BMPR1A maintains skeletal stem cell properties in craniofacial development and craniosynostosis

Takamitsu Maruyama1,2, Ronay Stevens1, Alan Boka1, Laura DiRienzo1, Connie Chang1, Hsiao-Man Ivy Yu1, Katsuhiko Nishimori3, Clinton Morrison4, Wei Hsu1,5,6*

Skeletal stem cells from the suture mesenchyme, which are referred to as suture stem cells (SuSCs), exhibit long-term self-renewal, clonal expansion, and multipotency. These SuSCs reside in the suture midline and serve as the skeletal stem cell population responsible for calvarial development, homeostasis, injury repair, and regeneration. The ability of SuSCs to engraft in injury site to replace the damaged skeleton supports their potential use for stem cell–based therapy. Here, we identified BMPR1A as essential for SuSC self-renewal and SuSC-mediated bone formation. SuSC-specific disruption of Bmpr1a in mice caused precocious differentiation, leading to craniosynostosis initiated at the suture midline, which is the stem cell niche. We found that BMPR1A is a cell surface marker of human SuSCs. Using an ex vivo system, we showed that SuSCs maintained stemness properties for an extended period without losing the osteogenic ability. This study advances our knowledge base of congenital deformity and regenerative medicine mediated by skeletal stem cells.

INTRODUCTION

Large craniofacial bone defects, which are caused by various conditions, including trauma, infection, tumors, congenital disorders, and progressive deforming diseases, are major health issues (1). The autologous bone graft is a recommended procedure for extensive skeletal repairs, but their success remains highly challenging owing to several limitations (1, 2). Consequently, alternative approaches have been explored (3, 4). Stem cell–based therapy is particularly attractive and promising, in light of the characterization of skeletal stem cells in craniofacial and body skeletons (5–11). Craniofacial bone is mainly formed through intramembranous ossification, a process different from the endochondral ossification required for the body skeleton (12). Because of the distinct properties of the stem cells of the craniofacial and body skeletons (5, 13), it is necessary to study each type of skeletal stem cells. Suture stem cells (SuSCs) are the stem cell population that is naturally programmed to form intramembranous bones during craniofacial skeletogenesis (5). Presently, the lack of a cell surface marker for stem cell isolation and the inability to maintain stemness characteristics ex vivo are two critical hurdles that restrict further advances in the field of skeletal regeneration.

Craniosynostosis, which affects 1 in ~2500 individuals, is one of the most common congenital deformities and is caused by premature suture closure (14). The suture serving as the growth center for calvarial morphogenesis is the equivalent of the growth plate in the long bone. Excessive intramembranous ossification caused by genetic mutations promotes suture fusion (15). An example is the genetic loss of function of AXIN2, which causes craniosynostosis in mice and humans (16, 17). In 2010, we found that craniosynostosis can also be caused by mesenchymal cell fate switching, leading to suture closure through endochondral ossification (18). By regulating the interplay between bone morphogenetic protein (BMP) and fibroblast growth factor (FGF) pathways, Axin2-mediated Wnt signaling determines skeletogenic commitment into an osteogenic or chondrogenic lineage. The multipotency further supports the existence of skeletal stem cells within the suture mesenchyme (18). Because Axin2 expression in the presumptive niche site was tightly linked to suture patency, we identified Axin2-expressing SuSCs as essential for calvarial development, homeostasis, and injury-induced repair (5). The Axin2-positive (Axin2+) SuSCs qualified for the modern, rigorous stem cell definition: They exhibit not only long-term self-renewal, clonal expansion, differentiation, and multipotency but also the ability to repair skeletal defects by direct engraftment and replacement of damaged tissue. However, the mechanism underlying the regulation of SuSC properties and the causal link between SuSC dysregulation and congenital birth defects remain elusive.

RESULTS

Identification of a BMP pathway in Axin2-expressing SuSCs

To identify and isolate Axin2+ cells in the suture mesenchyme and to track the descendants of these cells, we genetically engineered mice that inducibly express a green fluorescent protein (GFP) to reflect the activity from the Axin2 promoter in a spatiotemporal-specific manner (Axin2GFP) (fig. S1A). Using a similar system of inducible expression of Cre to drive either lacZ for β-galactosidase (β-gal) labeling or the fluorescent protein Tomato, we established mouse models permitting the tracing of Axin2+ cells (fig. S1B). From Axin2GFP mice at postnatal day 28 (P28), we isolated the Axin2+ cell population with high-intensity GFP signal (Axin2+/GFP+) (fig. S1C) and the nonexpressing cell population that is negative for GFP (Axin2−/GFP−) from the suture mesenchyme.

Microarray analysis comparing SuSCs (Axin2+) and non-SuSCs (Axin2−) revealed about 9000 genes with significant differences (P < 0.05, n = 3). With pathway analysis using Ingenuity Pathway Analysis (IPA) software, we obtained two scores: an enrichment score, representing the statistically significant accumulation of genes in each pathway,
and a z score, representing the activation state of the signal by matching observed and predicted patterns of up-regulation and down-regulation (19). In SuSCs, most of the identified signaling pathways were inactive, but the BMP pathway exhibited significant activation (fig. S2A; P < 10⁻¹³, z score > 2.3). Detailed analysis of expression of genes encoding BMP signaling components showed that seven BMP ligands and the type I receptor Bmpr1a are up-regulated and two negative regulators (Smad7 and Smurf1) are down-regulated in SuSCs (fig. S2B). The results suggested that BMP ligands signal through Bmpr1a to activate the pathway in SuSCs. Therefore, we examined SuSCs for Bmpr1a in the Axin2^{Cre-Dox}; R26RlacZ model in which SuSCs are marked by lacZ (fig. S1B). Double labeling identified Bmpr1a in Axin2^{Cre-Dox} SuSCs at P28 (fig. S2, C to E), consistent with a role for BMP Bmpr1a signaling in SuSC regulation.

Identification of a requirement of Bmpr1a for SuSC-mediated calvarial development and homeostasis

To delineate the functional importance of BMP signaling in SuSCs, we studied the type I receptors in calvarial morphogenesis (20, 21). Most BMP family members signal through one of three type I receptors—Bmpr1a, Bmpr1b, and Acvr1 (20, 21). We focused on the receptors because there are many BMP ligands, making genetic studies challenging. Mice with global inactivation of Bmpr1b are viable, whereas the null mutation of Bmpr1a or Acvr1 is associated with embryonic lethality due to defective mesodermal formation (22–25). Therefore, we developed Bmpr1a^{fx/fx} (Axin2^{Cre-Dox}; Bmpr1a^{fx/fx}) and Acvr1^{fx/fx} (Axin2^{Cre-Dox}; Acvr1^{fx/fx}) models, enabling doxycycline (Dox)–inducible deletion of Bmpr1a or Acvr1 in the Axin2^{Cre-Dox} SuSCs. For studying the calvarial formation, Dox was administered from embryonic day 16.5 (E16.5) to P3 to initiate Cre-dependent gene deletion (Fig. 1A). The efficiency of Cre-mediated recombination in Axin2^{Cre-Dox} SuSCs and their descendant cells was demonstrated using an R26RlacZ reporter strain (fig. S3, A and B). Immunostaining showed not only the efficacy of Bmpr1a ablation in the mutant but also the specificity of the Bmpr1a antibody (fig. S3, C and D).

Bmpr1a^{fx/fx}, but not Bmpr1b^{−/−} or Acvr1^{−/−} mice, displayed craniofacial anomalies at 2 months (Fig. 1B and fig. S4, A and B). The Bmpr1a^{−/−} mutants were easy to identify by the abnormal skull shape. Micro–computed tomography (µCT) analysis and histology revealed calvarial bone and suture closure abnormalities that were specifically caused by the loss of Bmpr1a (Fig. 1, C and D, and fig. S4). The Bmpr1a^{−/−} skull was significantly shorter without any significant difference in width throughout the first 14 days of postnatal development (fig. S4, A to D; P < 0.05). Consequently, the skulls of the Bmpr1a^{−/−} mutant mice were dome shaped compared to the flatter shape of the skulls of the control mice (fig. S4, E and F). Analysis of skulls stained with alizarin red (fig. S5, A and B), histological analysis (fig. S5, C to H), and µCT analyses (fig. S6) revealed multiple synostoses in the internasal, anterior frontal, sagittal, lambdoid, and squamosal sutures of Bmpr1a^{−/−} mice. The results indicated a specific requirement of Bmpr1a in SuSCs during calvarial morphogenesis.

We previously demonstrated that Axin2^{Cre-Dox} cells function as skeletal stem cells in calvarial development and homeostasis (5). To test whether Bmpr1a regulates adult SuSCs, we induced its deletion in the mature skull. In humans, the growth of the skull reaches 90% of adult size in the first year and 95% of adult size by 6 years of age (26). The skull size in teenagers is identical to that of adults. In mice,
90% of the skull development is completed at P28 where SuSCs are restricted to the suture midline (5, 27). Therefore, we administrated Dox to the P28 Bmpr1a^{Ax2} mice for 7 days (Fig. 1E). Three months after the Dox treatment, the mutants were examined by μCT and histology. Deletion of Bmpr1a in adult SuSCs resulted in aberrant suture morphogenesis and multiple sutural synostoses (Fig. 1, F and G), suggesting an essential role of Bmpr1a in SuSC-mediated calvarial homeostasis. Thus, together, the analysis of mice lacking Bmpr1a during embryonic and early postnatal development along with those lacking Bmpr1a after skull maturation indicated that Bmpr1a was critical for both calvarial development and homeostasis.

Craniosynostosis is initiated in the midline of the Bmpr1a^{Ax2} suture
A time-course study was performed to decipher the suture closure process. Dox-inducible deletion of Bmpr1a was conducted from E16.5 to P3. Skulls from mice were evaluated by alizarin red staining (Fig. 2A) and Goldner’s trichrome staining (Fig. 2B) at P0, P7, and P14 (Fig. 2). At P0, Bmpr1a deletion caused a wider suture. However, abnormal ossification within the suture mesenchyme was evident at P7 and P14 in the absence of Bmpr1a, ultimately leading to suture closure at 2 months (Fig. 1, C and D). This finding suggested that aberrant ossification is initiated in the suture midline and moves toward the osteogenic fronts.

Calvarial bones are formed through osteoblast-mediated intramembranous ossification. To delineate the aberrant ossification process caused by the SuSC-specific deletion of Bmpr1a, we examined osteoblast proliferation and differentiation. In the suture of control mice at P3, immunostaining of Ki67, a marker for cells undergoing mitosis, revealed that most cells are quiescent in the suture mesenchyme but actively proliferating at the osteogenic fronts (Fig. 3A), which is the site where intramembranous ossification occurs toward the suture midline. In the Bmpr1a^{Ax2} mice, the number of Ki67⁺ cells was aberrantly increased in the suture mesenchyme (Fig. 3B). To examine osteoprogenitor cells, we immunostained for Osterix (Osx); to detect osteoblast cells, we performed in situ hybridization of type I collagen (Col1). At P0, Osx⁺ osteoprogenitors were detected only at the osteogenic fronts of both control and Bmpr1a^{Ax2} mice (Fig. 3C). However, we detected increased numbers of Osx⁺ osteoprogenitors in the suture mesenchyme in response to Bmpr1a deletion in SuSCs (Fig. 3C). Rather than clusters of Col1⁺ osteoblasts at the osteogenic fronts were observed in control mouse calvaria; Col1⁺ osteoblasts were found throughout the suture mesenchyme of Bmpr1a^{Ax2} calvaria (Fig. 3D). Compared with sutures of Axin2<sup>−_m−</sub>; Fgfr1^{+/−} mice, no type II collagen (Col2)[−] positive chondrocytes were detected in the mutant (fig. S7), suggesting that the loss of Bmpr1a function does not promote stem cell fate change and the aberrant suture closure was not caused by ectopic chondrogenesis and endochondral ossification. Our findings indicated that aberrant ossification is initiated in the suture mesenchyme rather than the osteogenic fronts.

Signaling effects of Bmpr1a on SuSCs in the developing suture
To examine the downstream pathways affected by the loss of Bmpr1a function in SuSCs, we analyzed “canonical” BMP signaling mediated by Smad proteins (28) and “noncanonical” signaling through kinases (29). BMPs that signal through Bmpr1a activate the transcriptional regulators Smad1, Smad5, or Smad8, or some combination thereof (collectively, Smad1/5/8). Immunostaining showed comparable amounts of phosphorylated Smad1/5/8 in the osteogenic front and periosteum of control and Bmpr1a^{Ax2} (fig. S8A, top). However, the amount of phosphorylated Smad1/5/8 appeared less in the Bmpr1a^{Ax2} suture midline (fig. S8A, bottom). Immunostaining of phosphorylated TAK1 indicated activation of this kinase mainly in the osteogenic front, and similar amounts of phosphorylated TAK1 were present in the osteogenic front and suture region of control and Bmpr1a^{Ax2} mice (fig. S8B). Examination of activation of mitogen-activated protein kinases (MAPKs) downstream of TAK1 showed strong activation (phosphorylation) of p38 but not of c-Jun.
acteristics of Bmpr1a Ax2. By in vivo clonal expansion analysis, we showed the ability of a single Axin2 + SuSC to generate calvarial bone upon implantation into the kidney capsule, and then the implanted site was evaluated by von Kossa staining to detect mineralized ectopic bones (Fig. 4A) and by histochemical analysis to examine the bone structure (Fig. 4B). Transplantation of 10^2 to 10^5 control cells had a 100% success rate on bone formation (Fig. 4C). With limiting dilution analysis, we further established a quantitative method to examine stem cell clonal expansion in the transplanted kidney to estimate stem cell frequency (5). After 2 weeks, most spheres consisted of all Tomato + cells, suggesting that they derived from a single Axin2 + cell with self-renewing ability (fig. S9E). The time-course analysis suggested that each sphere formed from a single cell (fig. S9, F to K). The average sphere size remained comparable in different passages (fig. S9L).

To determine the cellular origin of the sphere-forming cells, we used the Axin2 Cre-Dox; R26R; R26RTomato model (fig. S1B). Suture cells, isolated from the Axin2 Cre-Dox; R26R mice with Dox treatment for 3 days from P7 to P10, were cultured in the absence of Dox. A small portion of cells was positive for Tomato at the beginning of culture (fig. S9D). For each passage, 10^4 cells were seeded and suture cell spheres continued to form without notable decreases in number for up to five passages, implying the presence of SuSCs with self-renewing ability (fig. S9E). The time-course analysis suggested that each sphere formed from a single cell (fig. S9, F to K). The average sphere size remained comparable in different passages (fig. S9L).

Preservation of SuSC stemness in culture

A protocol for maintaining SuSC stemness in vitro is needed because conventional culture methods for mesenchymal stromal cells do not preserve SuSC stemness. Sphere culture can maintain the properties of neural and mammary stem cells, recapitulating in vivo characteristics (31). We established a culture protocol for cells isolated from the suture mesenchyme (fig. S9A) that maintains stem cell characteristics. We found that the isolated suture cells formed primary (1°) spheres when grown in single-cell suspension culture at very low seeding density (fig. S9, B and C). When 1° spheres were dissociated into single cells, the cells formed secondary (2°) spheres (fig. S9D). For each passage, 10^4 cells were seeded and suture cell spheres continued to form without notable decreases in number for up to five passages, implying the presence of SuSCs with self-renewing ability (fig. S9E). The time-course analysis suggested that each sphere formed from a single cell (fig. S9, F to K). The average sphere size remained comparable in different passages (fig. S9L).

We evaluated the multipotency of the suture spheres by culturing the spheres under conditions that promote differentiation. These multipotency tests showed that 3° spheres differentiated into osteoblast cells and formed mineralized nodules or into chondrogenic cells (fig. S9, M to O). To examine the clonal expansion and bone-forming abilities of suture spheres in vivo, we performed kidney transplantation experiments.
capsule transplantation analysis. We implanted 30 spheres, which were formed from cells isolated from the Axin2 Cre-Dox ; R26RTomato suture, into the kidney capsule. The spheres successfully expanded, colonized, and engrafted (Fig. 5C). Like transplanted freshly isolated suture cells undergoing intramembranous ossification ([5]), the transplanted 1° spheres (Fig. 5, D and E) or 3° spheres (fig. S9, P to S) generated bone tissue resembling calvarial bones (Fig. 5E). The results indicated that the newly developed culture system preserves SuSC stemness and differentiation properties, enabling their analyses in an ex vivo setting.

Ex vivo characterization of SuSCs

Previous in vivo examination of mouse SuSCs at 1 month old, as well as our data for P3 suture mesenchyme (Fig. 3B), indicated their quiescence ([5]). These quiescent SuSCs should be included with our isolation procedure for sphere culture. To test whether a subpopulation of the isolated SuSCs exhibit quiescence in culture, we performed pulse-chase labeling analyses by labeling the cells in vivo and then chasing them in culture. Using the Axin2 GFP (Axin2-rtTA; TRE-H2BGFP) mouse model (fig. S1A), we performed a pulse-chase analysis to examine Axin2+ SuSCs. Axin2-expressing cells were labeled in vivo with GFP by the administration of Dox from P7 to P10. Ectopic bone formation was assessed by von Kossa staining in whole mounts (A) and histology in sections (B). Scale bars, 4 mm (A) and 200 μm (B). Quantification of bone formation rate with transplantation of 10⁵, 10⁴, 10³, and 10² cells with a quantitative estimation for stem cell frequency using ELDA software (C). Immunostaining for Axin2 of sections of the P7 sagittal suture with quantification of the average percentage of Axin2+ cells. Sections were counterstained with 4′,6-diamidino-2-phenylindole (DAPI). Broken lines define the calvarial bones (scale bars, 100 μm). Quantified data are from three mice per group and are presented as means ± SEM (*P < 0.01 by Student’s t test).
presence of a single cell that is strongly GFP+ arises from asymmetric division, whereas symmetric division dilutes the GFP signal (Fig. 6E). We confirmed that the GFP+ cell was also positive for Axin2 by immunofluorescence analysis (Fig. 6F). Labeling the spheres for proliferating cells showed that the GFP+ cell was not actively proliferating (Fig. 6G). These results support our hypothesis that SuSCs undergo asymmetric division in which one daughter cell remains undifferentiated, thus showing label-retaining ability, and the rest of the cells in the sphere arise from the other daughter cell (Fig. 6E).

A requirement of Bmpr1a for self-renewal and bone formation of SuSCs

Using ex vivo pulse-chase labeling analysis, we examined the distribution of Bmpr1a in the spheres. Spheres immunostained for Bmpr1a showed that this receptor is present in the GFP+ cell (Fig. 6H). In vitro self-renewal was examined by serial culturing of spheres, and sphere number (I) and size (J) were evaluated in spheres from control mice or Bmpr1aAx2 mice. For sphere number, the data are presented as means ± SEM (n = 3; *P < 0.05, Student’s t test). For sphere size, individual spheres are shown with the average (middle line), 75% tile (top line), and 25% tile (bottom line) values. Statistical significance was determined by the two-sided Student’s t test (n values: 1° control, 236 spheres, and Bmpr1aAx2, 188 spheres; 2° control, 124 spheres, and Bmpr1aAx2, 66 spheres (N = 3 independent experiments)]. (K to N) Kidney capsules were transplanted with the 1° spheres cultured from control or Bmpr1aAx2 cells, isolated from the P5 suture mesenchyme of mice administered Dox from E16.5 to P3 (n = 3 mice per group). Control mice were Axin2-rtTA; Bmpr1aTx/Fx or TRE-Cre; Bmpr1aFx/Fx mice with Dox. Tissue was evaluated by whole-mount von Kossa staining (K and L) and histological (M and N) analyses. Scale bars, 2 mm (K and L) and 800 μm (M and N).
neighboring cells (Fig. 6H). These results are consistent with our in vivo double-labeling analysis showing only partial overlap of the Bmpr1a and Axin2 reporter signals (fig. S2, C to E). Next, we examined the necessity of Bmpr1a for SuSC self-renewal using serial culture analysis. The culture of cells isolated from the P5 control and Bmpr1a^{−/−} sutures showed comparable sphere formation in 1st culture (Fig. 6I). However, the number of 2nd and 3rd spheres was significantly reduced in cultures from the mutant mice, suggesting that the self-renewing ability of SuSCs is compromised by the loss of Bmpr1a (Fig. 6J; P < 0.05, n = 3, means ± SEM, Student’s t test). The size of the mutant spheres was also smaller compared to the control (Fig. 6I). Thus, the data indicated that Bmpr1a plays an essential role in SuSC self-renewal and maintenance of stemness properties in sphere culture.

Our prior study showed that SuSC self-renewal is linked to clonal expansion and bone regeneration in vivo, especially when a small number of cells are used for transplantation analysis (5). To test whether clonal expansion and osteogenic abilities are affected in Bmpr1a-deficient SuSCs, we implanted 30 spheres into the kidney capsule. In this assay, we used 1st spheres because of the impaired clonal expansion of SuSCs (Fig. 6I). We observed that the number of 2nd and 3rd spheres was severely impaired (Fig. 6, K to N). In one of three transplants with mutant spheres, we detected a tiny area that stained with von Kossa.

To exclude potential noncell-autonomous effects on SuSCs that occur before isolation from the Bmpr1a-deficient mouse using the Bmpr1a^{−/−} model, we used suture cells isolated from Bmpr1a^{−/−} Tg/tg mice, infected the cells in culture with lentivirus expressing GFP (control) or Cre, grew the cells until they formed spheres, and then used the 1st spheres for kidney capsule transplantation. The efficiency of lentivirus-mediated expression that had minimal toxicity was determined with lentivirus expressing RFP: At a multiplicity of infection (MOI) of 1, the expression seemed optimal without notable changes in sphere size or number (fig. S10, A to C). Cre-dependent deletion of Bmpr1a in suture spheres was highly efficient (fig. S10D) and drastically reduced the size of the generated bone tissue when transplanted into the kidney capsule (fig. S10, E to G; P < 0.05, n = 3, means ± SEM, Student’s t test).

These results with those from the Bmpr1a^{−/−} model suggested that Bmpr1a has two key roles: Bmpr1a supports asymmetric division and clonal expansion of SuSCs (Fig. 6) and bone formation of SuSCs in a cell-autonomous manner (Fig. 6 and fig. S10). Thus, the data indicated that Bmpr1a regulates not only SuSC self-renewal but also SuSC-mediated skeletogenesis.

Characterization of human SuSCs

To test for the existence of human SuSCs and our ability to isolate them and maintain them in culture, we obtained discarded tissue containing unfused sutures from patients with craniosynostosis undergoing surgical operations. First, we detected AXIN2⁺ cells and BMPRIA⁺ cells in the midline of human sutures by immunostaining of tissue sections (Fig. 7, A to C, and fig. S11). We determined that the isolated human suture cells grow into 1st spheres when cultured in single-cell suspension with very low seeding density (Fig. 7D). We observed 2nd and 3rd spheres without notable decreases in number and size after serial replating (10⁴ cells for 1st to 3rd spheres), indicating the presence of human SuSCs with self-renewing ability (Fig. 7, E and F). Human suture spheres stained for AXIN2 and colabeled with 5-ethyl-2′-deoxyuridine (EdU) revealed that the majority of human suture spheres contains an AXIN2⁺ cell which is not colocализed with EdU⁺ proliferating cells (Fig. 7, G to I). These results indicated that human SuSCs are quiescent/slow-cycling cells and maintain their stemness through asymmetric division.

Last, implantation of human cells into mouse kidney capsules revealed the formation of ectopic bones positive for von Kossa staining in whole mounts and sections (Fig. 7, J to K) with an 80% success rate (n = 5). Our findings demonstrated successful isolation and culture of human SuSCs, a major hurdle to overcome for translational study.

Bone formation from mouse and human Bmpr1a-expressing cells

The important role of Bmpr1a in stem cell regulation and the overlap in Bmpr1a and Axin2 positivity (fig. S2E) prompted us to test its use as a cell surface marker for SuSC isolation. Using a specific antibody and fluorescence-activated cell sorting (FACS), we purified Bmpr1a^{High} from mouse (BMPRIA^{High} from human) and Bmpr1a/BMPRIA^{Low} cell populations from mouse/human sutures (Fig. 8A and fig. S12). Mouse suture cells were from P10 C57/BL6 mice; human cells were from discarded calvarial tissues containing unfused suture of patients with craniosynostosis. Successful bone formation was evident in the animal recipients with implantation of mouse Bmpr1a^{High} but not Bmpr1a^{Low} mouse suture cells (Fig. 8, B and C). Immunostaining of Osteonectin identified osteoprogenitor cells surrounding the mineralized tissues generated by transplantation of mouse Bmpr1a^{High} (Fig. 8, D and F) cells. We achieved the same results with human BMPRIA^{High} suture cells (Fig. 8, G to L). The results indicated that Bmpr1a/BMPRIA functions as a SuSC marker. Furthermore, these results confirmed not only that Bmpr1a functionally regulates stem cell stemness that is essential for suette patency and craniosynostosis but also that SuSCs are included in the Bmpr1a^{High} cell population in both mice and humans.

DISCUSSION

This study provides evidence that Bmpr1a is essential for SuSC regulation. Loss of Bmpr1a in Axin2-expressing cells impaired SuSC self-renewal, clonal expansion, and osteogenic abilities. Thus, Bmpr1a was required for maintaining these functions associated with stem cell stemness, implying a role for this receptor in repressing differentiation or in promoting asymmetric cell division. A suppressive effect of BMP signaling on early osteogenesis is supported by prior reports showing that neonatal disruption of Bmpr1a or its ablation in osteoprogenitor cells increases the osteoblast cell number (32–34). Loss of Bmpr1a reduced Smad phosphorylation and enhanced the activation of p38 and Erk, suggesting that the balance of canonical and noncanonical BMP signaling cascades is altered in SuSCs. Alternatively, the inactivation caused hyperactivation of signaling downstream of the other BMP type I receptors. It has been proposed that Bmpr1a regulates this balance through modulation of Tak1 activity (35). Because Tak1 was not activated in the Bmpr1a^{−/−} mutant, our findings suggested that a noncanonical pathway distinct from Tak1-mediated MAPK signaling is responsible for Bmpr1a-mediated SuSC stemness.

In the kidney capsule transplantation, only suture cells positive but not those negative for Axin2 can generate bones (5). This implies that skeletal stem cells included in the Axin2⁺ cell population
have bone-forming ability in the kidney capsule. Even though there are osteogenic precursors or osteoblast cells within the Axin2+ cell population, these cells are unable to form ectopic bones (5). The requirement for Axin2+ cells for ectopic bone generation may explain why direct engraftment and replacement of damaged tissue are difficult to achieve in most cell-based therapies. The number of Axin2+ cells is too low in most therapies, and osteoblasts, despite being the bone-forming cells in vivo, are ineffective for bone formation upon transplantation. For therapeutic success, the survival, engraftment, and expansion of the transplanted cells seem highly critical factors. Only stem cells have these properties, and we found that those properties are preserved by Bmpr1a using both an in vivo ablation model and a culture deletion model. Further elucidation of the regulatory mechanism underlying cell survival and engraftment promises important insight into Bmpr1a-mediated bone regeneration, leading to a previously unknown strategy for stem cell–based therapy.

SuSC-specific ablation of Bmpr1a resulted in precocious differentiation and suture fusion. Our findings revealed a previously unidentified etiology for craniosynostosis—stem cell depletion. This pathogenetic mechanism is distinct from other known mechanisms: cell proliferation, differentiation, and apoptosis, any of which cause excessive intramembranous ossification (14). It is also different from our previous report in which suture fusion can be caused by stem cell fate switching; SuSCs undergo chondrogenesis instead of osteoblastogenesis, leading to craniosynostosis mediated by ectopic endochondral ossification (18). Stem cell depletion has previously been associated with ossification deficiency that may be related to patients with Cole-Carpenter syndrome that exhibit wide-open midline sutures containing intrasutural bones (36). Intrasutural bone, which is also known as Wormian bone, occurs frequently in disorders with reduced cranial ossification and has been associated with craniosynostosis (37). The stem cell depletion mechanism that we identified should be explored in synostosis patients without the enhanced ossification phenotype.

Although skeletal stem cells residing in the suture were identified, their role in craniosynostosis was not investigated (5, 6). Axin2 and Gli1 have been used to identify skeletal stem cells in the calvarium (5, 6), but the deletion of Bmpr1a in Gli1+ cells does not induce craniosynostosis, despite resulting in enhanced osteoblast proliferation and differentiation (38). This discrepancy may be attributed to the presence of Axin2 in a more restricted cell population in the suture midline (5, 6). Also, Bmpr1a colocalizes with Axin2 but not Gli1 (38). Our results showed that Axin2+ SuSCs undergo asymmetric division to maintain quiescence. We speculate that disruption of Bmpr1a-dependent regulation of SuSC quiescence is likely the trigger for craniosynostosis. We propose that because SuSC stemness is maintained by Bmpr1a, its deletion leads to aberrant ossification initiated at the suture midline. Therefore, craniosynostosis arises from skeletal stem cell deficiency.

Preserving stemness in vitro is critical for engineering bone tissue. Although sphere-forming cells from bone marrow have been reported, there is a lack of evidence regarding their in vivo origin and osteogenic ability (39–41). Whether their stemness is preserved in vitro remains unknown. We developed an ex vivo protocol to culture SuSCs for an extended period. The cultured SuSCs generated bone tissue upon implantation into an ectopic site. Furthermore, the SuSC culture provides an outstanding system for examination of skeletal stem cell characteristics, such as asymmetric division, cell fate determination, generation of skeletal progenitors, and skeletogenic differentiation. Thus, this system represents a tool for advancing stem cell–based therapy for bone regeneration and repair.

To support the translation of our research into humans, we identified human BMPR1A+ SuSCs capable of generating ectopic bone tissue. Because Axin2 is an intracellular protein, it is essential to identify a surface marker for stem cell purification. The BMP antagonist Gremlin1 labels skeletal stem cells that contribute to endochondral ossification; however, the functional importance of Gremlin1 remains unclear (8). Our results demonstrated that Bmpr1a not only is a key regulator of SuSCs but also serves as a marker for their isolation. We showed that BMPR1A+, which is also known as CD292 (42), can be used to isolate human or mouse suture cells that have skeletal stem cell properties for bone formation. The findings provide
compelling evidence that BMPRIA positivity can be used for the purification of the human SuSC population.

There are some limitations of our study. Although we successfully maintained SuSC stemness in culture, this property was limited to five passages. Genetically based cell tracing shows that SuSCs maintain self-renewing ability for more than 1 year (5), suggesting potential improvement for long-term culture. Increasing stem cell numbers ex vivo is another improvement beneficial for translational implications. Although the transplanted SuSCs generate intramembranous bones highly reminiscent of calvarial bones, no suture-like structure is formed from the transplanted cells in the kidney capsule. This may relate to a lack of niche cells required for suture generation. We speculate that the inclusion of SuSC niche cells is essential for ectopic suture generation.

Our SuSC study promotes future niche cell identification and isolation, leading to the prevention of suture resynostosis in surgical patients or possibly the development of a preventive procedure for premature suture closure as an alternative to surgery for patients with craniosynostosis. Further elucidation of the mechanism underlying SuSC regulation and SuSC-mediated regeneration promise advancements in our knowledge base of congenital deformity and skeletal repair.

Fig. 8. The osteogenic ability of mouse Bmpr1a+ and human BMPR1A+ suture cells. (A) Cell sorter isolation of Bmpr1a/BMPR1Ahigh and Bmpr1a/BMPR1ALow cell populations from P10 mouse or human suture mesenchymes. (B to F) Sorted mouse cells (5 × 10^5) were transplanted into kidney capsules and evaluated by von Kossa (VK) staining to identify bone tissue or immunostaining for Osx to identify osteoprogenitor cells. (G to L) Sorted human cells (5 × 10^5) were transplanted into kidney capsules and evaluated by von Kossa staining to identify bone tissue or immunostaining for Osx to identify osteoprogenitor cells. In (K), tissue was counterstained with DAPI, and the dotted area represents bone. Images are the representatives of at least five independent experiments. Scale bars, 50 μm (B and C and H to M) and 100 μm (D to F).
Axin2-expressing cells was then induced by Dox treatment (18, 53). Both male and female mice were used in this study. Care and use of experimental animals described in this work comply with guidelines and policies of the University Committee on Animal Resources at the University of Rochester.

Cell isolation and purification

Primary suture mesenchymal cells containing SuSCs were isolated from mouse calvaria as described (5). Briefly, an about 1.5-mm-width tissue containing the sagittal suture and the adjacent parietal bones was dissected, and the suture was separated from the parietal bone parts. Suture parts were incubated with 0.2% collagenase in phosphate-buffered saline (PBS) (pH 7.0 to 7.6, 21-031-CV, Corning) at 37°C for 1.5 hours. The dissociated cells were filtered using Cell Strainer 40-µm Nylon (352340, Falcon), and then resuspended in Dulbecco’s modified Eagle’s medium (DMEM) for transplantation analysis, in DMEM containing 5% fetal bovine serum (FBS) for cell sorting, or in DMEM containing insulin (25 µg/ml), transferrin (100 µg/ml), 20 nM progesterone, 30 nM sodium selenite, 60 nM putrescine, epidermal growth factor (20 ng/ml), basic FGF (20 ng/ml), B27 supplement (20 ng/ml), and 1% penicillin-streptomycin for sphere culture. For in vitro culture as spheres, cells were grown for 7 to 10 days in ultralow attachment surface plates (2023-03-23, Corning) during which time the cells formed spheres (1°). The spheres were dissociated with 0.25% trypsin-EDTA and seeded as a single-cell suspension in ultralow attachment surface plates for the culture of the next passage (2°). This process of dissociation and replating was repeated for up to five passages (5°). For differentiation, the spheres were transferred to 24-well plates with treated surfaces (662160, Greiner Bio-One, Monroe, NC) to enhance attachment and cultured in differentiation α-MEM medium containing ascorbic acid (50 µg/ml) and 4 mM β-glycerophosphate for 3 weeks.

For human suture cell isolation, we obtained calvarial discards containing unfused suture from patients with nonsyndromic craniosynostosis (3 to 14 months). Bone fragments were removed to obtain the suture mesenchyme and the tissue was incubated with 0.2% collagenase in PBS (pH 7.0 to 7.6, 21-031-CV, Corning) for 1.5 hours at 37°C. The dissociated cells were then filtered through a 40-µm strainer, followed by resuspension in DMEM containing 20% FBS for sphere culture or in PBS containing 3% FBS for cell purification.

To purify Bmpr1a⁺ and Bmpr1a⁻ cell populations, freshly isolated suture cells were stained with primary mouse monoclonal Bmpr1a antibody (MA5-17036, Thermo Fisher Scientific, Waltham, MA), followed by sorting according to the intensity of secondary antibody-conjugated Texas Red using FACSaria II (BD Biosciences, San Jose, CA). The specificity of this Bmpr1a antibody for the isolation of cells with high amounts of Bmpr1a was determined by FACS (fig. S12).

Kidney capsule transplantation

The transplantation of freshly isolated suture cells or cultured sphere cells into the kidney capsule was performed as described (5). Freshly isolated cells were obtained from P5 mice. For limiting dilution analysis, 10² to 10⁵ cells were transplanted. The frequency of stem cells was calculated with ELDA software (http://bioinf.wehi.edu.au/software/elda/) with validation of the likelihood ratio test for a single-hit model (30). Spheres were tested from 1° and 3° passages by transplanting 30 spheres per kidney capsule.

Staining and analysis

Skull preparation, fixation, and embedding for paraffin and frozen sections were performed as described (16, 18, 53, 54). Samples were subject to hematoxylin/eosin staining for histology, Goldner’s trichrome staining, GFP analysis, β-gal staining, van Kossa staining, or immunological staining with avidin:biotinylated enzyme complex (16, 18, 43, 44, 54–58). For antigen retrieval, samples were incubated with antigen unmasking solution (H3300, Vector) in pressure cooking for 10 min or 20 mM tris-HCl (pH 9) for 16 hours at 70°C. For in vitro deletion of Bmpr1a, cells isolated from mouse Bmpr1a³/³ suture were infected by Lenti-GFP or Lenti-Cre viruses (MOI = 1). The whole-mount von Kossa staining, immunological staining, in situ hybridization, and double labeling analyses were performed as described (5, 54, 59). For double labeling of von Kossa staining and immunostaining, samples were fixed with 2% paraformaldehyde and 0.02% NP-40 for 1 hour at room temperature, followed by incubation with 1% silver nitrate under ultraviolet light for 30 min and with 5% sodium thiosulfate for 5 min. Then, the stained samples were processed for paraffin sections and subsequent immunological staining. To detect proliferating cells, EdU was added to the sphere for 16 hours after 4-day culture, followed by attachment using Cytospin (Thermo Fisher Scientific). After fixing with 95% ethanol for 5 min on ice and 2% paraformaldehyde for 20 min at room temperature, the spheres were treated with 0.5% Triton X-100 for 10 min and incubated with EdU reaction buffer for 30 min according to the manufacturer’s protocol (Thermo Fisher Scientific). Rabbit polyclonal antibodies Osx (ab22552, Abcam, Cambridge, MA; 1:200), Bmpr1a (AB-PAB-10536, Allele, San Diego, CA; 1:100), phospho-Tak1 (ab191688, Biorbyt, St. Louis, MO; 1:200), phospho-ERK1/2 (4370, Cell Signaling Technology, 1:50); rabbit monoclonal antibodies Ki67 (RM-9106, Cell Signaling Technology; 1:200), Axin2 (2151, Cell Signaling Technology; 1:100), phospho-p38 MAPK (4511, Cell Signaling Technology, 1:200), and phospho-JNK (4668, Cell Signaling Technology, 1:100) were used for immunostaining. The Bmpr1a antibody (MA5-17036, Thermo Fisher Scientific, 1:200) was used for FACS and immunostaining studies. Images were taken using a Zeiss Axio Observer microscope (Carl Zeiss, Thornwood, NY) or Leica DM2500 microscope with a DFC700T digital imaging system (Leica Biosystems Inc., Buffalo Grove, IL).

Statistical analysis

R software version 3.2.1 or Microsoft Excel 2010 was used for statistical analysis. The significance was determined by two-sided Student’s t tests. A P value of less than 0.05 was considered statistically significant. Before performing the t tests, the normality of the data distribution was first validated by the Shapiro-Wilk normality test. The activity of signaling pathways in SuSCs was estimated by the active z score using IPA software (Ingenuity Systems). Statistical data were presented as means ± SEM or SD. The stem cell frequency was examined by ELDA software (http://bioinf.wehi.edu.au/software/elda/) with validation of the likelihood ratio test for a single-hit model (30). Individual subject-level data are provided in data file S1.
1. C. Mauffrey, B. T. Barlow, W. Smith, Management of segmental bone defects.

2. H. Zhao, J. Feng, T. V. Ho, W. Grimes, M. Urata, Y. Chai, The suture provides a niche for mesenchymal stem cells of craniofacial bones.

4. T. Maruyama, J. Jeong, T. J. Sheu, W. Hsu, Stem cells of the suture mesenchyme in craniofacial bone development, repair and regeneration.

7. Y. Hu, G. K. Smyth, ELDA: Extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays.

Acknowledgments: We thank Y. Mishina, K. Lyons, and V. Kaartinen for providing Bmpr1a, Bmpr1b, and Acvr1 modified mouse strains, respectively, and J. Lopes, J. Martinez, C. Tang, Flow Cytometry Core, and Biomechanics and Multimodal Tissue Imaging Core for assistance. Editorial services were provided by N. R. Gough (BioSerendipity LLC, Elkridge, MD). Funding: This work is supported by the National Institutes of Health (DE15654 and DE269369) and NYSTEM (C029558) to W.H. Author contributions: T.M., K.N., and W.H. conceived and designed the experiments. T.M. and W.H. wrote the paper. T.M., R.S., A.B., L.D., C.C., H.-M.I.Y., C.M., and W.H. performed the experiments and analyzed the data. Competing interests: The authors declare that they have no competing financial interests. Data and materials availability: All data associated with this study are present in the paper or the Supplementary Materials. Bmpr1aα mouse strain is covered by a material transfer agreement with the National Institute of Environmental Health Sciences. Microarray data from three biological replicates of Axin2 and Axin2 mouse suture cells are available in Gene Expression Omnibus (GSE74849; https://ncbi.nlm.nih.gov/geo/). Correspondence and requests for materials should be addressed to wei_hsu@urmc.rochester.edu and wei_hsu@icloud.com.

Submitted 24 February 2020
Resubmitted 19 October 2020
Accepted 12 February 2021
Published 3 March 2021
10.1126/scitranslmed.abb4416

BMPR1A maintains skeletal stem cell properties in craniofacial development and craniosynostosis

Takamitsu Maruyama Ronay Stevens Alan Boka Laura DiRienzo Connie Chang Hsiao-Man Ivy Yu Katsuhiko Nishimori Clinton Morrison Wei Hsu

Sci. Transl. Med., 13 (583), eabb4416. • DOI: 10.1126/scitranslmed.abb4416

Signaling and suture stem cells
Suture stem cells give rise to craniofacial bone, and premature suture closure (craniosynostosis) is a common congenital deformity. Here, Maruyama et al. studied the role of bone morphogenetic protein (BMP) signaling in suture stem cell dysregulation and craniosynostosis. They found that deletion of BMP type 1 receptor, Bmpr1a, in suture stem cells caused craniofacial abnormalities in mice, including abnormal ossification and suture closure at 2 months of age. Loss of BMPR1A was associated with enhanced proliferation but loss of self-renewal in suture stem cells. Cells from patients were also assessed. Results demonstrate how BMPR1A regulates stemness, clonal expansion, and osteogenesis of suture stem cells, contributing to craniofacial bone development.

View the article online
https://www.science.org/doi/10.1126/scitranslmed.abb4416
Permissions
https://www.science.org/help/reprints-and-permissions