P&F Grant Submission Date

Due to new NIH approval requirements, we have to change the due date for Pilot and Feasibility Projects. In order to allow the P&F projects to start at the beginning of the funding cycle (April 1st each year), we will need to move up the due date for the P&F proposals. This year, the P&F proposals will be due on November 14, 2014. Please follow the link below for additional information:

http://www.musculoskeletalcore.wustl.edu/content/Pilot-amp-Feasibility-Grants/2990/Call-for-Proposals.aspx

Musculoskeletal Winter Symposium

February 16, 2015

Just In Time program

Just in Time program now available! Applicants may apply for up to $3,000 to support use of the MRC Cores. Please visit our website for more information and to download application form:

http://www.musculoskeletalcore.wustl.edu/content/Core/3035/A-Administrative-Core/Services/Just-In-Time-Funding.aspx

For more information about the MRC and the Cores, please click here:

http://musculoskeletalcore.wustl.edu
We focus on the molecular genetics of heritable metabolic bone diseases and skeletal dysplasias. The wide variety of the bone diseases studied includes hypophosphatasia (caused by mutations in the TNSALP gene), juvenile Paget’s disease (osteoprotegerin gene), familial Paget’s disease (SQSTM1), familial expansile osteolysis (RANK gene), Camurati-Engelmann disease (TGFBI1), high bone mass disease (LRP5 and SOST), hypophosphatemic rickets (PHEX, DMP1, FGFR3), and many others. We are also studying several families with unique bone diseases where the genetic defect is still unknown, using genetic approaches to identify the defective genes. My colleague, Michael Whyte, MD performs clinical, biochemical, etc. investigation of these patients and families at Shriners Hospital for Children and at Barnes-Jewish Hospital. Here, I highlight a few of our recent findings by focusing on two of these disorders.

As we reported in the New England Journal of Medicine in 2002, juvenile Paget’s disease (JPD) features accelerated bone turnover caused by deactivating mutations in the osteoprotegerin (OPG) gene (Fig. 2). OPG is a decoy receptor that prevents RANK ligand from binding to its receptor, RANK, a major regulator of osteoclast development and activation. Since our initial discovery that OPG mutations cause JPD, we have reported several additional patients. We have in press, a manuscript describing a Bolivian girl who is clinically diagnosed with JPD, but instead has a unique 15 base pair duplication in the signal peptide of RANK. (1) We now call this new clinical variant, JPD2.

X-linked hypophosphatemic rickets (XLH) is a dominant disease caused by mutations in the PHEX gene, and results in short stature, bowed legs, and fractures (Fig. 3). Typically, genetic defects causing XLH disrupt the PHEX protein coding region, including single amino acid changes (missense), termination of protein translation (nonsense), or disruption of mRNA splicing. However, we have in press, a report of an unusual genetic defect near the polyadenylation signal for PHEX. (2) In our study of 52 sporadic XLH patients, we documented a gender bias where boys are more often, and more severely, affected than girls. Further, we find that this unique mutation is relatively common in the U.S. and results in a milder phenotype than other PHEX mutations that disrupt protein translation.

Our genetic studies of these rare heritable bone diseases generates new information that helps us understand and treat these disorders, but also provides new insight into the mechanisms of bone remodeling and mineralization.
