Crowdsourcing Consumer Research

JOSEPH K. GOODMAN
GABRIELE PAOLACCI

Data collection in consumer research has progressively moved away from traditional samples (e.g., university undergraduates) and toward Internet samples. In the last complete volume of the Journal of Consumer Research (June 2015–April 2016), 43% of behavioral studies were conducted on the crowdsourcing website Amazon Mechanical Turk (MTurk). The option to crowdsource empirical investigations has great efficiency benefits for both individual researchers and the field, but it also poses new challenges and questions for how research should be designed, conducted, analyzed, and evaluated. We assess the evidence on the reliability of crowdsourced populations and the conditions under which crowdsourcing is a valid strategy for data collection. Based on this evidence, we propose specific guidelines for researchers to conduct high-quality research via crowdsourcing. We hope this tutorial will strengthen the community’s scrutiny on data collection practices and move the field toward better and more valid crowdsourcing of consumer research.

Keywords: Mechanical Turk, MTurk, crowdsourcing, data collection, sampling
well be the most represented participant pool in the history of consumer research.

With its convenience, crowdsourcing has also brought its share of skepticism and controversy. Echoing early concerns with online research (Kraut et al. 2004), some researchers worry about the impossibility of scrutinizing participants’ behavior—participants might be multitasking or be interrupted during the study. Further, crowdsourced participants self-select into studies and can quit at any time, and samples may vary between studies and between conditions within a study as a result of arbitrary choices in the design and sampling process (Casey et al. 2017; Zhou and Fischbach 2016). Thus, there is concern that MTurk workers may not provide reliable data or be particularly representative of real-world consumers—a similar criticism levied for decades on the use of college students in consumer research (Calder et al. 1981, 1982, 1983; Ferber 1977; Lynch 1982, 1983; McGrath and Brinberg 1983; Peterson 2001; Petty and Cacioppo 1996; Wells 1993). Perhaps more concerning to critics is the validity of data obtained from participants who have accumulated experience with social science studies (Pham 2013). At a more philosophical level, there is concern that the efficiency of online samples might increase the attractiveness of research programs and paradigms that can be easily conducted with the crowdsourcing method (e.g., scenarios), at potential detriment to research that is important but difficult to crowdsourc e (Pham 2013). These concerns are legitimate. While the option to crowdsource empirical investigations has great efficiency benefits for both individual researchers and the field, it also poses new challenges for how research should be designed, conducted, and analyzed by researchers, and evaluated by editors, reviewers, and readers.

In this tutorial, we assess the evidence on the reliability and validity of crowdsourced populations and the conditions under which crowdsourcing is a valid strategy for data collection, with the goal to establish valid crowdsourcing as a data collection strategy in consumer research. First, after a brief overview of MTurk, we discuss how crowdsourcing provides advantages for both individual researchers and the consumer research field. We argue that MTurk and similar websites can improve not only the convenience, but also the quality, of consumer research—if used appropriately. Second, drawing from methodological research on crowdsourcing, we address the substance and magnitude of concerns associated with the use of crowdsourced samples. Third, we offer specific guidelines for consumer researchers to maximize the advantages of crowdsourcing while attenuating the methodological concerns raised in the literature.

Though we will predominantly focus on MTurk—the most popular crowdsourcing destination among behavioral researchers—our findings by and large apply to any crowdsourcing solution that is or will become available in the foreseeable future. As opportunities will flourish to harness the advantages of online samples, we hope our tutorial will trigger new contributions on the methodology of data collection in consumer research.

BACKGROUND: CONSUMER RESEARCH WITH THE CROWD

The use of the Internet as an instrument of data collection in the social sciences dates back to the late nineties, and has been the object of debate ever since (Gosling et al. 2004; Kraut et al. 2004; Skitka and Sargis 2006; see Gosling and Mason 2015 for a recent review). Ten years later, crowdsourcing marketplaces made it much easier for researchers to conduct online investigations, resulting in an exploding number of online studies. Despite not being originally targeted to academic scholars, MTurk attracted researchers because it provides a constant critical mass of individuals available to complete research studies, as well as an infrastructure that facilitates recruiting and compensating participants.

How does an MTurk study take place? MTurk is a website where requesters recruit and compensate a desired number of workers to complete tasks, such as identifying information in pictures, transcribing audio files, or completing surveys. Tasks typically last minutes rather than hours or days, and payments range from a few cents to a few dollars, depending on the effort and time required. Requesters post tasks and determine the subpopulation of workers who are qualified to complete them, based on information provided by MTurk (e.g., ratio of approved/submitted tasks, country of residence) or previously collected by the requester (e.g., age, gender). Workers are free to choose and complete any available task for which they are eligible. After a worker completes a task, the requester decides whether to approve the submission (and compensate the worker) or reject it (e.g., because the worker did not comply with the request). Thus, researchers use MTurk by operating it as requesters, and they recruit and compensate workers for participating in online surveys that are hosted on external websites (e.g., Qualtrics). Researchers typically provide participants with a unique alphanumerical code at the end of the study that is entered into MTurk to verify completion.

Who are the workers and why do they complete MTurk tasks? The composition of MTurk workers has fluctuated over time, along with Amazon’s openness to international workers. The majority of workers reside in the United States, and most researchers restrict participation to US residents in order to increase homogeneity. In the largest recent demographic survey of MTurk (nearly 10,000
workers), Casey et al. 2017 found results consistent with previous similar investigations (Berinsky, Huber, and Lenz 2012; Paolacci, Chandler, and Ipeirotis 2010; Ross et al. 2010). The average age of US MTurk workers is about 33.5, and males and females are approximately equally represented (though this changed slightly with time of day). Participants are moderately more liberal than the general population, and more than 80% are white. About 60% of workers are in stable relationships, and 35% are married. About 10% identify as lesbian, gay, or bisexual—slightly higher than the 7% in the general population that identify as LGB for those in the 18–35 age group, and much higher than the 3.5% national average for all age groups (Jones and Cox 2015). The fact that payments on MTurk tend to be meager in absolute value leads many to believe that the MTurk workforce is uneducated and unemployed. Contrary to these speculations, MTurk workers are rather educated and diverse in terms of occupations. Casey et al. 2017 found that about half of the workers are employed full-time in a different job, and less than 10% report being unemployed. About 90% of workers have some university experience, and at least half of the workers have a college degree. The modal income of workers is between $30,000 USD and $50,000 USD.

Because MTurk workers are not disproportionately uneducated or unemployed (Casey et al. 2017), some find it surprising that they agree to work for nominal amounts of money (Pham 2013). However, many short tasks each paying a small amount can result in substantive earnings for the actual time spent working. Moreover, MTurk is not a perfect substitute for other jobs, as some workers participate in studies during breaks from other work activities (Chandler, Mueller, and Paolacci 2014). Finally, many workers participate in MTurk for reasons additional to earning money, and are often both intrinsically and extrinsically motivated (Chandler and Kapelner 2013; Horton, Rand, and Zeckhauser 2011; Paolacci et al. 2010). This may contribute to wages that are often below market rates. As we will elaborate later, however, it does not suggest that researchers should compensate less than a fair wage.

THE ADVANTAGES OF CROWDSOURCING

Crowdsourcing has become a dominant data collection technique because it offers several advantages for survey and experimental research. In this section, we discuss the characteristics of crowdsourcing that make it an attractive strategy for data collection. Importantly, crowdsourcing not only is about making it easier, faster, and cheaper to conduct computer-based studies, but it also has the potential to improve how consumer research develops as a field.

Reduced Costs

Crowdsourcing makes many studies cheaper to conduct on several dimensions—from lower participant payments to lower administrative costs. Though norms differ between institutions, participants in a physical lab are usually compensated no less than $5 USD to cover 30 minutes spent in the lab and the fixed costs of commuting. Crowdsourcing removes commuting costs, and allows for compensating participants for the precise time they spend in the study. As a result, controlling for pay rate, short studies are bound to be less expensive to conduct with crowdsourced samples than in the physical lab. For example, with less than $200 USD a researcher can conduct a 5-minute study with 200 participants that are compensated more than the US federal minimum wage ($7.25 USD per hour). Compared to traditional lab studies, MTurk also removes the costs of marketing and recruiting participants, coordinating study times, paying assistants to administer the lab study, and processing personal financial information for tax purposes.

The reduced cost of crowdsourcing research has obvious budget advantages for researchers and institutions, but perhaps most importantly it can translate into scientific opportunities. First, the convenience of crowdsourcing allows for conducting a larger number of exploratory studies. Crowdsourcing makes many studies cheaper to conduct, and this allows for obtaining sample sizes (and statistical power, all else being equal) that would be prohibitively expensive or even impossible to obtain with the traditional participant pools available at smaller universities with limited resources. It also provides the necessary power to test nonlinear relationships by allowing researchers to manipulate more than two levels of an independent variable (Goldstein 2016). Crowdsourcing can thus improve the information value of consumer research by allowing for larger samples, even when participants are paid at the same rate as participants in a physical lab. The same logic applies to replication studies, which may require particularly large samples (Simonsohn 2015).

Finally, whereas crowdsourcing makes data collection easier for many consumer researchers, most strikingly it makes research possible for many others. Many academics have scarce access to physical laboratories where they can conduct their empirical investigations. Platforms such as MTurk open up opportunities for them to conduct valid investigations, democratizing the production of academic
Participant Diversity

The average characteristics of the MTurk workforce (see the Background section and the upcoming table for demographic details) hide the large diversity of the population. For instance, whereas half of MTurk workers are younger than 30, older adults are also well represented (Weinberg, Freese, and McElhatten 2014). Despite the belief that working on MTurk implies being very poor or uneducated, many workers have above-average incomes and more diverse educational backgrounds than student participant pools. Researchers can exploit this participant diversity because crowdsourcing websites allow researchers to target specific subpopulations. On MTurk, researchers can track any measured characteristic of previously recruited workers, potentially building sophisticated panels of participants. These characteristics can then be used as filters for recruitment, allowing researchers to target and recruit specific samples.

Both participant diversity and the ability to recruit specific participants on MTurk facilitate the use of theory-driven samples—that is, samples with specific characteristics that are relevant for the situation under study. Compared to using a student sample, conducting a study with the actual population of interest (e.g., people who own a certain product in a product disposal hypothetical scenario) can increase the external validity of the study (Frederiksen 1977; Gneezy and Imas 2016; Rapp and Hill 2015), help identify key moderating variables to advance theory (e.g., involvement; Calder, Phillips, and Tybout 1982; Lynch 1982; Petty and Cacioppo 1979), and allow experimental procedures to be tied to the population’s specific experiences (Chandler and Paolacci 2017). The history of JCR reveals that during its first decade (1974–1984), student samples and theory-driven samples were equally common in the field. After 40 years, the ratio between student and theory-driven samples is now almost 7:1 (Rapp and Hill 2015). Though many reasons can explain the decline of theory-driven samples, an increased preference for convenience and lower cost likely played a significant role (as predicted by Ferber 1977).

Consumer researchers are starting to use MTurk participant diversity to recruit theory-driven samples. For example, Connell, Brucks, and Nielsen (2014) studied the effects of childhood exposure to advertisements on product evaluations as adults, and recruited MTurk participants within age ranges compatible with exposure to their advertising stimuli during childhood. Hamerman and Johar (2013) used MTurk to recruit right-handed participants in order to manipulate illusions of control when using one’s right hand versus left hand. Others have recruited participants who were married to study self-control in joint decisions (Dzhogleva and Lamberton 2014) and emotional connections with special life events (Goodman, Malkoc, and Stephenson 2016). Other examples include studies on participants who believed in God (Fergus and Rowatt 2015), were unemployed (Konstam et al. 2015), or had specific psychopathological symptoms (for a review, see Chandler and Shapiro 2016).

In addition to allowing researchers to collect samples that closely represent their target populations, crowdsourcing allows the scientific community to grow less dependent on idiosyncratic samples (e.g., undergraduates at top American universities). Prolific, a UK-based crowdsourcing research website, provides participants coming from many countries, and more opportunities will certainly follow to move consumer research beyond participants who some think of as ultimately WEIRD (Western, Educated, Industrialized, Rich, and Democratic; Heinrich, Heine, and Norenzayan 2010). This reliance on white, educated, and in particular college students, substantially depended on the additional costs involved in reaching out to other samples. In sum, by reducing such costs, crowdsourcing can improve the ability of consumer researchers to both qualify and generalize their findings.

Importantly, participant diversity is not inherently positive. For theory testing, the heterogeneity of a sample can add unmeasured background factors that might interact with the treatment, increasing noise and the rate of false negatives. However, if researchers identify these potential moderators, then they can leverage this diversity to increase both internal and external validity (Lynch 1982; Lynch 1999). In sum, the diversity of MTurk participants provides new opportunities for researchers, but researchers should be aware of the perils of sampling from a more heterogeneous population than students.

Flexibility

A virtual laboratory is generally thought of as less flexible than a physical one. After all, certain studies simply cannot be conducted online, such as those requiring controlled interactions between participants and physical stimuli. Studies that only require a computer to be executed, however, can largely benefit from the flexibility of crowdsourcing. Whereas offline studies are constrained by the availability of campus participants, research assistants, and laboratory space, crowdsourced studies are not. The constant availability of a critical mass of participants allows researchers to conduct studies with no delay, and to conclude them at unprecedented speed. From the moment a study is ready to be conducted, it can take hours, rather than weeks, for data to be collected. Thus, the flexibility of crowdsourcing can accelerate the scientific process. Yet
there are many other ways that crowdsourcing increases researcher flexibility, which we discuss next.

Longitudinal Studies. The flexibility of crowdsourcing can also be leveraged to conduct longitudinal studies, which are logistically more complicated than one-shot surveys with a homogeneous population. While retention rates in longitudinal studies will vary depending on payment, tasks, and intervening time, retention rates on MTurk have been reported to be around 70% between waves conducted days, weeks, and even months apart (Chandler et al. 2015; Reese and Veilleux 2015). Over longer periods of time, retention drops but longitudinal research remains viable. For instance, Chandler and colleagues (2014) found a 44% response rate after one year. Similarly, other forms of longitudinal studies, such as diary studies, have been shown to be feasible (Boynton and Richman 2014), in part because MTurk provides a way to easily contact, motivate, and compensate participants via bonus payments for completing each part of the study.

Cross-Cultural Research. Crowdsourcing websites also allow researchers to conduct cross-cultural research (Eriksson and Simpson 2010). While Amazon’s acceptance of non-US workers has been fluctuating over time, Prolific provides participant populations from multiple countries, and more opportunities will likely follow. Since crowdsourcing allows researchers to reach different samples and control for how these samples are reached, researchers may make particularly valid inferences as they make cross-cultural comparisons, provided that language barriers do not impair measurement equivalence across samples (Feitosa, Joseph, and Newman 2015).

Interactions between Participants. Studies that require real-time interaction between participants are also possible with crowdsourcing, and often more conveniently than in traditional samples. Since MTurk offers researchers access to thousands of workers at any given time, there is always another person online willing to participate in a two-person game or group interaction. Open source, web-based solutions are emerging (e.g., oTree; Chen, Schonger, and Wickens 2016) that aid researchers in programming experiments (e.g., providing highly customizable templates of standard interactive paradigms) and crowdsourcing them online (e.g., creating “waiting rooms” for queuing MTurk participants before they are matched with one another; Mason and Suri 2012). Researchers have successfully used crowdsourcing for incentivized experiments involving dozens of participants interacting at the same time, numbers that are logistically difficult to achieve in physical labs (Suri and Watts 2011; Wang, Suri, and Watts 2012) and can open new research possibilities. For instance, Watts and Dodds (2007) lamented the lack of empirical consumer research on large influencing networks, and crowdsourcing might offer a way forward.

Alternative Measures. While self-reports and hypothetical choices are the most commonly collected measures with crowdsourcing, there are additional opportunities. For instance, the ability to award bonuses allows for the use of consequential monetary choices (Dholakia et al. 2016; Goldstein 2016), as well as incentivized games (Yang and Urmsky 2015). Researchers have also used MTurk as a setting to conduct field experiments, measuring how work decisions depend on features of the crowdsourced tasks (Chandler and Kapelner 2013). Importantly, the technology available for Internet research has increased over the last few years, which may also open new possibilities. Response times can be measured reliably (Crump, McDonnell, and Gureckis 2013); webcams and sophisticated software can serve as eye trackers (Cheng et al. 2015) or to capture facial expressions for analysis in emotion software (Den Uyl and Van Kuilenburg 2005); and researchers are developing methods to collect physiological data online (e.g., heart rate; Muender et al. 2016). Of course, simply because a study may be crowdsourced does not mean it should be crowdsourced. Some studies are still best conducted in a lab environment, such as studies that require direct supervision and/or special equipment/stimuli, last extended periods of time, or contain questions easily answered via a web search. We will discuss the limitations on the crowdsourcing method of data collection in the next section.

Data Quality

A common concern with Internet research is data quality. Intuitively, the impossibility of directly monitoring research participants might lead to participant misbehavior of various types, ultimately resulting in low data quality. However, unlike other online populations (and participants in the lab), crowdsourcing marketplaces have incentive structures that are conducive to high data quality. When an MTurk worker submits a task, a requester can choose to reject such submission and forgo paying the worker. Therefore, workers are motivated to follow instructions and pay attention to the research study (e.g., carefully consider a stimulus before answering the questions that follow), especially if they are aware of tests that may check their attention (Hauser and Schwarz 2015, 2016; Oppenheimer, Meyvis, and Davidenko 2009). In addition to this short-term monetary incentive for conscientiousness, workers have a long-term incentive to avoid being blocked (i.e., prevented from participating in the requester’s future tasks) or even rejected. Researchers typically require participants to have a high approval rate (e.g., 95% or higher) to be eligible to participate in their tasks, implying that more rejections will make less work available to workers. In other words, poor work affects participants’ immediate payoffs and future employment opportunities.
Given the incentive structure of MTurk, it is not surprising that crowdsourced data has consistently been found to be of high quality (Paolacci and Chandler 2014). Despite the fact that some MTurk workers have admitted to completing tasks while engaged in other activities (e.g., listening to music; Chandler et al. 2014), studies have consistently found that MTurk workers’ attention levels are equal to or greater than undergraduate and community samples (Hauser and Schwarz 2016; Paolacci et al. 2010; Ramsey et al. 2016). One study (Goodman et al. 2013, study 2) found lower levels of passing an instructional manipulation check (Oppenheimer et al. 2009), but the effect may have been explained by language proficiency. This is consistent with research documenting lower data quality among Indian workers, the second largest population of MTurk workers (Litman, Robinson, and Rosenzweig 2015). For US participants, research suggests that high-reputation MTurk workers (i.e., those with above 95% approval ratings) produce high-quality data without the need to filter based on attention-check questions (Peer, Vosgerau, and Acquisti 2014). In sum, the evidence suggests crowdsourced participants are at least as attentive as lab participants.

MTurk workers have also been shown to be similar in reliability to student and public samples, providing psychometrically sound responses (Buhrmester, Kwang, and Gosling 2011; Holden, Dennie, and Hicks 2013), and they are just as honest, consistent, and conscientious as traditional samples (Rand 2012; Shapiro, Chandler, and Mueller 2013). Further, they show the same decision-making heuristics and biases (e.g., present bias, loss aversion, certainty effect) as student and public samples, all with similar effect sizes (Berinsky et al. 2012; Goodman et al. 2013; Paolacci et al. 2010). Cognitive paradigms also consistently replicate (Crump et al. 2013). In sum, there is no evidence that the efficiency gains of crowdsourcing come at the expense of data quality.

ISSUES WITH CROWDSOURCING IN CONSUMER RESEARCH

While crowdsourcing provides efficiencies in data collection with no evidence of a reduction in data quality, crowdsourced samples have unique characteristics that, when unaccounted for, could threaten research validity. Next we address the methodological issues and concerns associated with crowdsourcing.

Representativeness

Because of their diversity, crowdsourced populations are obviously more demographically representative of the general population than students (Paolacci et al. 2010); however, this does not mean that they should be treated as representative, and researchers should be aware of the idiosyncratic characteristics of crowdsourced populations that might moderate treatment effects when developing theory (Lynch 1982). In terms of demographics and psychographics, MTurk workers differ from the general US population (and traditional student samples) in several ways (see the table below and our previous discussion of worker demographics).

Researchers have also found some differences on other dimensions. For instance, workers score higher on need for cognition (NFC) and civics questions (Berinsky et al. 2012), and have been shown to have small but systematic personality differences that typically align with the characteristics of general Internet users (as one might expect from people that enjoy doing solitary tasks on the Internet). For instance, they are slightly more introverted and show higher levels of social anxiety (Goodman et al. 2013), and express slightly lower self-esteem and greater incidence of depression and emotional regulation (Arditte et al. 2015; Shapiro et al. 2013). The table below summarizes the differences between MTurk workers and the general population found in the literature.

For probability sampling, these results suggest that researchers should not indiscriminately survey MTurk workers to estimate general levels of a target variable. However, researchers can build panels representative of their target populations. Moreover, techniques such as raking and model-based poststratification can be used to statistically adjust the estimates obtained from nonrepresentative samples (Battaglia, Hoaglin, and Frankel 2013; Park, Gelman, and Bafumi 2004), and may be applied to MTurk samples (Goel, Obeng, and Rothschild 2015; Levay, Freese, and Druckman 2016).

Self-Selection

Self-selection is also a potential issue with crowdsourced data. There are several layers of self-selection that a worker completes before becoming a participant in a research study. Workers self-selected into using the Internet and into using MTurk, which leads to observable differences in sample compositions compared to other samples. Critically, however, there is self-selection at the study level: participants are free to select the tasks they participate in and the ones they eventually complete.

Some tasks will be generally more attractive to complete for workers. Higher pay rates affect the attractiveness of a task (Buhrmester et al. 2011; Mason and Watts 2010), and may affect the attractiveness of further tasks posted by the same researcher via reputation effects (Higgins, McGrath, and Moretto 2010). Because tasks are by default sorted by recency, more recently posted tasks are more likely to be selected (Chilton et al. 2010), and there is evidence that paying in multiples of 5 cents increases task attractiveness (Horton and Chilton 2010). The fact that some tasks are more attractive for every worker might surprisingly affect...
<table>
<thead>
<tr>
<th>Difference/similarity</th>
<th>Details</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Representative</td>
<td>• More representative of US population than college samples, in-person convenience samples, and other online sources</td>
<td>• Berinsky et al. 2012</td>
</tr>
<tr>
<td></td>
<td>• Less representative than national probability samples and some Internet-based panels</td>
<td>• Bohannon 2011</td>
</tr>
<tr>
<td></td>
<td>• Younger MTurkers tend to resemble young people in general more than older MTurkers resemble older people in general</td>
<td>• Casler, Bickel, and Hackett 2013</td>
</tr>
<tr>
<td></td>
<td>Demographics and psychographics</td>
<td>• Huff and Tingley 2015</td>
</tr>
<tr>
<td></td>
<td>Compared to general population, workers are:</td>
<td>• Levay et al. 2016</td>
</tr>
<tr>
<td></td>
<td>• Younger (29–35)</td>
<td>• Simons and Chabris 2012</td>
</tr>
<tr>
<td></td>
<td>• More educated</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Less likely to have been married</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Lower income</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• More likely to rent and less likely to own a home</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• More likely LGBTQ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Less likely to live alone</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• More likely to be unemployed or underemployed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• More white and less Hispanic/Latino or African American</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• More liberal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Less likely to report religious affiliation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Slightly less likely to have biological children, slightly more likely to have stepchildren</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• More professionally diverse (not representative of general population), over-representative of tech-related fields</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Similar in regional diversity (slightly more Northeast US) and in urban/rural zip codes</td>
<td></td>
</tr>
<tr>
<td>Personality</td>
<td>• Introversion: scored higher compared to college and community samples</td>
<td>• Arditte et al. 2015</td>
</tr>
<tr>
<td></td>
<td>• Neuroticism: scored higher compared to college samples, community sample, and general population</td>
<td>• Buhrmester et al. 2011</td>
</tr>
<tr>
<td></td>
<td>• Self-esteem: scored lower compared to college samples and general population</td>
<td>• Goodman et al. 2013</td>
</tr>
<tr>
<td></td>
<td>• Satisfaction with life: scored lower compared to general population</td>
<td>• Holden et al. 2013</td>
</tr>
<tr>
<td></td>
<td>• Empathy: scored higher on trait empathy and transportation</td>
<td>• Johnson and Borden 2012</td>
</tr>
<tr>
<td>Psychopathology</td>
<td>• Depression and general anxiety: Shapiro et al. 2013 found similar levels than general population, while Arditte et al. 2013 found greater levels than nonclinical samples</td>
<td>• Kosara and Ziemkiewicz 2010</td>
</tr>
<tr>
<td></td>
<td>• Social anxiety: scored higher compared to general population and nonclinical samples</td>
<td>• Shapiro et al. 2013</td>
</tr>
<tr>
<td></td>
<td>• ADHD: self-reports similar to general population</td>
<td>• Veilleux et al. 2014</td>
</tr>
<tr>
<td></td>
<td>• OCD: slightly more than nonclinical samples</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Hoarding: more than nonclinical samples</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Autism Spectrum Disorder: slightly higher rate of autism-spectrum traits than student nonclinical samples</td>
<td></td>
</tr>
<tr>
<td>Substance use</td>
<td>• Scored lower on the Alcohol Use Disorders Identification Test compared to college sample</td>
<td>• Arditte et al. 2015</td>
</tr>
<tr>
<td></td>
<td>• Smoke tobacco and marijuana slightly more than US average</td>
<td>• Eriksson 2013</td>
</tr>
<tr>
<td>Attention and involvement</td>
<td>For the most part, workers show same levels of attention (or higher) depending on the task. Shown to pay more attention compared to community samples, probability samples, and college student samples. Workers have reported higher state involvement in a story presented in a study. May depend more on task, native language, and length of task (but no evidence that compensation increases attention of US participants).</td>
<td>• Johnson, Herrmann, and Johnson 2015</td>
</tr>
<tr>
<td>Cheating, honesty, and disclosure</td>
<td>• Less cheating: answered fewer fake items correctly than college sample; self-reported location information matched IP addresses</td>
<td>• Reece and Veilleux 2015</td>
</tr>
<tr>
<td>SAT</td>
<td>• Greater disclosure: greater comfort disclosing sensitive information than in-person interviews</td>
<td>• Shapiro et al. 2013</td>
</tr>
<tr>
<td>Knowledge</td>
<td>Higher SAT than a student sample</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Greater civics knowledge compared to average Americans</td>
<td>• Cavanagh 2014</td>
</tr>
<tr>
<td></td>
<td>• Greater scientific knowledge</td>
<td>• Mason and Suri 2012</td>
</tr>
<tr>
<td></td>
<td>• Greater computer/Internet knowledge</td>
<td>• Rand 2012</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>• Shapiro et al. 2013</td>
</tr>
</tbody>
</table>

References:
- Berinsky et al. 2012
- Bohannon 2011
- Casler, Bickel, and Hackett 2013
- Huff and Tingley 2015
- Levay et al. 2016
- Simons and Chabris 2012
- Berinsky et al. 2011
- Buhrmester et al. 2011
- Casey et al. 2017
- Chandler and Shapiro 2016
- Corrigan et al. 2015
- Keith and Harms 2016
- Paolacci and Chandler 2014
- Shapiro et al. 2013
- Weinberg et al. 2014
- Arditte et al. 2015
- Goodman et al. 2013
- Holden et al. 2013
- Johnson and Borden 2012
- Kosara and Ziemkiewicz 2010
- Shapiro et al. 2013
- Veilleux et al. 2014
- Arditte et al. 2013
- Eriksson 2013
- Palmer et al. 2015
- Shapiro et al. 2013
- Veilleux et al. 2014
- Wymbs and Dawson 2015
- Johnson, Herrmann, and Johnson 2015
- Reece and Veilleux 2015
- Shapiro et al. 2013
- Veilleux et al. 2014
- Behrend et al. 2011
- Goodman et al. 2013
- Hauser and Schwarz 2016
- Johnson and Borden 2012
- Ramsey et al. 2016
- Weinberg et al. 2014
- Cavanagh 2014
- Mason and Suri 2012
- Rand 2012
- Shapiro et al. 2013
- Cooper and Farid 2014
- Cavanagh 2014
- Veilleux et al. 2014
- Shapiro et al. 2013
- Shapiro et al. 2013
- Ericksson 2013
- Reid et al. 2015
- Veilleux et al. 2014
- Buhrmester et al. 2011
- Berinsky et al. 2012
- Simons and Chabris 2012
- Goodchild et al. 2013
- Veilleux et al. 2014
- Shapiro et al. 2013
- Kosara and Ziemkiewicz 2010
- Shapiro et al. 2013
- Veilleux et al. 2014
- Berinsky et al. 2011
- Berinsky et al. 2012
- Cooper and Farid 2014
sample composition: if a task receives publicity on worker forums that are not representative of the MTurk workforce (e.g., as a task “worth turking for” on Reddit), this may translate into biased samples (e.g., because these forums are more likely to attract prolific MTurk users and are disproportionately populated by males; Chandler et al. 2014).

An advantage of crowdsourcing is that researchers can post tasks at any time; however, the day of the week or the hour of the day in which a study is posted can affect sample composition. Casey et al. (2017) conducted a large MTurk study on intertemporal demographic differences among US residents, and found effects of posting times that go above and beyond attracting people from different time zones. Most interestingly, they found that completing the survey in the night (vs. morning) was associated with higher likelihood of being single, using a smartphone to complete the survey, and being a less prolific MTurk worker. They also found that “early” participants who complete the first observations in a study tend to be older and male, and report higher levels of emotional stability, conscientiousness, and agreeableness.

Self-selection is also based on the characteristics of the crowdsourced study. Certain studies (e.g., those dealing with a certain topic, or perceived as cognitively demanding) might be more attractive to certain people (e.g., with an interest in the topic, or with higher need for cognition). As a result, the starting samples might be biased in theoretically meaningful ways. This problem is exacerbated by previewing—that is, when workers inspect the survey before deciding whether to complete it. Moreover, dropping out in the middle of a study is bound to be more common online than in a physical lab, due to the lower material investment in participation and visibility. This affects the final sample in a study, which consists of people who decided to enroll and not quit during the study. Attrition (i.e., low completion rates) is always problematic for external validity, as findings might not generalize to people who (would) decide to quit a study. But attrition is particularly troublesome when it differs systematically by condition in a between-subject design. If participants are more likely to quit in one condition (e.g., a condition that first requires a long essay about feeling powerless), and quitting correlates with theoretically relevant characteristics (e.g., low need for cognition, or low self-esteem), then assumptions of random assignment will fail, with serious threats to internal validity (Chandler and Shapiro 2016; Horton et al. 2011; Zhou and Fishbach 2016). In the next section we will discuss strategies to mitigate this problem.

Perhaps the most dangerous threat posed by self-selection concerns the studies of specific subpopulations (e.g., racial minorities or owners of a certain product) that recruit participants based on self-reported eligibility (e.g., “Only participate if you own [product x]”). By crossing data provided by participants across studies, recent research (Chandler and Paolacci 2017; Wessling, Huber, and Netzer 2017) found that a substantial number of respondents in such studies might in fact be imposters. This is the result of a small, though nonnegligible, number of workers who misrepresent their relevant characteristics (especially when the payment is high) and the fact that ineligible respondents in a study are a function not only of the prevalence of liars, but also of the rarity of the target subpopulation. In other words, even if the proportion of MTurk workers who will lie to get access to a study is small, researchers who blatantly recruit members of rare populations (e.g., owners of a Gucci handbag) may still find themselves with a substantial number of ineligible responses that are hard to detect. This threatens the validity

<table>
<thead>
<tr>
<th>Difference/similarity</th>
<th>Details</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Need for cognition (NFC) and learning goal orientation</td>
<td>Higher NFC compared to average Americans</td>
<td>Behrend et al. 2011</td>
</tr>
<tr>
<td></td>
<td>Score highly on learning goal orientation</td>
<td>Berinsky et al. 2012</td>
</tr>
<tr>
<td>Psychometrics</td>
<td>Several studies have found no differences or superior psychometric properties among US MTurk samples (vs. college and community samples)</td>
<td>Behrend et al. 2011</td>
</tr>
<tr>
<td>Validity of data</td>
<td>Workers often complete surveys in less-than-ideal environments, but no evidence of negative effect on data</td>
<td>Buhrmester et al. 2011</td>
</tr>
<tr>
<td></td>
<td>Produce similar effect size estimates in standard tasks</td>
<td>Feitosa et al. 2015</td>
</tr>
<tr>
<td></td>
<td>High test-retest reliability</td>
<td>Johnson and Borden 2012</td>
</tr>
<tr>
<td></td>
<td>Score higher on malingering (11%), which may reflect outdated measures</td>
<td>Behrend et al. 2011</td>
</tr>
<tr>
<td></td>
<td>Repeated participation may lead to practice effects</td>
<td>Buhrmester et al. 2011</td>
</tr>
<tr>
<td></td>
<td>Payments do not appear to affect data quality (except perhaps for Indian workers), even at low compensation rates</td>
<td>Chandler et al. 2014</td>
</tr>
<tr>
<td></td>
<td>Participants may lie about their characteristics to meet blatant screening criteria</td>
<td>Chandler and Paolacci (in press)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chandler and Shapiro 2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clifford and Jerit 2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Holden et al. 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Johnson and Borden 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Litman et al. 2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Paolacci et al. 2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shapiro et al. 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sharpe, Huber, and Netzer (this issue)</td>
</tr>
</tbody>
</table>
of a study, particularly because eligible and ineligible participants may answer in systematically different ways (Siegel, Navarro, and Thomson 2015; Wessling et al. 2017). We discuss how to properly screen participants in the next section, and Wessling and colleagues (2017) provide an extensive treatment of the problem of impostors in studies with specific eligibility criteria.

Participant Nonnaiveté

The MTurk population is large but not infinite, and researchers are not sampling from all the registered users. Rather, at any point in time there might be a few tens of thousands workers available, and in any quarter the average laboratory may be sampling from a population of less than 10,000 (Fort, Adda, and Cohen 2011; Stewart et al. 2015). Because researchers crowdsource thousands of tasks every day, MTurk workers may have become accustomed to participating in social science studies. Compounding this possibility, researchers are not sampling uniformly across the population. Chandler et al. (2014) found that the 10% most productive workers were responsible for 41% of the observations of a sample of behavioral research studies. Classic paradigms in psychology are widely known, especially among prolific workers (Chandler et al. 2014; Thomson and Oppenheimer 2016). Many worry that participants might become nonnaive via exchange of information on MTurk worker forums. However, whereas vivid anecdotes exist (e.g., MTurk workers ironizing researchers’ overuse of certain experimental procedures), crosstalk about critical content of a novel study may be practically negligible (Chandler et al. 2014) and is discouraged, if not prohibited, by worker forum managers. In sum, because crowdsourced pools are shared by a huge number of researchers, MTurk samples might often contain many “professional survey takers,” who are experienced with research participation and might be knowledgeable about specific studies.

There is evidence that participant nonnaiveté affects the validity of research instruments relevant to consumer research. For example, performance on the Cognitive Reflection Test (Frederick 2005), a commonly employed measure of people’s tendency to resist intuitive responses (Simonson and Sela 2011), depends on how often people may have seen the test and has become a confounded measure of reflexivity on MTurk (Chandler et al. 2014; Thomson and Oppenheimer 2016). Rand and colleagues (2014) conducted a series of studies to test whether people have an intuitive preference for cooperation in interpersonal dilemmas, and attributed the declining size of the effect over time to workers’ increased experience. Similarly, there are suggestions of effects that might not be replicable with experienced research participants (Connors et al. 2016; DeVoe and House 2016). In an investigation of the effects of study-specific nonnaiveté, Chandler and colleagues (2015) found that completing a two-condition experiment a second time resulted in smaller effect sizes, particularly when the time elapsed between participations was small and when participants were assigned to different conditions. Whereas these results together seem to suggest that nonnaïveté might generally reduce the likelihood of observing true effects in the data, more research should be conducted on the effects of general and study-specific participant nonnaiveté.

Can MTurk Dictate Research Programs?

There are legitimate philosophical concerns with crowdsourcing, which ironically stem from its very advantages. Some worry that the lure of MTurk may lead researchers to develop a preference for hypotheses and designs that are “crowdsourceable” instead of hypotheses and designs that are theoretically or substantively interesting (Pham 2013). Studies that are important but more difficult to conduct, by this account, would become less likely to be conducted. We empathize with this concern, though it is not specific to crowdsourcing. Some studies are inevitably easier to conduct than others, even when conducted in a physical lab. If the state of consumer research had been negatively affected by a disproportionate preference for convenient procedures, this would predate online samples, and similar worries of convenience have been expressed before the advent of crowdsourcing (Baumeister, Vohs, and Funder 2007; Ferber 1977). If anything, crowdsourcing the studies that can be crowdsourced (typically those that can be executed via a computer) should free up resources in laboratories (e.g., participants, lab space, time) that can then be dedicated to studies that strictly require the physical presence of participants (e.g., experiments that require touching or tasting products, or physical interactions with others). Moreover, the costs or the cumbersomeness of a study should not be treated as indicators of quality or validity. All else being equal, a study that is easier and less costly to conduct, especially when publicly funded, should be preferable.

Some also worry that as the opportunity cost of studies decreases, researchers might become less mindful in their designs and procedures, conducting more studies than they would otherwise and with less-than-optimal designs. This is arguably a questionable research practice, and it certainly is questionable when researchers persist in conducting studies deliberately to capitalize on the chance of obtaining “publishable” results. This, however, is a concern with the researcher’s integrity and rigor when planning and reporting studies that is independent of the tools employed to conduct such studies. Issues such as selective reporting, file drawer, and preregistration have been recently receiving the attention they deserve (Moore 2016; Simonsohn, Nelson, and Simmons 2014; Van’t Veer and Giner-Sorolla 2016; Wagemakers et al. 2012). On the
contrary, there is nothing inherently wrong with serendipitous explorations that are followed by appropriately powered (and ideally preregistered) confirmatory research (Alba 2012; Lynch et al. 2012; Sakaluk 2016; Wagenmakers et al. 2012). Ultimately, it is the researcher’s responsibility to leverage the efficiency of crowdsourcing to conduct valid investigations, and future research should continue to address these issues.

CROWDSOURCING CONSUMER RESEARCH: GUIDELINES

Given the issues with crowdsourcing consumer research, we next propose several guidelines for researchers to minimize these concerns and maximally enjoy the benefits of MTurk and other crowdsourcing sites.

Minimize the Risks of Self-Selection

As researchers recruit participants in crowdsourcing marketplaces, they should minimize the risks connected to self-selection. Specifically, we encourage researchers to describe tasks generically, making sure that participants’ expectations are aligned with the nature of the study without revealing details that would make the study more or less attractive to different participants with different dispositions or characteristics. To maximize quality, researchers should make full use of quality filters (e.g., on MTurk, recruiting workers with approval ratings superior to 95%; Peer et al. 2014).

Although more sophisticated platforms (e.g., Prolific) allow the selective recruiting of participants with certain characteristics (e.g., demographics), these screeners may not be sufficient for very specific samples (e.g., people with extreme attitudes toward a brand). In these cases, researchers need to collect the relevant information (e.g., attitudes toward a brand) from MTurk workers, and then recruit only the participants who belong to the target subpopulation. To avoid recruiting participants who misrepresent themselves in order to participate, prescreening surveys should always conceal the required characteristic (e.g., asking about attitudes toward a brand without disclosing that only people with extreme attitudes will later be considered for participation in the study). Importantly, any survey is a screening survey, to the extent that it records information (including mere participation in a study) that might be subsequently used as a recruitment filter. Associating a participant’s response with the participant’s MTurk WorkerID allows researchers to build their own panel of participants (Litman, Robinson, and Abberbock 2016; Peer et al. 2012). Wessling et al. (2017) discuss the solutions available to validly prescreen participants by tracking them across time. Importantly, though the WorkerID is simply an alphanumerical string, it does have the potential to reveal personally identifying information (Lease et al. 2013); thus, researchers should treat WorkerIDs as confidential information.

Avoid Attrition

To minimize nonselective and selective attrition, researchers should increase participants’ initial investment in the study. Specifically, we suggest researchers require participants to formally enroll in a study (i.e., “accept the HIT” in MTurk jargon) before accessing the study. Requiring enrollment prevents previewing of a study and raises the time costs required by participants to return the task to MTurk (Litman et al. 2016; Peer et al. 2012). This strategy, combined with study descriptions on MTurk that are generally vague, also ensures that a study’s content does not affect a worker’s choice as to whether to participate or not. Similarly, increasing the effort demanded before the experimental manipulation (and increasing the payment accordingly) will decrease the attractiveness of quitting the study midway through (Horton et al. 2011).

Nonetheless, these strategies for preventing attrition may not remove it entirely. For this reason, researchers should measure attrition ex post, and particularly whether attrition was different between experimental conditions. On Qualtrics, surveys should be “closed” before the data is downloaded, to make sure that partial responses are recorded and any imbalance in the number (and characteristics) of participants between conditions is detected and reported (Zhou and Fishbach 2016). Tools such as TurkPrime report bounce rates (the percentage of participants that previewed the HIT’s description but did not accept the HIT) and completion rates (the percentage of participants that accepted the HIT and completed it) by default.

Manage the Pool

The efficiency of the research experience on MTurk makes it easy to underestimate the importance of adequately performing some administrative actions connected to the research. In physical laboratories, participants receive prompt responses by researchers and/or lab managers to their inquiries, and are rarely expelled from the pool. We propose that, when conducting studies online, researchers maintain the same behavior: respond promptly to worker questions and issues and be cautious when blocking any MTurk worker, which can put the worker’s account at risk of removal. To get a perspective on MTurk workers, we suggest requesters monitor the forums used by workers (e.g., Mturkgrind, Turkernation, mTurklist, reddit.com/r/mturk, and Turkopticon), which can contain information about requesters’ reputations and ultimately inform researchers about the paradigms that might be less promising to conduct on MTurk.
Pay a Fair Wage

Unlike Prolific, MTurk does not impose any minimum wage, and wages are set at the requesters’ discretion. The issue of whether a minimum wage policy should be enforced is controversial. Though a higher wage could benefit workers, critics argue that it could also reduce the amount of work available in the marketplace, resulting in a net loss. However, there are ethical considerations to paying a fair wage, and whereas most evidence suggests that pay rates do not affect data quality in a typical consumer study (Burmester et al. 2011; Goodman et al. 2013; Mason and Watts 2010; Litman et al. 2015; but see Fort et al. 2011 for an exception), adequate payments are in the researchers’ best interest. A researcher’s reputation among the participant population strongly depends on whether the researcher consistently pays fair wages. As illustrated on Turkopticon, a website that collects workers’ reviews about requesters, paying overly low wages diminishes requesters’ reputation, and may decrease the attractiveness of subsequent tasks. Further, there is evidence that at least some workers utilize these websites that review requesters (Chandler et al. 2014; Wessling et al. 2017). Though we are not aware of any systematic research examining reputation effects, low reputations may plausibly affect data quality and certainly impact the credibility of the scientific community as a whole. Thus, we urge researchers to pay a fair wage and consider their reputation and the reputation of the field before they set a wage.

Diversify Samples

As the previous discussion suggests, every participant population—from student samples to MTurk—has its own idiosyncrasies. When methodologically feasible, we propose that researchers test theories across different samples to identify theoretically important moderating background factors (Lynch 1999). When results converge, this is evidence of the robustness of a result and suggests that either sample might be usable in future studies of a phenomenon. On the contrary, failures to replicate a finding using a different sample imply that important theoretical or methodological moderators might be at work. Identifying these moderators strengthens both internal and external validity (Lynch 1982). In other words, consumer researchers should not think of alternative samples (e.g., MTurk and students) as pure substitutes, but as complements to one another in theory development.

Behave Ethically

Amazon provides ethically informed Terms of Service for requesters that include critical aspects, such as not collecting identifiable information, but these terms are ultimately underspecified and not tied to the specificities of researchers. However, a group of academics and MTurk workers developed and continually update Guidelines for Academic Requesters (http://wiki.wearedynamo.org/index.php/Guidelines_for_Academic_Requesters), which suggest that researchers (a) clearly identify themselves, (b) provide reasonable time estimates for the required work, (c) approve work as soon as possible, (d) maintain worker privacy, (e) do not block workers to avoid duplicate participants, (f) maintain a responsive line of communication, and (g) pay fairly. We urge consumer researchers to comply with these guidelines.

In addition, the use of deception is more problematic in online research compared to physical labs. Crowdsourced participants can belong to the pool for several years, and the collective problems associated with contamination (e.g., paradigms becoming less credible) can be stickier. A shared participant pool is ultimately a public good that researchers should contribute to with ethical behaviors (see Gleibs 2016 for a more thorough discussion of the ethical aspects of crowdsourcing research).

Report

Consumer research relied for decades on a relatively homogeneous participant population (i.e., students), and this
might have attenuated the attention that journals dedicated to details of sampling in data collection. Given the dynamic diversity of crowdsourced samples, however, it is more important that researchers report details of their sample. In light of the selection issues described in the previous section, we highly encourage researchers to include the following details of their participants (in method sections or appendixes): compensation (including pay rate), country of residence, approval cutoffs (e.g., > 95%), whether and how nonnaïveté was dealt with, and basic demographics (e.g., gender, age). Especially for between-subject experiments that might impose different burdens for participants across conditions, attrition/completion rates (as a function of condition) should also be reported.

CONCLUSION

Researchers across disciplines have turned to web-based opportunities to conduct empirical research, and consumer scientists are no exception. Crowdsourcing websites like MTurk make survey and experimental investigations more efficient. When used virtuously, crowdsourcing can also help improve consumer science by enabling more numerous and informative studies and increasing participant and researcher diversity. However, online research and crowdsourcing in particular are not immune to risks, which the community should not neglect. Crowdsourced participants, like other research participants in consumer science, are a public good that we should manage with the greatest care. Our guidelines allow researchers to minimize the short- and long-term threats to validity, and help move the field toward valid crowdsourcing of consumer research.

REFERENCES

Huff, Connor and Dustin Tingley (2015), “Who Are These People?” Evaluating the Demographic Characteristics and

Lynch, John G. Jr., Joseph W. Alba, Aradhna Krishna, Vicki

Lynch, John G. Jr. (1982), "On the External Validity of

