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Abstract

Order dispatching algorithms, which match passenger
requests with vehicles (agents) in ridesharing systems,
are able to achieve high service rates (percentage of re-
quests served) using deep reinforcement learning tech-
niques to estimate the relative values of the different
combinations of passenger-vehicle matches. While the
goal of such algorithms is to maximize the service rate,
this may lead to unintended fairness issues (e.g., high
disparity between the service rates of zones in a city).
To remedy this limitation, researchers have recently
proposed deep reinforcement learning based techniques
that incorporates fairness components in the value func-
tion approximated. However, this approach suffers from
the need to retrain should one wish to tune the degree
of fairness or optimize for a different fairness function,
which can be computationally expensive. Towards this
end, we propose a simpler online approach that uses
state-of-art deep reinforcement learning techniques and
augments their value functions with fairness compo-
nents during the matching optimization step. As no ad-
ditional training is needed, this approach can trivially be
adapted to use any existing value function approxima-
tor (not limited to those by deep reinforcement learn-
ing techniques) and benefits from improved flexibility
in evaluating different fairness objectives efficiently. In
this paper, we describe several fairness functions that
can be used by this approach and evaluate them against
existing state-of-the-art deep RL based fairness tech-
niques on standard ridesharing benchmarks. Our exper-
iments show that our fairness functions outperform ex-
isting fairness techniques (i.e., it finds matching solu-
tions that result in higher service rates and lower service
rate disparity across zones), demonstrating the practical
promise of this approach.

Introduction
On-demand ridesharing has been gaining traction over the
past few years as a solution to the growing need for urban
mobility. Providing low cost rides to passengers at the ex-
pense of small detours, higher earnings for drivers, and a
way to reduce the number of vehicles on the streets, it is
a solution that benefits everyone. Consequently, there has
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been work on finding efficient matches of passengers and
vehicles to minimize delays and maximize system efficiency
for such ecosystems. Recent approaches have used concepts
from dynamic programming and deep reinforcement learn-
ing to learn policies for matching pools of passenger re-
quests to available drivers, achieving real-time performance
capabilities. Some approaches, such as that by Alonso-Mora
et al. (2017), have also looked at this problem through the
lens of managing fleets of high-capacity autonomous vehi-
cles. These advances have led to significant improvements
in the performance of these algorithms vis-a-vis the service
rate (i.e., the fraction of passenger requests served out of all
requests made) as well as the total delay passengers have
to experience (Shah, Lowalekar, and Varakantham 2020;
Lowalekar, Varakantham, and Jaillet 2019; Li et al. 2019).

Optimizing for such metrics, however, can have unin-
tended effects on the fairness of such systems. The issue of
fairness in ridesharing has been discussed in various con-
texts, ranging from passenger-side fairness in terms of de-
lay and partner choice, driver-side fairness in terms of equi-
table earning, and even sub-group level fairness (Nanda et al.
2020; Xu and Xu 2020) for drivers and passengers. Sühr et
al. (2019) outlines the three stakeholders in the ridesharing
ecosystem: (i) the taxis/drivers, (ii) the customers, and (iii)
the platform (Uber, Lyft, etc.). The platform takes on the job
of mediating between customers and drivers, a problem that
is often cast as an Integer-Linear Program (ILP) maximiz-
ing overall driver preferences over incoming requests. This
central role situates ridesharing platforms to enforce fairness
via balancing it with efficiency. Most fairness research in
ridesharing aims to quantify this tradeoff in one way or the
other as part of the objective function, by intervening in the
matching process through a central mechanism.

In our approach, we view the problem in the context of a
fleet of autonomous vehicles controlled by the platform. The
optimization is formulated as a reinforcement learning prob-
lem, drawing from state-of-art techniques (Shah, Lowalekar,
and Varakantham 2020; Nanda et al. 2020) to combine the
best performing algorithms with fairness approaches. Using
zonal fairness as an example of sub-group fairness for pas-
sengers, we propose an online approach to incorporate sub-
group fairness into ILP-based matching algorithms, without
needing to retrain the pre-learned function approximators.
Further, we propose designating only a small fraction of the



vehicles or requests as “fairness-aware” and postulate that
this solution is better at trading off efficiency and fairness
compared to applying the same modifications to all vehi-
cles. We perform experiments to demonstrate the efficacy of
the approach, and perform a grid search over hyperparame-
ters to qualitatively analyze the fairness-efficiency tradeoff.
Our experimental results show that our methods outperforms
existing techniques (i.e., it finds matching solutions that re-
sult in higher service rates and lower service rate disparity
across zones), demonstrating the practical promise of this
approach.

Specifically, our contributions are as follows:
• We develop an online framework that uses off-the-shelf

value function approximators and user-defined fairness
objectives to trade off efficiency for fairness using state-
of-art matching algorithms.

• We introduce new metrics for zonal fairness that consider
fairness across source-destination zone pairs.

• We provide real-time tuneable parameters for changing
between different types and degrees of fairness, allowing
systems to adapt on the fly, and compare the results to
existing benchmarks.

Background and Related Work
Order Dispatching in Ridesharing
While there are many variants of Ridesharing Matching
Problems (RMPs) (Huang et al. 2014; Alonso-Mora et al.
2017; Ma, Zheng, and Wolfson 2015; Simonetto, Monteil,
and Gambella 2019; Shah, Lowalekar, and Varakantham
2020; Lowalekar, Varakantham, and Jaillet 2019; 2020;
Wang et al. 2020), in a typical problem definition, a match-
ing algorithm receives as inputs a continuous stream of
batches of requests from passengers R and the current state
of all the taxis V , operating in a street network G.

A request ri = 〈si, gi, ti〉 contains the pickup location
si, dropoff location gi and the arrival time of the request ti.
The vehicle state vi = 〈li, pi, ci, ri〉 includes its location li,
current path pi, capacity ci and the requests it is currently
serving ri. The street network G = 〈L, E , c(e)〉 is a graph
containing locations L connected by roads E , with a cost
function c : E → R+ that defines the cost c(e) of each edge
e ∈ E in the graph. Intuitively, it corresponds to the time
needed by a taxi to traverse that edge on the graph.

The matching algorithm then needs to match requests to
vehicles given some time and capacity constraints C, while
optimizing some metric (e.g., maximizing the service rate).
In some approaches, this process is repeated at regular inter-
vals (e.g., every minute), and requests are accumulated dur-
ing this time window. Each such matching iteration is called
a decision epoch. An assignment A = {(ri, vj), . . .} to this
RMP is a set of matches between request ri ∈ R and taxi
vj ∈ V such that all the constraints in C are satisfied.

RMPs have been extensively studied, where researchers
have introduced methods that improve the quality of the
matches made in terms of increasing the number of requests
matched (Lowalekar, Varakantham, and Jaillet 2019; 2020;
Ma, Zheng, and Wolfson 2015), reducing the pickup and de-
tour delays (Alonso-Mora et al. 2017; Huang et al. 2014;

Ma, Zheng, and Wolfson 2015), and increasing the revenue
of the drivers (Lesmana, Zhang, and Bei 2019). The com-
plexity of RMP algorithms and, as a result, the time taken
by algorithms to match drivers to passenger requests, in-
creases with the increase in the number or vehicles and
the capacity of each vehicle. As the runtime of real-time
RMP algorithms need to be relatively small, most exist-
ing work has either considered assigning one request at
a time (sequentially) to available drivers for high capac-
ities (Ma, Zheng, and Wolfson 2015; Tong et al. 2018;
Huang et al. 2014) or assigning all active requests to-
gether in a batch for a small capacity (Yu and Shen 2019;
Zheng, Chen, and Ye 2018). The sequential solution is faster
to compute but the solution quality is typically poor (Uber
2018). Alonso-Mora et al. (2017) proposes integer opti-
mization approaches for assigning all active requests to-
gether for high-capacity ridesharing. Shah, Lowalekar, and
Varakantham (2020) and Lowalekar, Varakantham, and Jail-
let (2020) further improve these approaches by including
information about anticipated future requests while match-
ing current batch of requests to available drivers. Distributed
approaches (Li et al. 2019) cast this as a multi-agent re-
inforcement learning problem and asynchronously execute
matches for each vehicle, taking into account the demand-
supply mismatch across zones. This involves some level of
communication between nearby vehicles, as opposed to a
single central agent that observes all information.

There have been multiple interpretations of the term
“ridesharing” in the literature. In our work, we define
ridesharing to be a system where multi-capacity vehicles al-
low passengers to share rides with others or be added onto
existing trips, and a single central agent (the platform) ag-
gregates all information and matches passenger requests to
available vehicles dynamically. We build on the approach
taken by Shah, Lowalekar, and Varakantham (2020), us-
ing integer optimization combined with deep reinforcement
learning to rank matches and find the best assignment.

Fairness in Ridesharing
Researchers have evaluated ridesharing fairness from many
viewpoints. One of the first papers to discuss this con-
cept (Wolfson and Lin 2017) looks at passenger-side fair-
ness, specifically addressing the lack of transparency in such
systems. They propose a fair benefit-sharing approach based
on passengers ranking their ridesharing partners. Foti, Lin,
and Wolfson (2019) extend this by formulating an ILP for
maximum matching and using a game-theoretic approach to
fairness. They compare the fair and optimal solutions and
discuss theoretical and practical bounds between the differ-
ences.

Gopalakrishnan, Mukherjee, and Tulabandhula (2016)
approaches passenger-side fairness from the perspective of
non-increasing disutility (i.e., the addition of new passen-
gers onto the trip shouldn’t decrease the utility of the exist-
ing passengers). They propose a method of sharing the ben-
efits due to additional customers that solves this problem.

Driver-side fairness (Lesmana, Zhang, and Bei 2019;
Sühr et al. 2019) has also been explored from the economic
perspective. Lesmana, Zhang, and Bei (2019) designs a dual



objective, maximizing efficiency and fairness, and describe
methods to balance between the two. They approach driver-
side fairness by using a max-min approach, maximizing the
worst-off vehicle. Another line of work (Sühr et al. 2019)
aims to equalize driver income proportional to the number
of hours spent on the platform, looking at fairness for both
drivers and passengers over longer periods of time.

Fairness isn’t restricted to monetary benefits, however.
Motivated by demographic and geographic fairness con-
cerns, Nanda et al. (2020) and Xu and Xu (2020) formulate
a bipartite matching problem with parameters to trade profit
for fairness. For passengers (Nanda et al. 2020), this unfair-
ness might result from factors like start/end locations, race,
gender, or age, which may lead to drivers canceling requests.
Similarly, for drivers (Xu and Xu 2020), there might exist
an income inequality due to discriminatory cancellations by
passengers. Most of these approaches discussed above use a
naive nearest-vehicle-first or myopic batched allocation ap-
proach towards efficiency. However, as discussed earlier, so-
phisticated methods have been developed that can increase
the efficiency of the system.

One recent work (Raman, Shah, and Dickerson 2020)
looks at disparate treatment of passengers and income dis-
parity amongst drivers in a system that implements a state-
of-the-art matching algorithm. This makes their work the
closest to ours in terms of scope. While they also look at
geographic zones to quantify fairness for passengers, their
approach requires the training of a neural network based
value function to include the fairness term in the objective,
making it costly to change parameters for fairness. Our ap-
proach presents an online way to deal with this problem,
without retraining existing value functions. This also allows
for the tuning of fairness parameters in real time, in response
to changing conditions. Further, our approach offers better
tradeoffs between efficiency and fairness as compared to the
existing approach, and we show this in our empirical evalu-
ation.

Matching using Reinforcement Learning
As mentioned in the background, a Ridesharing Matching
Problem is a tuple RMP = 〈R,V,G, C〉 consisting of the
set of requests R, vehicles V , road network G, and con-
straints C. The solution to this problem is an assignment
A that satisfies the constraints and provides a matching be-
tween vehicles and requests.

We now describe how NeurADP (Shah, Lowalekar, and
Varakantham 2020), a state-of-the-art deep reinforcement
learning based method, solves this problem. (Our approach
is based on NeurADP.) NeurADP learns a Value Function
Approximator (VFA) for a vehicle’s state, which approxi-
mates the expected future value of being in that particular
state, using a deep neural network. For each vehicle, it gen-
erates a set of feasible trips (Alonso-Mora et al. 2017) and
score them using the VFA. Then, it uses an Integer Linear
Program (ILP) to maximize the cumulative score over all
vehicles.

In typical reinforcement learning fashion, there is an agent
and an environment. The environment simulates the motion
of vehicles and the arrival of requests with the passage of

Figure 1: The RMP Pipeline

time. Each decision epoch, the agent takes the current state
of vehicles and pending requests as input and solves the
RMP, matching requests to vehicles. The agent in our setting
involves the combination of a VFA for each vehicle, com-
bined with the ILP that finds the optimal assignment based
on the values. Using the VFA in this fashion to predict ex-
pected returns allows it to make non-myopic decisions that
eventually improve the performance of the system.

The VFA is learned based on TD-learning (Sutton
1988) using experience replay, techniques popularly used in
DQNs (Mnih et al. 2013). We observe transitions from the
environment, which are stored in a buffer and later sampled
in mini-batches to learn from. All vehicles share the same
value function, allowing for efficient reuse of experiences.
The training process and network architecture used for the
VFA is identical to the one used by Shah, Lowalekar, and
Varakantham (2020), and we refer the reader to that paper
for more details.

We define an action as the matching of a set of requests
to a vehicle. If vehicle vi services request rj , we denote the
reward for the vehicle as R(vi, rj). If the set of available
(feasible) actions for vehicle vi is Ai, then, for each action
aik ∈ Ai, the score is the corresponding immediate rewards
obtained for servicing those requests plus the expected fu-
ture value of the new vehicle state after being assigned those
requests:

score(aik) = V (s′) +R(aik) (1)

where V (·) is the VFA and s′ is the new state of the vehi-
cle vi after accepting all requests rj ∈ aik. As a shorthand,
overloading some notation, we can write the reward for an
action as:

R(aik) =
∑
rj∈aik

R(vi, rj) (2)

Let oik be an indicator variable for whether action aik was
selected for vehicle vi. Then, we can write the objective
function of the ILP as follows:

max
∑
i∈|V|

∑
aik∈Ai

oik × score(aik) (3)



subject to the constraints: ∑
aik∈Ai

oik = 1,∀i ∈ |V| (4)

∑
i∈|V|

∑
aik∈Ai s.t. rj∈aik

oik ≤ 1,∀rj ∈ R (5)

oik ∈ {0, 1},∀i (6)

Intuitively, the constraints ensure that each vehicle is as-
signed exactly one action (Eq. 4) and no request is assigned
to more than one vehicle (Eq. 5). In each vehicle’s set of
available actions, there is always the null action (i.e., accept-
ing no new requests), so that there is always a solution. The
final assignment A is a concatenation of all vehicle assign-
ments.

The objective function in NeurADP (Shah, Lowalekar,
and Varakantham 2020) is to maximize the number of re-
quests served.As the reward for each request is uniform and
the VFA’s predictions are a discounted estimate of the num-
ber of requests the vehicle will pick up in the future, the
efficiency can be measured using the service rate, which is
the fraction of requests assigned out of all requests that were
made over a given duration.

Zonal Fairness
As discussed in earlier sections, there has been interest in
preserving fairness across sub-groups of the passenger and
driver populations. In our approach, we focus on the passen-
gers, looking at service rate fairness across zone pairs for
pickup and dropoff locations. The motivation to select this
metric is two-fold: (i) It is an intuitive metric and is consis-
tent with other fairness objectives that aims for equity in ef-
ficiency across sub-groups; and (ii) It is difficult to get infor-
mation about race, ethnicity, and other cultural factors from
publicly-available ridesharing datasets.

Zonal fairness becomes a concern with algorithms like
NeurADP (Shah, Lowalekar, and Varakantham 2020), which
aim to maximize the number of passengers served. In such
cases, if most of the demand is concentrated within a cer-
tain area, the model will learn to prefer requests to/from that
area. Areas with lesser demand are ignored in favor of the
overall maximization objective, resulting in the algorithm
sending a large proportion of the vehicle population towards
regions of high demand. As we discuss in the following sec-
tions, small steps towards fairness can go a long way, be-
cause serving only a small number of requests in the less-
serviced areas can improve the inequity, possibly at only a
marginal cost to the overall efficiency of the system.

We define m zones as disjoint subsets of the locations L
in the city graph. Our sub-groups of interest are people mov-
ing between pairs of zones. Recent work (Raman, Shah, and
Dickerson 2020) aims to maximize the minimum service
rate by including variance in service rates across different
zones in the optimization objective. Specifically, they look
at the service rate by source zone, which we denote as zi
(i.e., the service rate for all requests originating in zone i).

However, this metric does not take into account the desti-
nation of the requests, and there may be a disparity between

fairness based on source zones and fairness based on zone-
pairs, where some source-destination pairs may be severely
under-served. To address this limitation, we define zone-pair
service rate zij as the service rate for requests originating in
zone i and ending in zone j. This gives us a grid Zp of zone-
pair service rates of size m ×m, in addition to a vector Zs
of source-zone service rates of size m.

Given these two sub-group statistics, we can compute fair-
ness metrics of interest, namely the minimum service rate
(by source zone or zone-pair) and the Gini coefficient for
the service rates (also by source zone or zone-pair). We treat
each zone/zone-pair as an individual and fairness is defined
by how high the minimum service rate is (Lesmana, Zhang,
and Bei 2019) and by how low the Gini coefficient is. We
would like to note that these metrics and definitions of fair-
ness are just examples, guided by recent literature, and we do
not claim that these are the only metrics that matter. Instead,
fairness is nuanced and subjective, and we aim to show how
one can improve the fairness for some particular definitions.

Optimizing Zonal Fairness
The key idea of our approach is that the score function in
Equation 1 can be modified to encourage particular request-
vehicle matches by adding a bonus to particular vehicles ser-
vicing requests that would improve fairness. This bonus can
be tuned to suit the need for fairness, and the original score
function can be used otherwise. This gives us the flexibil-
ity of using the best value functions for general operation to
maintain efficiency, and using the bonus to guide the system
towards fairer decisions. It is important to note that we do
not retrain the value function, only using predictions from
an existing one.

Specifically, we define two fairness scores for source-zone
(fs) and zone-pair (fp) fairness.

fs(r) =
||Zs||1
m

− zi (7)

fp(r) =
||Zp||1
m2

− zij (8)

Here, r is the request of interest, and i and j are the source
and destination zones of the request. Intuitively, this score
captures how much worse the request’s source zone (zone-
pair) is, compared to the average score. A positive score
means it is worse. For ease of representation, we also over-
load this function when used for an action a as:

fs(a) =
∑
r∈a

fs(r) (9)

fp(a) =
∑
r∈a

fp(r) (10)

We propose a few methods that use the fairness score in
conjunction with the ILP in different ways to improve fair-
ness. Each approach modifies the score function (Eq. 1), and
can be used with either fp or fs, but we find that fp is em-
pirically stronger.

Fairness-aware Vehicles: In this method, we designate
a fraction α of the vehicles as “fairness-aware,” and these



Figure 2: Trends for change in service rate, zone-pair Gini and minimum source-zone service rate with changing α and β for
α-veh. The top left (α = 0, β = 0) indicates the value for unmodified NeurADP.

vehicles receive the fairness bonus. Let Vα denote the set
of fairness-aware vehicles. We then have the following two
variants:
• α-fair vehicles (α-Veh): The fairness bonus is added to

the existing score function for Vα with weight β. In other
words, Equation 1 is replaced with:

score(aik) =

{
V (s′) +R(aik) + βf.(a

i
k), if vi ∈ Vα

V (s′) +R(aik), otherwise
(11)

• α-exclusive-fair vehicles (Xα-Veh): Vα use only the re-
ward and the fairness score, but not the estimated future
value from the neural network. Thus, the fairness-aware
vehicles are not concerned with maximizing the long-term
value, just the fairness.

score(aik) =

{
R(aik) + βf.(a

i
k), if vi ∈ Vα

V (s′) +R(aik), otherwise
(12)

Request-based Fairness: While having designated vehi-
cles trying to enforce fairness is one solution, it is possible
that those vehicles aren’t in the right place at the right time
and are thus unable to help improve the inequity. To combat
this, we can instead look at fairness on a per-request basis,
adding the fairness bonus to the rewards of certain requests.
Thus, vehicles will be incentivized to pick up requests that
have the fairness bonus, even if the value function gives it a
lower score. For this approach, we modify the rewardR(aik).
Let Rf denote the set of requests with the fairness bonus.
We then have the following new reward function to replace
Equation 2:

R(aik) =

{∑
rj∈aik

(R(vi, rj) + βf.(rj)) , rj ∈ Rf∑
rj∈aik

R(vi, rj), otherwise
(13)

To select which requests get the fairness bonus, we propose
two methods:
• α-subset of requests (α-Req): Using a pair of hyperpa-

rameters (α, β) similar to the two used for fairness-aware
vehicles, this approach selects requests by ranking all re-
quests by decreasing f.(r) and selecting the top α fraction
of requests.

• Positive fairness score requests (+Req): In this ap-
proach, after ranking requests (as in α-Req), we select
all the requests that have a positive f.(r). It amounts to
assigning a bonus to all requests going between zones
whose service rate is worse than the average service rate.

We can vary α and β to change the degree of fairness we ex-
pect to see in the system. Each method may have a different
response to the exact values, but in general, we expect larger
values of α and β to improve the fairness objective, while
causing a decrease in the overall service rate.

Experimental Setup
To evaluate the efficacy of the different approaches, we eval-
uate the performance and fairness metrics after running the
matching algorithm over a 24-hour period on the island of
Manhattan using demand data from the NY Yellow Taxi
dataset (NYC Taxi & Limousine Commission 2020). The
locations in the road network correspond to street intersec-
tions, with edges as roads connecting them. We define zones
as all intersections falling within neighborhoods on Manhat-
tan island.1

We use pre-trained NeurADP models (Shah, Lowalekar,
and Varakantham 2020) as the base value function. We
use the method proposed by Raman, Shah, and Dicker-
son (2020) as a baseline for fairness, using their passenger-
side fairness implementation, which we call FairNN.
FairNN uses one hyper-parameter (λ) to trade off profit
and fairness. In the original paper, experiments were per-
formed for 50 and 200 vehicles with a capacity of 4, for
λ ∈ {108, 109, 1010}. We use the same parameter settings
for our experiments for a fair comparison to the baseline.

However, even with 200 vehicles, the demand from re-
quests saturates the fleet’s capacity. To simulate a more real-
istic scenario, we run the experiments with 1000 vehicles as
well, similar to the work by (Shah, Lowalekar, and Varakan-
tham 2020). For this setting, we also run FairNN with a
wider range of λ (103− 1011), to more clearly see the trend.
Note that each setting of λ requires retraining the value func-
tion for FairNN, which is costly.

1https://github.com/erikgregorywebb/nyc-housing/blob/
master/Data/nyc-zip-codes.csv



For the methods discussed in this paper (α-Veh, Xα-Veh,
α-Req, +Req), we perform a grid-search over the hyperpa-
rameters α and β. We run this search using both fp and fs as
the fairness scores, independently. For each setting, we find
the overall service rate, the Gini coefficient of the service
rate by source zone (Gini(Zs)) and by zone-pair (Gini(Zp)),
and the minimum service rate for any source zone (min(Zs))
or zone-pair (min(ZP )).

Experimental Results
In this section, we go over the key results from our exper-
iments. The full set of experiments had over 900 runs;2 we
thus present selected results that illustrate the overall trend.
We discuss the results from the analysis of the 1000 vehicle
case here, though the trends hold for 200 and 50 vehicles as
well.

Fairness-Efficiency Tradeoff
Figure 2 shows how the various metrics change with chang-
ing hyperparameters for α-Veh, using the zone-pair fairness
score fp. β controls the weight of the fairness score and α is
the fraction of fairness-aware vehicles. We see that as α and
β increase (stronger fairness), overall service rate decreases
and the fairness objective used in the fairness score (here,
Gini(Zp)) improves. Other fairness metrics like the min(Zs)
also improve, but the change is not monotonic, as can be
seen in the third heatmap. This trend is seen across all dif-
ferent methods and both fairness scores. This suggests that
there is a direct tradeoff between efficiency and the selected
fairness metric, and it is possible to use the other metrics to
select a suitable value for the hyperparameters.

Further, this shows that there is merit in applying the
fairness score to a subset of the vehicle population, as the
change in service rate along the β axis is slower, while still
giving gains for fairness. This is also shown by the fact
that min(Zs) is maximized when half the vehicles are fair.
Specifically, it does not lie at α = 1. We also observe that
there are diminishing returns with respect to the fairness util-
ity as α increases. As shown in Figure 2, doubling the num-
ber of fair vehicles does not double the fairness gain.

Source-Zone Fairness vs Zone-Pair Fairness
Figure 3 shows the Pareto frontiers showing the tradeoffs be-
tween service rate and different metrics of fairness for each
method. Runs with the zone-pair fairness score fp are shown
with dotted lines, and runs with their source-zone fs coun-
terparts are shown with solid lines of the same color. In ev-
ery case, the solid lines are Pareto-dominated by the dotted
lines. This shows that zone-pair fairness is a stronger fair-
ness objective, as the performance using fp is better than fs
even when looking at fairness by source zone. This can be
explained by the fact that fp contains more information that
is specific to the request, and looks at fairness at a higher
granularity. fs would be the same among nearby requests,
and thus any vehicle having a choice between such requests

2The complete results can be found at
https://github.com/ashwinkwashu/TRASE22 Zonal-Fairness-
Data.

wouldn’t be influenced by the fairness score. The remain-
ing analysis thus focuses on just the methods using fp as the
fairness score (the dotted lines in the Pareto curves).

Comparison to Baselines
All methods provide significant improvements over the base
NeurADP algorithm in terms of fairness, while reducing the
service rate by different amounts (Figure 3). This shows that
our approaches perform as intended, empirically. We also
observe that FairNN (Raman, Shah, and Dickerson 2020) is
Pareto-dominated by most of our methods across different
fairness metrics. Even within runs for FairNN with differ-
ent λ, most points are Pareto-dominated by one (or a few)
points. The best performance is at λ = 107, which is in the
middle of the range we investigated, suggesting that the im-
provements are not monotonic with λ for this approach. This
shows that our approach has a significant advantage, com-
bined with the fact that FairNN requires retraining for each
hyperparameter setting, while our method can be adjusted
on the fly with no training required.

Relative Performance of Our Methods
Amongst all our methods, we find that α-Req and +Req with
fp perform the best across the board, while α-Veh and Xα-
Veh have similar performance. +Req is a special case of α-
Req, where the number of requests selected is not static.
It is interesting to note that both have similar performance
despite +Req having only one hyperparameter β compared
to α-Req, which has two hyperparameters α and β. Thus,
+Req is our best approach.

To explain the performance difference between the
vehicle-based and request-based approaches, we can con-
sider the fact that while there might be dedicated vehicles
willing to improve fairness, they also need to be in the right
place to serve requests that improve fairness. Request-based
fairness methods do not face this issue as any request that
improves fairness can be directly given a bonus, which in-
directly gets transferred to the nearby vehicles. However,
the advantage of vehicle-based approaches remains in the
fact that their response to changing hyperparameters is more
regular, allowing for better control without too many grid
searches. We make this claim as a general observation with-
out proof, and one can look at the full set of results to further
support this.

While the general trend for each method can be seen
through Figures 2 and 3, it is useful to contextualize the re-
sults from each of the methods by selecting a representa-
tive hyperparameter setting. To do this, we select the hyper-
parameter value for each method using fp that maximizes
min(Zs). This emulates one way of selecting the best hy-
perparameter that could be used in practice, where we are
selecting based on a third variable that is not being traded
off directly. Table 1 shows results from these selected runs
to allow for a qualitative comparison between the various
methods.

Each method is able to improve the objective used in the
fairness score in addition to performing better on the other
metrics, and we also find some interesting and unforeseen



Figure 3: Pareto frontiers for all methods.

behavior. The request-based methods are able to slightly im-
prove the overall service rate while also reducing the unfair-
ness for a milder fairness setting. For example, +Req with
β = 15 has an overall service rate of 81.7% compared to
81.1% for base NeurADP, while it has a Gini(Zp) of 0.21
compared to 0.31 for NeurADP. Thus, depending on the
need for fairness, it is possible to improve on the metrics
without compromising on the efficiency. The last row in Ta-
ble 1 shows one such example.

Driver-Fairness
While we do consider a fleet of autonomous vehicles, it is
possible to instead look at our system as one where human
drivers are part of the fleet and follow the central agent’s de-
cisions. In such a scenario, it is also of interest to look at how
the methods discussed in this paper affect the income distri-
bution among drivers. Figure 4 shows the distribution of the
trips each driver served in one day for each of the cases dis-
cussed in Table 1. We consider the number of trips made as a
proxy for the income, as in our setup, each request is worth
the same amount, with the efficiency objective being max-
imization of requests served. We also assume that drivers
work throughout the day for the purposes of this analysis.

The distribution is a tight one for NeurADP, with each
driver getting on average 240 requests in the entire day.
On the other hand, the distribution is very spread out for
FairNN, suggesting that there is a large income disparity
among drivers. For our approaches, the vehicle-based fair-

ness approaches show an interesting behavior: We see two
distinct clusters of drivers, where drivers of fairness-aware
vehicles service significantly fewer requests compared to
drivers of regular vehicles, which is to be expected. There-
fore, our vehicle-based fairness approaches are unfair for
drivers.

However, if the vehicle fleet includes a combination of
human drivers and autonomous vehicles, where the fraction
of autonomous vehicles is α, then assigning the autonomous
vehicles as fairness-aware vehicles and human-driven vehi-
cles as non-fairness-aware vehicles will increase the number
of trips served by the human drivers compared to if all vehi-
cles are fairness-aware. Alternatively, one can be view this
as adding autonomous fairness-aware vehicles to the exist-
ing driver population to not only improve the overall service
rate (because there are more vehicles serving requests now),
but also improve zonal fairness and the income of human
drivers! The financial viability of such systems is an open
question, and we hope future research is able to answer this
question in more detail.

For the request-based fairness methods, the distribution
is very close to NeurADP. Using these methods to improve
fairness, thus, does not affect the driver population much,
beyond the reduction in average trips because of the low-
ering of the service rate. As shown by the last histogram,
this approach can even improve the average trips per driver
while keeping a similar income distribution and improving
fairness.



Table 1: Comparison of different methods, selecting the hyperparameter value that maximizes min(Zp) (using fp). The values
in bold are the best in their respective columns.

Matching Algorithm Service Rate (SR) Min(Zs) Gini(Zs) Min(Zp) Gini(Zp)
NeurADP 0.8119 0.4595 0.0928 0.037 0.3102
FairNN (107) 0.6855 0.6421 0.069 0.5355 0.0872
α-Veh (0.5,20) 0.69 0.658 0.0124 0.5833 0.0259
Xα-Veh (0.5,0.5) 0.7782 0.7122 0.0227 0.329 0.102
α-Req (0.2,50) 0.7712 0.7323 0.0184 0.5555 0.0534
+Req (15) 0.7841 0.7313 0.0209 0.5416 0.0544
+Req (2) 0.8146 0.6536 0.0514 0.3414 0.1520

Figure 4: Histograms showing the distribution of trips per
driver for each case in Table 1, with the y-axis showing the
number of drivers in each bin. The red lines represent the
average driver trips

In summary, we see that our simple approaches to im-
prove zonal fairness are very effective across a variety of
analyses. This works to further drive home the main idea of
the paper: Intent matters. Most approaches are unfair only
because they don’t try to be fair, but oftentimes it is possible
to achieve very similar results while being fairer.

Conclusions
As the demand for cutting edge algorithms for urban mobil-
ity increases, their effect on the underlying fairness of these
systems needs to be studied, and measures taken to ensure
that our algorithms do not inherit the implicit biases that re-
sult from pure optimization. In this work, we discussed the
issue of zonal fairness in ridesharing systems, introducing
new fairness metrics for zone-pair fairness. Through four
simple methods that build on existing solutions for order
dispatching, we showed how simple techniques can be used
to trade off efficiency for fairness. Our methods outperform
existing approaches to zonal fairness via an online modifica-
tion to state-of-art techniques in ridesharing, with the added
advantage of not needing any extra training and the ability to
be used with any VFA. The tradeoffs proposed in this work

can be dynamically adjusted to have increased fairness at
minimal cost to efficiency. Our experiments showed that it
is better to apply fairness incentives to a subset of the driver
or request population for maximum results, as opposed to a
blanket approach to fairness.

Our work leaves some interesting avenues open for future
work:
• The generalizability of our approach needs to be evalu-

ated. While it can theoretically be applied with any VFA,
experiments are needed to verify that. Similarly, this ap-
proach needs to be tested with different sub-group fairness
measures apart from zonal fairness.

• Our approach is limited by the need to find the right hy-
perparameter setting for a desired fairness level, but this
problem is shared across other solutions for fairness. A
potential solution to this problem may involve learning
to adapt the hyperparameters to the current state of the
world. Such an approach would automatically be able to
tune the fairness based on the changes in demand and sup-
ply.

• It is of interest to prove theoretical bounds on the expected
gains such an approach can provide, given a particular
method to improve fairness. We provide general intuition
on why we expect our approaches to work, and to explain
the results we see. Future work may find mathematical
guarantees that confirm our empirical results.
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