 UCL seasons, the total constraint effect has a

standard deviation of 0.3 million euro (it is mean-zero by construction within each season)

and a range of 1.8 million euro (a cost of 0.8 million euro to Barcelona in the 2007 season

and a subsidy of 1.0 million euro to Real Madrid in the 2017 season). The measured effects

from enforcing the association constraint are therefore substantial.

In order to validate the measured association constraint effect, we further demonstrate that

it is predictive of realized outcomes even after controlling for team ability. For each season t

we create a zero-to-one ability index for the teams in the R16 using the estimated bivariate

Poisson model.29 By way of example, for the 2018 season, our ability index runs from

Shaktar Donetsk at 0, FC Basel at 0.134 and Besiktas at 0.233, up to Real Madrid at 0.919,

Liverpool at 0.999, and Barcelona at 1. Regressing the realized tournament prizes for each

team-year observation on the ability index, we extract the fitted residuals as a measure of

the prize-money outcome that is orthogonal to the teams’ abilities.30 Figure 5 illustrates the

relationship between the association constraint effect ∆πt
i as measured by our model on the

horizontal axis, and the residuals from the regression of realized prizes on teams’ ability on

the vertical axis. Even though the measured constraint effect only explains 4.7 percent of the

total variation in realized prizes after controlling for ability, our model-generated measure is

statistically significant at any conventional significance level (p < 0.001).

A similar exercise conducted using a probit model, suggests that both the ability index and

the association constraint effect are significant predictors of teams’ success in the final stages

of the competition. While a unit shift in the ability index—moving from the worst to the

best team—increases the likelihood of a semifinal appearance by 67.3 percent (p < 0.000),

29Specifically, we calculate the average probability that team i wins a game across each of the 15 possible
partners using the bivariate Poisson model as:

ωt
i =

1

15

15∑
j 6=i

P̂ r (Si > Sj) .

We then re-scale the probability to be an index that runs from zero to one at the season level as ω̃t
i =

(ωt
i − ωt

i)/(ω
t
i − ωt

i) where ω and ω are the best and worst values for ωt
i in season t.

30The ability index coefficient indicates that a difference of 17.8 million euros across the expected prize can
be explained by a unit change in the ability index.
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Figure 5. Constraint effect versus realized tournament prize residual
Note: Dashed line shows fitted relationship between the two variable; shaded band shows 95 percent confi-
dence interval on slope effect.

a measured one million euro subsidy from the association constraint increases the likelihood

by 19.7 percent (p = 0.004).31

Above, we quantify the total effects of the association constraint, consisting of both the

direct effect on team i from ij matching exclusions as well as the indirect spillover effect

from others’ constraints (how a jk exclusion affects i 6= j, k). For illustration, consider the

match probabilities for Real Madrid and Barcelona in the 2018 season (see Table 1, column

8 and row 4, respectively). While the Read-Madrid and Barcelona exclusion directly benefits

the two Spanish teams (these are two of the three strongest teams that season according to

our ability index), Barcelona additionally profits from substantial spillovers generated by six

other same-nation exclusions. In particular, consider Barcelona and two other unconstrained

group winners, PSG and Besiktas (each with seven potential match partners, rows 2 and 7,

respectively). Even though none of the three aforementioned group winners are constrained

from matching with the two lowest-performing teams (Basel and Shaktar Donetsk, columns

1 and 6) Barcelona is 1.35 times more likely to match to either of them than are either PSG

or Besiktas, the less-constrained group winners.

31The association-constraint effects for reaching later stages of the tournament are diminishing in magnitude.
Whereas a one million euro association-constraint subsidy increases the chances of reaching the quarterfinals
by 31.2 percent (p = 0.001), the chances of reaching the final are raised by only 9 percent (p = 0.086).
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Figure 6. Spillovers by number of same-nation exclusions (2004–19)

Holding constant the matching exclusions, distortions caused by the direct effects are an

unavoidable consequence. However, the indirect effects have the potential to be ameliorated

through better randomization mechanisms. In order to quantify the indirect effects of the

association constraint we construct a spillover measure, motivated by the idea of equal treat-

ment of equals (ETE) and designed to compare the matching chances of otherwise equally

treated team pairings.

We regard two teams i and j as otherwise equally treated with respect to third team k if

both the ik and jk matches are not directly excluded, and as being more equally treated the

closer are the likelihoods of the ik and jk matches. For any expected assignment A our ETE

measure captures the mean absolute difference between all otherwise equally treated team

pairings as:

Q (A) =
1

|Υ|
∑

(ik,jk)∈Υ

|aik − ajk| ,

where

Υ = {(ik, jk) |i, j ∈ W , k ∈ R, ik, jk 6∈ H }
⋃
{(ki, kj) |k ∈ W , i, j ∈ R, ki, kj 6∈ H } .

In Figure 6, we graph the ETE objective Q (At) for the expected assignment matrix At for

each season t under the current UEFA draw procedures. Since the relationship in question

is strongly positive, we conclude that the association constraint substantially distorts match

chances of otherwise equally treated teams. Specifically, the estimated slope coefficient from
22



the regression of Q (A) on the number of same-nation exclusions suggests an average wedge

in match-likelihoods of 0.05 for every ten exclusions.32 This represents a relative swing of

up to a third for unconstrained teams. Although this result points to quantitatively large

spillovers even after accepting the constraints’ direct effect, we now show that there is not

much scope to ameliorate the spillovers through better randomizations.

5.4. Near-Optimality of the Current Procedure. A natural question raised by Result

1 is whether there exists a randomization procedure that generates less distortions than the

one currently employed. In this section we provide the following largely negative answer:

Result 2. While the UEFA mechanism is not optimal given the constraints, it comes very

close to the optimal mechanism when considering the equal treatment of equals spillover

measure.

Evidence: We demonstrate Result 2 by making use of a tool provided by Proposition 3 in

Section 4.2. The proposition shoes that a feasible assignment-producing mechanism exists

for every feasible expected assignment matrix satisfying the constraints. This substantially

simplifies the problem by reducing the effective degrees of freedom, allowing us a compu-

tationally tractable search for the optimal expected assignment A?
t . The main result here

is that the matrix A?
t that minimizes the spillover measure Q(·) is not substantially better

than the expected assignment under the current dynamic draw procedure Â?
t for any UCL

season between 2004 and 2019. 33

The optimal expected assignment solves the following optimization problem:

A?
t := argmin

A
Q(A),

subject to the constraints (1) ∀ij ∈ Ht : aij = 0; (2) ∀ij : 0 ≤ aij ≤ 1; (3) ∀i :
∑

k aik =∑
k aki = 1, where Ht denotes the set of match exclusions in season t and Q is the ETE

spillover measure.

In Figure 7 we graph the spillover measure for the optimal expected assignments Q (A?
t )

against the spillover measure for the actual UEFA mechanism, across the 16 past UCL

32When there are no same-nation exclusions our measure is zero by construction, so we estimate the rela-
tionship without a constant.
33One potential objection here is that we are not using the right objective function Q(·). While we are
amenable to suggestions for other metrics, we have additionally tried minimizing the square differences,
the differences between the maximal and minimal positive-probability matches for each team, as well as a
measure based on the Kullbeck-Leibler divergence. None of these showed economically meaningful gains
from optimization, where the interpretation of the quantitative measures became harder than the “average
difference” interpretation of our chosen metric.

23



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 7. Spillovers under the constraints: Optimal mechanism versus UEFA
mechanism.

seasons. While some improvement is possible across the tournament years, the gains are

marginal (on average a less than 10 percent relative reduction in the size of the spillovers).34

Against the small potential benefits, there are large prospective implementation costs as-

sociated with modifying the existing procedure, as constructive mechanisms that produce

the optimal expected assignment are potentially quite complex in comparison to the current

procedure. While Corollary 1 provides a channel through which the optimal mechanism

might be implemented—a pre-draw where the organizers randomize the feasible matching

set—even this would be cumbersome and might engender suspicion from observers. Put

against this transparency cost, the ability to reduce the average match distortion from a 5

percent average difference in matching chances under the current UEFA mechanism to a 4.5

percent difference does not seem alluring.35,36

34The size of the reduction is given by the estimated slope coefficient from a regression of the spillover under
the optimal randomization against the actual UEFA mechanism for all years t = 2004, ..., 2019.
35Note that it is possible that there exist simple modifications of the current matching mechanism that would
shift the expected assignments towards the optimum. In the Appendix, we show that the three distinct
mechanisms in Proposition 2 are all near-identical in their expected assignments to the actual mechanism
(see Figures 11-13 in the Appendix).
36We should note too that the inability to improve upon the expected assignments generated under the
UEFA mechanism is not driven by a limited scope in moving expected assignments under the constraints.
Taking 2018 as a (fairly representative) example, we can obtain any value for the spillover measure from the
optimum value of just over 0.03 all the way up to an upper bound of 0.32.
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5.5. Weakening the Constraints. One response to Result 2 is to accept the current mech-

anism and the distortions it generates. In this final section, however, we take a different

approach, and examine the extent to which gains can be made by weakening the association

constraint. Specifically, we investigate the extent to which the association constraint can

be partially relaxed while still protecting the tournament from excessive R16 same-nation

match-ups. There are several practicable ways in which this could be accomplished, but

in what follows, we focus on a procedure that relaxes the association constraint while only

marginally modifying the current draw procedure. Specifically, we study an alternative as-

sociation constraint where we allow at most one same-nation match in the R16. We can

therefore continue to use the constrained R-to-W dynamic mechanism detailed in Section

4.1, with a sole modification to the (now expanded) admissible set given by

ΓH := {V ∈ V | |V ∩H| ≤ 1} .

As such, the relaxation retains the desirable features of the current mechanism: the random-

ization is transparent (fair draws from a small-sample urn) and the more-opaque combinatoric

check continues to be fully verifiable at all points during the draw.

Under this relaxation we find that:

Result 3. Weakening the association constraint to allow for at most one same-association

match in the R16 substantially reduces the distortions, while protecting associations from

excessive same-nation match-ups. Moreover, as a secondary effect, weakening the association

constraint reduces the number of same-nation games in the later stages of the tournament.

Evidence: We start by constructing analog results to those presented in Section 5.1. In

Figure 8, the blue points indicate the spillover measure for the UEFA draw procedure with

the at-most-one same-association constraint set on the vertical axis against the values under

the default constraint set. Allowing for a single same-nation match in the R16 decreases

the total distortions by more than 70 percent. This is a sizable reduction, especially when

compared to the 10 percent reduction obtained under the optimal mechanism maintaining

the current constraint structure derived in Section 5.4 (the red stars in the figure).

Circling back to a measure of the total association effect when the constraint is relaxed we

define the expected prize difference as ∆π̃i
t = Êπ̄C

it − Êπ̄B
it , where Êπ̄C

it is the expected prize

for team i in season t under the at-most-one association draw, and Êπ̄B
it is the expected

prize in the absence of any association constraints as before.37 In Figure 9, we illustrate

the relationship between ∆π̃i
t, which we refer to as the counterfactual association constraint

effect, and the association constraint effect ∆πi
t defined in Section 5.1. We conclude that

37We again numerically calculate Êπ̄C
it via the same Monte Carlo simulation method used in Section 5.1.
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Figure 8. Spillovers under the relaxed constraints
Note: Horizontal axis shows the ETE spillover measure for the current UEFA mechanism. Vertical axis
shows spillovers under the following two alternative mechanisms: (blue dots) at-most-one association match
mechanism with dynamic draw; (red stars) the optimal mechanism under the constraints. Dashed red lines
show regression fits.

●

●

●

● ●

●

●

●

●

●

●

● ●

●

● ●
●

●

●

●

●

●
●●

●

●

●
●

●

● ●

●
●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●
●●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●●

●
●●

●

●

●

●● ● ●

●

●
●

● ●
●

●●
●●
●
●

●
● ●

●

●

●

●●

● ●

●

● ●
●●

●
●

●
●

●

●

●

●
●

●
●

●●
●
●

●

●

● ●●

●

●
●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
● ● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

Figure 9. Counterfactual and current effects of the association constraint

allowing for a single same-association match in the R16 reduces the total prize distortions

by 71 percent.38

38Estimated slope coefficient of 0.29 from the regression of the direct counterfactual association effect on the
current association effect, across all 16 teams in all seasons.
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Figure 10. Within tournament association-game tradeoffs: later stages ver-
sus R16

The above demonstrates a substantial reduction in the matching distortions with only a

slight relaxation of the association constraint. However, there are presumably nontrivial costs

associated with allowing for same-nation R16 matches. Relaxing the association constraint

as we have done leads to a single same-nation match-up in the R16 in approximately six

out of every ten tournaments. In seasons with at least six same-nation exclusions, this ratio

increases to seven-in-ten. Since the association constraint is imposed intentionally, UEFA

likely has a clear underlying preference for the tournament to be primarily an international

competition.39

As a final point in favor of our relaxation approach, we show that, perversely, imposing

same-nation exclusions at earlier stages of the tournament has the effect of increasing the

likelihood of same-nation match-ups in the subsequent rounds. Using our estimated model

of goal outcomes and the at-most-one same-association match mechanism, we assess the

predicted change in the number of same-nation matches in later stages of the tournament.

We find that for every same-association pairing generated in the R16, there is a 0.10 reduction

in the same-nation games in later stages of the tournament.40 In Figure 10 we illustrate these

two compensating effects in all seasons between 2004 and 2019.

39This, however, cannot be determined, since “the identification of design constraints is usually more difficult
because they are rarely communicated by the organizers” (Csató, 2018).
40The effect would be larger if we additionally accounted for the same-nation exclusions in the group stage
that precedes the R16.
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6. Conclusion

We document a constrained-assignment problem—with huge public interest and millions of

euro in prize money at stake in the draw outcomes—where the randomization mechanism

needs to be transparent to both participants and the general public. This is in contrast to

many market design solutions that are formed entirely over efficiency, fairness and strategic

compatibility objectives—for example, in the assignment of students to schools (Abdulka-

diroğlu et al., 2005; Pathak and Sönmez, 2013) or donors in a kidney exchange (Roth et

al., 2004). While many matching procedures with desirable theoretical properties have been

developed, the resulting algorithms can seem opaque and discriminatory, to the extent that

participants can misunderstood even dominant strategies (Rees-Jones and Skowronek, 2018).

The alternative path pursued by UEFA in their assignment mechanism prioritizes trans-

parency, potentially at a cost in terms of fairness. In the main body of the paper we eval-

uate the UEFA field mechanism, both theoretically and empirically. Through combination

of a structural model of the matching procedure with a commonly-used econometric model

for football outcomes, we quantify the distortions caused by the competition’s matching

constraints. While the enforced constraints on same-nation matches significantly distorts

outcomes, we show that the chosen mechanism comes close to a constrained-best in terms of

ex ante fairness. The randomization mechanism chosen by UEFA is therefore remarkable in

the sense that it solves a complex constrained matching problem in a way that is transparent

and comprehensible to the general public.

While our main result shows that the developed mechanism is close-to-optimal, the final

section of the paper demonstrates that relatively large improvements are possible with only

a slight relaxation of the constraints. In particular, we show that allowing for at most one

out of eight R16 pairings to be between teams from the same nation, as opposed to none,

reduces distortions by approximately 70 percent.
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Appendix A. Technical Appendix: For Online Publication

A.1. Proof of Proposition 2. The constrained dynamic R-to-W draw is distinct from:

(i) The mechanism that fairly draws over Γ; (ii) The dynamic mechanism that fairly draws

admissible pairs; and (iii) The constrained W-to-R dynamic draw.

A.1.1. Part (i). Consider a problem of matching R = {a, b, c, d} to W = {e, f, g, h} under

the set of constraints H = {ae, bf, cg, dh, ah, bg, dg}.41 The three resulting feasible matchings

are given by V1 = {ag, be, ch, df}, V2 = {ag, bh, ce, df}, and V3 = {ag, bh, cf, de}. Under the

fair draw from Γ = {V1, V2, V3}, the probability of V1 is equal to 1
3
. However, under the

dynamic R-to-W mechanism, (and knowing that a is degenerate) the probability of V1 is

given by:

Pr {V1} = Pr {be ∈ V ?} =
∑
x∈W

Pr {w1 = x} · Pr {be ∈ V ? |w1 = x} = 13
36
.

Hence, the two mechanisms are distinct.42

A.1.2. Part (ii). Consider a problem of matching R = {a, b, c, d} to W = {e, f, g, h} under

the set of constraints H = {bf, cg, ch, bg, dh}. Among the five resulting feasible matchings,

only V1 = {af, bh, ce, dg} contains the match af .43 Under the dynamic W → R mechanism

Pr {V1} = Pr {af ∈ V ?} = 161
864

; However, under the dynamic R →W mechanism Pr {V1} =

Pr {af ∈ V ?} = 55
288

.44 Hence, the two mechanisms are distinct.

A.1.3. Part (iii). Consider a problem of matching W = {a, b, c, d} to R = {e, f, g, h}
under the set of constraints H = {bf, cg, ch, bg, dh}. Among the five resulting feasible

matchings, only V1 = {af, bh, ce, dg} contains the match af . Under the dynamic draw of

pairs Pr {V1} = Pr {af ∈ V ?} = 59
308

; However, under the dynamic R → W mechanism

Pr {V1} = Pr {af ∈ V ?} = 55
288

. Hence, the two mechanisms are distinct.

A.2. Additional Results.

41The proof requires at least a 4 × 4 market, as a 3 × 3 is degenerate with the standard symmetric group
constraints and a single asymmetric same-nation exclusion. The proof can obviously be extended to any
n× n market by making the remaining (n− 3) match partners unique through exclusions.
42The proof becomes more cumbersome but still goes through if we removed the dg exclusion that forces ag
to be degenerate.
43A similar counterexample can be constructed with the standard group restriction enforced, but would
require a 5× 5 market; We omit it for tractability and instead, focus on a 4× 4 sub-market.
44The four other matchings are: V2 = {ae, bh, cf, dg}; V3 = {ag, bh, ce, df}; V4 = {ag, bh, cf, de}; V5 =
{ah, be, cf, dg}.
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A.2.1. Simulation Errors.

Proposition 4. Simulating the mechanism 106 times leads to 95 percent confidence intervals

smaller than ±0.001.

Proof. Assignments are independent draws from a fixed distribution with a probability of

selecting assignment V given by f(V ). The probability that the particular match ab is se-

lected is given by pab =
∑

V ∈M(ab) f(V ) where Mab := {V ∈ Γ |ab ∈ µ} is the set of matchings

which include ab. We simulate the vector 82-vector p̂ where each element in p̂ab is calculated

from the N independent simulation assignments
(
V̂i

)N
i=1

p̂ab :=
1

N

N∑
i=1

1
{
ab ∈ V̂i

}
.

The vector p̂ has the obvious property that E(p̂) = p. We can use the central-limit theorem

to show that
√
n(p̂ − p)

D−→ N64(0,Ω) for the variance-covariance matrix Ω has a generic

element given by:

ωab,cd = Pr {ab ∧ cd} − Pr {ab}Pr {cd} ,

which can be estimated by

ω̂ab,cd =
1

N

N∑
i=1

1
{
ab, cd ∈ V̂i

}
− p̂abp̂cd.

However, given a simulation-size of N = 106, a conservative estimates (as ωab,ab ≤ 1
4
) for the

95 percent confidence interval for each probability pab is given byp̂ab± 1.96
2000

h p̂ab±0.001. �
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Appendix B. Additional Tables and Figures: For Online Publication

Table 3. Format of the post-qualifying stages of the UCL between 1956 and 2019

Season(s) 1st knockout phase Group stage 2nd knockout phase

K1 K2 G1 G2 R16 QF SF F
1956-1966 16 8 4 2

1967 30 16 8 4 2
1968–1991 32 16 8 4 2
1992–1993 32 16 8 2

1994 32 16 8 4 2
1995–1997 16 8 4 2
1998–1999 24 8 4 2
2000–2003 32 16 8 4 2
2004–2019 32 16 8 4 2

Note: K1 and K2 denote the number of teams competing in the 1st and 2nd knock-out round; G1 and G2
in the 1st and the 2nd round of the group stage; R16 in the R16, QF in the quarterfinal, SF in the semifinal,
and F in the final game.

Table 4. Number of teams from each association participating in the UCL
R16 by season

Season TOP5 BEL CYP CZE DEN GRE NED POR RUS SCO SUI TUR UKR Total

ENG ESP FRA GER ITA Total
2004 3 4 2 2 2 13 1 1 1 16
2005 4 2 2 3 3 14 1 1 16
2006 3 3 1 1 3 11 1 2 1 1 16
2007 4 3 2 1 3 13 1 1 1 16
2008 4 3 1 1 3 12 1 1 1 1 16
2009 4 4 1 1 3 13 1 2 16
2010 3 3 2 2 3 13 1 1 1 16
2011 4 3 2 2 3 14 1 1 16
2012 2 2 2 2 3 11 1 1 2 1 16
2013 2 4 1 3 2 12 1 1 1 1 16
2014 4 3 1 4 1 13 1 1 1 16
2015 3 3 2 4 1 13 1 1 1 16
2016 3 3 1 2 2 11 1 1 1 1 1 16
2017 3 4 2 3 2 14 2 16
2018 5 3 1 1 2 12 1 1 1 1 16
2019 4 3 2 3 2 14 1 1 16
Mean 3.4 3.1 1.6 2.2 2 13

Note: BEL indicates Belgium, CYP Cyprus, CZE Czech Republic, DEN Denmark, ENG England, ESP
Spain, FRA France, GER Germany, NED the Netherlands, ITA Italy, POR Portugal, RUS Russia, SCO
Scotland, SUI Switzerland, TUR Turkey, UKR Ukraine. TOP5 denotes English, Spanish, French, German,
and Italian associations together.
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Table 5. Number of same-nation exclusions generated by each national as-
sociation in the UCL R16 by season

Season TOP5 POR RUS Total

ENG ESP FRA GER ITA Total
2004 3 3 3
2005 4 2 6 6
2006 1 2 3 3
2007 2 1 2 5 5
2008 4 2 6 6
2009 4 3 2 9 1 10
2010 1 2 3 3
2011 3 2 5 5
2012 1 2 3 3
2013 1 4 1 6 6
2014 4 4 8 8
2015 2 1 4 7 7
2016 2 2 (1) 3
2017 2 4 1 2 9 9
2018 4 2 1 7 7
2019 3 2 1 2 1 9 9
Mean 2.8 2.8 1.0 2.5 1.7 5.5 5.6

Note: (1) indicates a constraint generated by FC Zenit (RUS) and FC Dynamo Kyiv (UKR).

Table 6. Same-nation exclusions in the UCL R16 by season

Season TOP5 POR RUS

ENG ESP FRA GER ITA
2004 1|3
2005 2|2 1|2
2006 1|1 2|1
2007 1|2 1|1 1|2
2008 2|2 2|1
2009 2|2 1|3 2|1 1|1
2010 1|1 2|1
2011 3|1 2|1
2012 1|1 1|2
2013 1|1 2|2 1|1
2014 2|2 2|2
2015 1|2 1|1 2|2
2016 2|1 1|1
2017 2|1 2|2 1|1 1|2
2018 4|1 1|2 1|1
2019 3|1 1|2 1|1 1|2 1|1

Note: In a (m|n)-pair m indicates the number of seeded (group stage winners) teams and n the number of
unseeded (group stage runners-up) teams. m × n is the total number of exclusions generated by a given
association.
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Table 7. Summary statistics for the number of goals scored in the UCL

Season # Games Average Std. Dev.

Home Away Home Away

2002 156 1.69 0.95 1.18 0.90
2003 156 1.58 1.19 1.36 1.07
2004 124 1.52 0.94 1.37 0.99
2005 124 1.69 0.97 1.46 1.07
2006 124 1.39 0.86 1.31 0.97
2007 124 1.47 1.00 1.29 1.05
2008 124 1.57 1.07 1.42 1.02
2009 124 1.45 1.19 1.34 1.28
2010 124 1.42 1.15 1.23 1.13
2011 124 1.64 1.19 1.44 1.27
2012 124 1.68 1.09 1.54 1.13
2013 124 1.63 1.31 1.30 1.10
2014 124 1.62 1.26 1.35 1.33
2015 124 1.70 1.19 1.60 1.33
2016 124 1.68 1.12 1.42 1.13
2017 124 1.84 1.19 1.68 1.23
2018 124 1.77 1.43 1.53 1.40
2019 124 1.71 1.23 1.43 1.20

Note: From the group stage onward except for the final game played on a neutral ground.

Table 8. Estimated bivariate Poisson model coefficients by season

Season µ η ρ
2004 -0.25 0.42 -2.06
2005 -0.47 0.46 -2.00
2006 -0.71 0.57 -1.88
2007 -0.86 0.55 -1.99
2008 -0.49 0.46 -2.02
2009 -0.85 0.37 -1.71
2010 -1.34 0.29 -1.37
2011 -1.51 0.31 -1.33
2012 -0.69 0.27 -10.34
2013 -0.25 0.34 -2.23
2014 -0.05 0.31 -13.76
2015 -0.04 0.27 -16.38
2016 -0.09 0.34 -15.78
2017 -0.07 0.39 -14.96
2018 -0.05 0.37 -16.59
2019 -0.22 0.32 -16.06
Mean -0.50 0.38 -7.53

Note: µ denotes the constant term, η the home-effect parameter, and ρ the correlation coefficient between
the number of goals scored by the two opposing teams.
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Figure 11. Spillovers under the constraints: Fair draw over feasible assign-
ments versus UEFA mechanism (2004–19)
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Figure 12. Spillovers under the constraints: Fair dynamic draw over admis-
sible pairs versus UEFA mechanism (2004–19)
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Figure 13. Spillovers under the constraints: Dynamic W-to-R mechanism
versus UEFA mechanism (2004–19)
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