Invited Review

Pre-treatment effects of peripheral tumors on brain and behavior: Neuroinflammatory mechanisms in humans and rodents

Andrew Schrepfa, Susan K. Lutgendorfa,b, Leah M. Pyterc,*

aDepartment of Psychology, University of Iowa, Iowa City, IA 52242, USA
bDepartments of Urology and Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, USA
cInstitute for Behavioral Medicine Research, Departments of Psychiatry and Behavioral Health and Neuroscience, Ohio State University, Columbus, OH 43210, USA

Article info

Article history:
Received 13 February 2015
Received in revised form 14 April 2015
Accepted 17 April 2015
Available online 6 May 2015

Keywords:
Cancer
Depression
Cognition
Cytokines

Abstract

Cancer patients suffer high levels of affective and cognitive disturbances, which have been attributed to diagnosis-related distress, impairment of quality of life, and side effects of primary treatment. An inflammatory microenvironment is also a feature of the vast majority of solid tumors. However, the ability of tumor-associated biological processes to affect the central nervous system (CNS) has only recently been explored in the context of symptoms of depression and cognitive disturbances. In this review, we summarize the burgeoning evidence from rodent cancer models that solid tumors alter neurobiological pathways and subsequent behavioral processes with relevance to affective and cognitive disturbances reported in human cancer populations. We consider, in parallel, the evidence from human clinical cancer research demonstrating that affective and cognitive disturbances are common in some malignancies prior to diagnosis and treatment. We further consider the underlying neurobiological pathways, including altered neuroinflammation, tryptophan metabolism, prostaglandin synthesis and associated neuroanatomical changes, that are most strongly implicated in the rodent literature and supported by analogous evidence from human cancer populations. We focus on the implications of these findings for behavioral researchers and clinicians, with particular emphasis on methodological issues and areas of future research.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Cancer patients suffer from a high prevalence of depression, anxiety, and cognitive disturbances (Evans et al., 2005). In fact, these disturbances are common among numerous other populations with chronic, inflammatory disease (e.g., cardiovascular disease, metabolic disease, HIV/AIDS), a fact that has stimulated discussion of potential shared biological mechanisms (Irwin and Miller, 2007; Lee et al., 2004). In the field of cancer research, it is widely acknowledged that various interrelated factors may underlie these behavioral comorbidities: tumor biology, distress associated with the cancer diagnosis, and/or cancer treatments (e.g., “chemobrain”). However, in spite of a recent burst of research activity in this area, these factors are rarely differentiated and their likely mechanistic interactions remain either entangled or ignored (Dantzer et al., 2012). For example, many clinical cancer studies do not encompass pre-diagnosis or pre-treatment psychological or physiological measures and most rodent studies of the impact of cancer treatment on the central nervous system (CNS) use tumor-free models. This results in a knowledge gap concerning the independent impact of tumor-associated biological processes on affective and cognitive symptoms despite the acknowledgment that tumors are capable of exerting an influence on the CNS (Cleeland et al., 2003; Lee et al., 2004), and that inflammation is inherent to all phases of tumor growth and metastases (Colotta et al., 2009). Addressing this deficit will help to identify specific underlying biological causes and mechanisms of cancer-associated affective and cognitive disturbances, with the potential to improve treatment.

This knowledge gap by presenting the current literature on the potential for tumor-associated biological processes to affect brain function (affect and cognition) independent of cancer-associated stress and treatments. We focus on behavioral changes that are most strongly associated with the presence of a tumor outside of the CNS and on identifying underlying mechanisms using data
from human and rodent research. Direct effects of tumor associated biological processes on the brain would indicate that patients suffer affective and cognitive disturbances prior to the receipt of treatment. The clinical impact of psychological comorbidities should not be underestimated in the context of cancer. Both quality of life and adherence to treatment plans significantly deteriorate when depression and other mood disturbances are present (DiMatteo, 2003). Poor treatment adherence is a significant risk factor for decreased quality of life and increased mortality (Gripp et al., 2007). Isolating the specific influence of tumor biology on CNS processes and empirically testing how tumor biology interacts with the biology of stress and cancer treatments may allow for tailored treatment of cancer-associated affective and cognitive comorbidities. This review first provides a brief summary of inflammation-induced changes in behavior, and then summarizes the quickly growing body of behavioral research in rodent cancer models and clinical investigations of cancer patients prior to treatment. Evidence for affective and somatic symptoms of depression, cognitive impairment, and their mechanistic correlates are reviewed.

1.1. Inflammation-induced behavioral changes

There is now considerable evidence that inflammatory pathways modulate affective and cognitive processes (Dantzer et al., 2008; Maes et al., 2012; Miller et al., 2009). Various aspects of this concept have been termed the "cytokine" or "macrophage theory of depression" and "sickness behavior." These concepts are primarily supported by literatures demonstrating that: (1) pathways exist between the periphery and CNS that allow for modulation of neural structure and function (e.g., enhanced permeability of the blood–brain barrier and signaling via the vagus nerve; Dantzer et al., 1999), (2) acute cytokine or bacterial mimic injection in rodents (i.p. lipopolysaccharide [LPS]; Dantzer et al., 2008) induces behavioral changes that are reversible by anti-inflammatory pharmacologic treatment, (3) inflammatory/immune responses and markers are elevated in patients with psychological disorders such as major depressive disorder (Maes et al., 2012; Miller et al., 2009) and, (4) anti-inflammatory drugs can be efficacious in the treatment of some psychiatric disorders (Köhler et al., 2014). For example, patients with clinical depression display elevations in proinflammatory cytokite concentrations in the blood and cerebral spinal fluid, increases in other circulating inflammatory effector and target molecules (e.g., prostaglandins, acute phase proteins, chemokines, cell adhesion molecules; Maes et al., 2012) and altered adaptive immune cell function (Howren et al., 2009; Miller, 2010). Cytokite-based treatment of cancers (i.e., interferon-alpha) also result in considerable increases in depression (Capuron et al., 2002; Udina et al., 2012), which resolve when the treatment is terminated.

Studies using animal models have delineated inflammatory mechanisms underlying changes in behavior, including sickness behavior, affective symptoms, and cognitive function. However, the majority of the research in this area has focused on models of acute illness. The canonical acute bacterial infection model, a single, sub-toxic i.p. injection of LPS (a component of the cell wall of Escherichia coli bacteria), causes proinflammatory cytokite production primarily by first-responder monocytes in the peritoneal cavity. Then, through both neural and humoral signaling pathways (Dantzer et al., 2008; Quan and Banks, 2007; Quan, 2014), cytokite production rapidly ensues in the brain (hippocampus, hypothalamus, forebrain) and stimulates the production or activation of other inflammatory effectors (IDO, iNOS, NF-KB, COX; Quan et al., 1998). The roles of these inflammatory markers in cytokite-induced behavioral changes, and consistent with clinical research in depressed patients, are summarized in Box 1. Acute sickness behaviors (e.g., lethargy, social withdrawal, fever, anorexia) akin to “somatic” or “vegetative” symptoms of depression, subsequent affective-like behaviors, and impaired learning and memory (Pugh et al., 1998) follow for several days after LPS treatment. The experimental manipulation of cytokites in these models (e.g., pharmacologic blockade, cytokite gene knockout) has established that brain-production of cytokites are necessary and sufficient for the subsequent behavioral changes (Dantzer et al., 1998, 1999; Kent et al., 1992). As with all preclinical studies, there is the assumption that affective-like behaviors assessed by rigorously validated rodent behavioral tests (Dantzer et al., 2012) are analogous to some affective symptoms of depression in human beings.

Box 1. Roles of classical neuroinflammatory markers in behavior.

Cytokites

- Regulate inflammation via their production and release by immune cells.
- Negatively regulated by glucocorticoids (Barnes, 1998; Goujon et al., 1997).
- Produced by microglia, astrocytes, endothelial cells, and neurons in brain regions that regulate behavior (hippocampus, hypothalamus, cortex, nucleus of the solitary tract, medulla; Dantzer et al., 2008).
- Activate other inflammatory mediators (prostaglandins, NF-kb, COX-2, IDO, iNOS; Salazar et al., 2012).
- Alter neurotransmitter signaling, neuroendocrine axes, and neural plasticity (Miller et al., 2009).
- Demonstrated role in rodent models of sickness, affective and cognitive impairment behaviors (reviews see Dantzer et al., 2008; Donzis and Tronson, 2014; Neveu and Liège, 2000; York et al., 2012).
- Implicated in behavioral changes following inflammatory events; associated with mental illness diagnoses (reviews see Dantzer et al., 2008; DellaGiola and Hannestad, 2010; Donzis and Tronson, 2014; York et al., 2012).

NF-kB

- Pro-inflammatory transcription factor family triggered by cytokites in both the peripheral and brain.
- Implicated in periphery-to-brain inflammatory signaling (Godbout et al., 2005; Nadjar et al., 2003; Quan et al., 1997).
- Necessary for cytokite-induced changes in emotional and cognitive behaviors in rodents (Nadjar et al., 2003; Nadjar et al., 2005).
- Elevated in peripheral blood mononuclear cells of patients with depression (Pace et al., 2006).

COX-2/prostaglandins

- Produced once cytokites receptors are activated in endothelial cells, neurons, and microglia in the brain (Bluthé et al., 1992).
- Cytokite-inducible, COX-2, is a key enzyme involved in prostaglandin synthesis from arachidonic acid (Masferrer et al., 1992).
- Established targets of anti-inflammatory pharmaceuticals (Chakraborti et al., 2010).
- Upregulation of COX-2 and PGE2 synthesis in the blood and CNS has been correlated with depression in human (Lieb et al., 1983) and non-human studies (Cassano et al., 2006; Guo et al., 2009).
to move towards more individualized, mechanism-based treatment strategies and future research design in an effort to discuss how this compilation of data may be used to modify current treatment paradigms to gain access to the brain. A review of the current literature is presented, with a focus on sources of various cytokines and potentially use of search terms such as "rodent," "cancer" or "tumor," "inflammation" or "cytokine," or "neuroinflammation" or "serotonin," "behavior" or "cognition" or "learning" or "affect" or "depression" or "anxiety," "cytokine" or "neuroinflammation" or "serotonin;" "behavior" or "cognition."

A longer-lasting infectious disease model (i.e., injection of Bacillus Calmette-Guerin [BCG]) has been used to probe for differences in chronic versus acute bacterial illness. Like the LPS model, BCG induces depressive-like behaviors after overt sickness behaviors have subsided. Coincident with the behavioral changes, the BCG model triggers brain cytokine and IDO production (Lestage et al., 2002; Moreau et al., 2005). While longer-lasting than the LPS model, the behavioral and inflammatory consequences of BCG infection still last only 3–4 weeks (Moreau et al., 2008).

In summary, the majority of the mechanistic postulating about mental comorbidities within the cancer context (and other chronic inflammatory diseases) logically focuses on neuroinflammatory pathways (Cleeland et al., 2003; Dantzer et al., 2012; Illman et al., 2005; Lee et al., 2004). Peripheral tumors and their microenvironment are sources of various cytokines and potentially use neural and/or humoral signaling pathways similar to peripheral infection to gain access to the brain. A review of the current literature that best encapsulates the purely biological influence of peripheral tumors on brain physiology and depression and cognition follows. Here we organized the corresponding behavioral data from rodent and human research and discuss the putative inflammatory mechanisms associated with these behaviors. Finally, we discuss how this compilation of data may be used to modify current treatment strategies and future research design in an effort to move towards more individualized, mechanism-based treatment approaches.

2. Rodent models of cancer

Recent basic research in rodents provides compelling evidence that primary tumors and tumor-associated inflammation alter brain physiology and behavior. Essentially, these models are comparable to patients with cancer prior to treatment, though both human and rodent research reflects considerable heterogeneity in the type and timing of neoplasms investigated. Rodent modeling allows for both the differentiation of potentially additive/synergistic biopsychological factors and for the empirical study of underlying mechanisms. For the purpose of this review, we focused on PubMed primary reports in the English language of rodent models with malignant primary tumors outside of the CNS, using the search terms "rodent," "cancer" or "tumor," "inflammation" or "cytokine" or "neuroinflammation" or "serotonin," "behavior" or "cognition" or "learning" or "affect" or "depression" or "anxiety," indexed from “no determined start date” to January, 2015]. Additional criteria were that the reports included tumor-free control groups and groups in which both cancer therapies and psychosocial stressors were absent.

2.1. Evidence for inflammation in tumor-bearing rodent models

In rodent models of solid neoplasms, tumor cells, surrounding stromal cells, and leukocytes recruited to the tumor site produce many inflammatory mediators (cytokines, chemokines) in the tumor microenvironment (reviewed in Allavena et al., 2008a; Allavena et al., 2008b; Candido and Hagemann, 2013; Coussens and Werb, 2002). Commonly identified inflammatory mediators include various cytokines, chemokines, and their receptors (e.g., IL-1, TNFα, IL-6, IL-10, IL-12, TGFβ, MIP1α, CXCR4; Candido and Hagemann, 2013; Turrin et al., 2004), prostaglandin E2, NF-kB and STAT3 signaling cascades, and enzymes such as IDO, COX, and iNOS (reviewed in Cesario et al., 2011; Karin et al., 2002; Landskron et al., 2014; Munn and Mellor, 2013; Uyttewele et al., 2003). Cytokine production in the tumor microenvironment is sometimes significant enough to be detectable in the general circulation of experimental models (Fang et al., 2012; Lamkin et al., 2011; Norden et al., 2015; Uomoto et al., 1998; Yang et al., 2014). However, this detection appears to be dependent upon the type of tumor and the timing of the blood sampling relative to tumor growth, as elevations in circulating cytokines do not necessarily accompany elevations in tumor cytokines, brain cytokines, or behavioral changes in these models (Catalano et al., 2003; Pyter et al., 2009). Given the known interactions between the HPA axis and inflammatory responses, it is important to note that solid tumors either increase or have no effect on basal circulating corticosterone concentrations (Azpiroz et al., 2008; Bojková et al., 2011; Chuluyan et al., 2000; Pyter et al., 2009; Yang et al., 2014), decrease stressor-triggered corticosterone responses (Pyter et al., 2009), and increase glucocorticoid receptor expression in brain regions involved in the HPA axis negative feedback loop (Pyter et al., 2009) in some rodent models.

2.2. Sickness, affective-like and cognitive impairment behaviors in tumor-bearing rodent models

In rodents, many somatic-like symptoms of depression have considerable overlap with “sickness behaviors” (e.g., food intake, physical activity, motivation for social interaction). Several tumor models have been developed specifically for their extreme negative effects on food intake, weight loss, and muscle wasting (Emery, 1999; Tisdale, 2002). More broadly, however, in studies of tumor models that focus on other behaviors (e.g., affective-like), weight loss ranges widely from significant (Lamkin et al., 2011; Norden et al., 2015; Wang et al., 2001; Yang et al., 2014) to absent (Coma et al., 2003; Pyter et al., 2009), depending on the tumor type, the rate of tumor growth and the time of assessment. In one study, total weight loss includes a specific reduction in brain mass (Coma et al., 2003).

The weight loss observed in some models is coincident with electrophysiological muscle fatigue (Aulino et al., 2010; Baltgalvis et al., 2010; Murphy et al., 2012; Norden et al., 2015), reduced locomotor activity (Lamkin et al., 2011; Murphy et al., 2012; Xiu et al., 2010), and reduced voluntary wheel running (Baltgalvis et al., 2010; Wood et al., 2006). Reduced locomotor activity may reflect fatigue or physical limitations due to the tumor location and/or changes in areas of the CNS that regulate movement (Dantzer et al., 2012). While the tumor may infringe on physical movement or muscle endurance in some models, thereby confounding results of affective-like or cognitive behavioral testing, depressive-like behaviors persist in other tests that are virtually independent of...
locomotion (e.g., sucrose anhedonia, see below). In contrast, the effects of peripheral tumors on sleep, a component of fatigue, remain understudied. Finally, limited investigation of social withdrawal, a common component of sickness behavior, indicates that tumor-bearing rodents are no less interested in social interactions (Pyter et al., 2009) or E$_2$-primedlordosis with a mate (Walf and Frye, 2010) than their tumor-free counterparts.

In contrast to tumor-associated sickness behaviors, the vast majority of studies to examine affective-like or cognitive behaviors in cancer models were published within the last five years, excepting some research in the 1970s–80s on learned taste aversion as it relates to cancer anorexia. Based on the previously described criteria, all but one of the 13 reports that assessed affective-like behavior found significant increases in depressive-like behavior in a broad range of solid tumor models and one leukemia model relative to tumor-free controls (Table 1). Therefore, it appears that varying tumor types and induction methods produce similar affective-like consequences, though more studies would be necessary to determine if model type influences behavioral outcomes. One of the standardized tests validated to assess depressive-like behavior (Krishnan and Nestler, 2008) is a tail suspension test in which mice are suspended by their tail and the latency and duration of immobility (versus active struggling) is quantified over a 5-min period. Immobility behavior in this context is hypothesized to be analogous to clinical symptoms of despair. As evidence of this test’s predictive validity, pharmacological treatment with antidepressants for several weeks prior to testing ameliorates the immobility behaviors. For example, mice that are subcutaneously inoculated with murine hepatoma cells display significant increases in immobility duration using the tail suspension test 12 days after inoculation, a behavioral change that is not observed earlier (6 or 8 days after inoculation), when tumor size is relatively small (Qi et al., 2009). Other reported increases in depressive-like behaviors in tumor-bearing rodents include what is termed “behavioral despair” using the Porsolt forced swim test and reduced preference for sucrose-infused drinking water (i.e., sucrose anhedonia). In rodents, the absence of preferential consumption of sucrose solutions over tap water is hypothesized to be homologous to symptoms of anhedonia in depressed patients. Tumor-bearing animals consistently display reductions in sucrose preference (DeWys, 1974; Godbout et al., 2005; Lamkin et al., 2011; Pyter et al., 2009; Smith et al., 1994; Xiu et al., 2010), which do not appear to be driven by changes in nutritional motivation nor changes in taste thresholds, as preference for a saccharine solution (non-nutritive) is also reduced and aversion to noxious solutions (e.g., quinine, hydrochloric acid) remains unchanged (Smith et al., 1994).

In addition to being a measure of fatigue, total locomotor activity in an open field also assesses whether hyperactivity, a hypothesized indicator of anxiety-like behavior, is manifest in tumor-bearing models. In contrast, hypovacity (i.e., lethargy) is noted in several tumor models (Table 1). An arguably more anxiety-specific measure gleaned from the same open field paradigm is central tendency, the conflict between rodents’ exploration of the bright, exposed center of the open field versus remaining in close proximity to the relatively protected, dark edges of the field (Crawley, 2006). Central tendency is not affected by the presence of mammary tumors in rats (Pyter et al., 2009). A similar light-dark conflict is presented using the elevated plus maze test for anxiety-like behavior, and the results in tumor-bearing rodents indicate that there is no apparent deficit in this behavior either (Pyter et al., 2009; Walf and Frye, 2010). In contrast, obsessive-compulsive anxiety-like behavior is significantly elevated in tumor-bearing rats (Pyter et al., 2009). Finally, one study indicates that behavioral responses of tumor-bearing mice to a social defeat paradigm, in which a highly aggressive conspecific interacts with the tumor-bearing subject, are characterized by increased avoidance of social interactions and decreased non-social exploration (Vegas et al., 2004). The authors argue that these behaviors may be consistent with avoidance behaviors, which are typical symptoms of depressed individuals.

Cognition is primarily assessed through tests of learning and memory in non-human animals. Four out of seven of the reports included in the present search focus on learned taste aversion in the context of cancer-associated anorexia and cachexia. By manipulating the type of chow that was administered throughout the tumor induction and growth paradigm, these studies inadvertently examined the effects of tumors on classical conditioning. Rats implanted with sarcoma, Leydig cell, or mammary tumors successfully developed a learned taste aversion to novel diets (conditioned stimulus) eaten during tumor growth (unconditioned stimulus) (Bernstein and Sigmund, 1980; Bernstein, 1985; Treneer and Bernstein, 1987); but see one experiment using mammary tumors (Bernstein and Fenner, 1983). Extinction of this taste aversion (i.e., the learned acquisition of a new relationship between the same two stimuli), at least 25 days after the tumor is removed, however, is impaired relative to both tumor-free controls on the same diet scheme and tumor-bearing controls that receive a novel (and therefore, preferred) diet post-tumor excision (Bernstein, 1985; Treneer and Bernstein, 1987). This suggests that: (1) although the pairing of the conditioned and unconditioned stimuli is longer in duration and less intense than other classical conditioning paradigms, the aversions developed are quite robust, and (2) the resistance to extinction in rats that previously had tumors may reflect an impairment in reversal learning. Finally, in advanced stages of both mammary and Leydig cell tumor progression, the learned taste aversion spontaneously dissipates, indicating that the taste aversion memory may become impaired or disrupted over prolonged or advanced stages of tumor development (Bernstein, 1985).

The remaining studies on cognitive function in tumor-bearing models examined other modalities of learning and memory using a variety of standardized behavioral tests. For example, the ability to distinguish between novel and familiar objects is remarkably impaired in tumor-bearing rats and mice (Pyter et al., 2010; Yang et al., 2014). Using a fear-based classical conditioning paradigm, tumor-bearing rats and mice tend to display modest impairments in passive auditory conditioning (Pyter et al., 2010), but not in contextual conditioning (Pyter et al., 2010; Yang et al., 2012). In terms of hippocampal-based learning, rats with tumors make more long-term, reference memory errors in an appetitive radial arm maze task, while working memory remains similar to tumor-free controls. Long-term memory in an aversive water maze test is unchanged by the presence of a tumor (Pyter et al., 2010).

2.3. Neuroinflammatory correlates of sickness, affective-like, and cognitive impairment behaviors in tumor-bearing rodent models

The evidence for the direct involvement of inflammatory cytokines (IL-1, IL-6, TNFα, INF-γ) in the induction of the somatic behaviors of anorexia/cachexia is quite prevalent (for reviews see Dianilang, 2009; Matthys and Billiav, 1997; Plata-Salaman, 2000; Tisdale, 2002). Given the high likelihood of mechanistic overlap, much may be gained by assimilating the previously discreet older literature on metabolism and the more recent affective/cognitive research in cancer models.

From the metabolic work, it is evident that many cancer cachexia models display elevated proinflammatory cytokine and cytokine receptor proteins and transcripts in the whole brain (Catalano et al., 2003), within brain regions known to regulate affective-like and cognitive behaviors (e.g., hippocampus, hypothalamus, cortex, brainstem, cerebellum; Chance et al., 2003;
<table>
<thead>
<tr>
<th>Publication First Author (Year)</th>
<th>Tumor model</th>
<th>Behavioral tests</th>
<th>Putative behavioral correlate</th>
<th>Peripheral inflammatory measures</th>
<th>Central inflammatory measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yang et al. (2012)</td>
<td>Mouse breast (SI; sc)</td>
<td>Tail suspension</td>
<td>Depressive-like behavior (learned helplessness/behavioral despair)</td>
<td>↑ Blood IL-6</td>
<td>Hippocampal COX-2 and iNOS expression</td>
</tr>
<tr>
<td>Yang et al. (2014)</td>
<td>Mouse colorectal (SI; sc)</td>
<td>Tail suspension</td>
<td>Depressive-like behavior (learned helplessness/behavioral despair)</td>
<td>↑</td>
<td>Hippocampal IL-6 and TNFα mRNA</td>
</tr>
<tr>
<td>Fang et al. (2012)</td>
<td>Mouse colorectal (SI; sc)</td>
<td>Tail suspension</td>
<td>Depressive-like behavior (learned helplessness/behavioral despair)</td>
<td>↑ Blood IL-12 (initially)</td>
<td>Cell proliferation and neurogenesis markers and qualitatively shorter dendrites in dentate gyrus</td>
</tr>
<tr>
<td>Qi et al. (2009)</td>
<td>Mouse hepatoma (SI; ip)</td>
<td>Tail suspension</td>
<td>Depressive-like behavior (learned helplessness/behavioral despair)</td>
<td>↑ Blood IL-6</td>
<td>Hippocampal BDNF and COX-2 mRNA</td>
</tr>
<tr>
<td>Norden et al. (2015)</td>
<td>Mouse colorectal (SI; sc)</td>
<td>Tail suspension</td>
<td>Depressive-like behavior (learned helplessness/behavioral despair)</td>
<td>↑ Blood IL-6</td>
<td></td>
</tr>
<tr>
<td>DeVys (1974)</td>
<td>Rat breast (SI; sc)</td>
<td>Sucrose anhedonia</td>
<td>Depressive-like behavior (anhedonia)</td>
<td>↑</td>
<td></td>
</tr>
<tr>
<td>Lamkin et al. (2011)</td>
<td>Mouse ovarian (SI; ip)</td>
<td>Sucrose anhedonia</td>
<td>Depressive-like behavior (anhedonia)</td>
<td>↑ Blood IL-6, TNFα, IL-10</td>
<td></td>
</tr>
<tr>
<td>Xiu et al. (2010)</td>
<td>Rat breast (SI; sc)</td>
<td>Sucrose anhedonia</td>
<td>Depressive-like behavior (anhedonia)</td>
<td>↑ Blood IL-6</td>
<td></td>
</tr>
<tr>
<td>Smith et al. (1994)</td>
<td>Rat sarcoma (implant; sc)</td>
<td>Sucrose/saccharine anhedonia</td>
<td>Depressive-like behavior (anhedonia)</td>
<td>↑ Tumor IL-1β and GM-CSF mRNA</td>
<td></td>
</tr>
<tr>
<td>Pyter et al. (2009)</td>
<td>Rat breast (carcinogen)</td>
<td>Porsolt forced swim</td>
<td>Depressive-like behavior (learned helplessness/behavioral despair)</td>
<td>↑ Hippocampal IL-1β, IL-6, TNFα, and IL-10</td>
<td>Cortical and hippocampal antioxidant potential</td>
</tr>
<tr>
<td>Papiez et al. (2009)</td>
<td>Rat myeloid leukemia (SI; ip)</td>
<td>Porsolt forced swim</td>
<td>Depressive-like behavior (learned helplessness/behavioral despair)</td>
<td>↑</td>
<td></td>
</tr>
<tr>
<td>Lebeña et al. (2014)</td>
<td>Mouse melanoma (SI; iv)</td>
<td>Tail suspension</td>
<td>Depressive-like behavior (learned helplessness/behavioral despair)</td>
<td>↑ Blood IL-6 for large tumors</td>
<td>Hippocampal IL-6 and TNFα mRNA</td>
</tr>
<tr>
<td>Vegas et al. (2004)</td>
<td>Mouse melanoma (SI; iv)</td>
<td>Social defeat</td>
<td>Potentially depressive-like behavior (social avoidance)</td>
<td>↓ Striatal DopAC, DA, 5-HT; prefrontal 5-HIAA, 5-HIAA/5-HT</td>
<td>Hypothalamic 5-HT</td>
</tr>
<tr>
<td>Vegas et al. (2004)</td>
<td>Mouse melanoma (SI; iv)</td>
<td>Social defeat</td>
<td>Anxiety-like behavior (exploration)</td>
<td>↓ Hypothalamic 5-HIAA/5-HT ratio</td>
<td></td>
</tr>
<tr>
<td>Vegas et al. (2004)</td>
<td>Mouse melanoma (SI; iv)</td>
<td>Social defeat</td>
<td>Anxiety-like behavior (exploration)</td>
<td>↓ Hypothalamic 5-HT</td>
<td></td>
</tr>
</tbody>
</table>

(continued on next page)
<table>
<thead>
<tr>
<th>Publication</th>
<th>Tumor model</th>
<th>Behavioral tests</th>
<th>Putative behavioral correlate</th>
<th>Peripheral inflammatory measures</th>
<th>Central inflammatory measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyter et al. (2009)</td>
<td>Rat breast (carcinogen)</td>
<td>Marble burying</td>
<td>Anxiety-like behavior (obsessive-compulsive)</td>
<td>Tumor IL-1β and GM-CSF mRNA</td>
<td>Hippocampal IL-1β, IL-6, TNFα, and IL-10</td>
</tr>
<tr>
<td>Qi et al. (2009)</td>
<td>Mouse hepatoma (SI; ip)</td>
<td>Total locomotor activity</td>
<td>Sickness behavior (lethargy)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fang et al. (2012)</td>
<td>Mouse colorectal (SI; sc)</td>
<td>Total locomotor activity</td>
<td>Sickness behavior (lethargy)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xiu et al. (2010)</td>
<td>Rat breast (SI; sc)</td>
<td>Total locomotor activity</td>
<td>Sickness behavior (lethargy)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lamkin et al. (2011)</td>
<td>Mouse ovarian (SI; ip)</td>
<td>Total locomotor activity</td>
<td>Sickness behavior (lethargy)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Papiez et al. (2009)</td>
<td>Rat myeloid leukemia (SI; ip)</td>
<td>Total locomotor activity</td>
<td>Sickness behavior (lethargy)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang et al. (2014)</td>
<td>Mouse colorectal (SI; sc)</td>
<td>Novel object recognition</td>
<td>Cognition (temporal lobe-dependent learning and memory)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyter et al. (2010)</td>
<td>Rat breast (carcinogen)</td>
<td>Radial arm maze</td>
<td>Cognition (hippocampal-dependent learning and memory)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bernstein (1985)</td>
<td>Rat leydig cell and breast (both implant; sc)</td>
<td>Taste aversion (in advanced disease)</td>
<td>Cognition (classical conditioning with tumor as unconditioned stimulus)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treneer and Bernstein (1987)</td>
<td>Rat leydig cell (implant; sc) and tumor resection</td>
<td>Taste aversion (reversal learning)</td>
<td>Cognition (classical conditioning with tumor as unconditioned stimulus)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bernstein and Sigmundi (1980)</td>
<td>Rat sarcoma (implant; sc)</td>
<td>Taste aversion</td>
<td>Cognition (classical conditioning with tumor as unconditioned stimulus)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bernstein and Fenner (1981)</td>
<td>Rat leydig cell (implant; sc)</td>
<td>Taste aversion</td>
<td>Cognition (classical conditioning with tumor as unconditioned stimulus)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N/C = no change, SI = syngeneic inoculation, sc = subcutaneous, iv = intravenous, ip = intraperitoneal, OVX = ovarietomized.
Local brain cytokine production, in turn, can influence a number of neural pathways by which tumors may induce behavioral changes (Plata-Salaman, 2000; Tisdale, 2002). Those known to overlap with the hypothesized mechanisms underlying cytokine-induced affective, somatic and cognitive behavior involve: iNOS and COX enzymatic activities, neuronal death, and tryptophan metabolism. Briefly, the negative behavioral consequences of tumors are associated with elevations in iNOS expression among various hypothalamic regions (Wang et al., 2001; Yang et al., 2012) and elevations in cerebral blood vessel expression of COX-1 (Ruud et al., 2013; not COX-2 (Wang et al., 2001)). The results from measuring constitutive hippocampal COX-2 expression in tumor-bearing models with affective-like behavior or cognitive impairment are mixed (Yang et al., 2012, 2014). Evidence of microglial activation has also been detected in the hippocampus and cortex of tumor-bearing rodents (Norden et al., 2015; Pyter et al., 2014; but see Yang et al., 2012). Many of these elevations in neuroinflammatory markers are attenuated by the systemic administration of the anti-inflammatory agent, minocycline (Norden et al., 2015). Furthermore, adding a peripheral inflammatory challenge (i.e., LPS injection) to a rat model of mammary cancer exacerbates the neuroinflammatory signaling responses of IL-1β, IDO, and markers of NF-kB and microglial cell activation among various brain regions that regulate affective-like and cognitive behavior (Pyter et al., 2014). These results suggest that both baseline neuroinflammation and neuroinflammatory responses are altered by the presence of a peripheral tumor.

Peripheral tumors associated with poor novel object recognition also reduce cell proliferation, neurogenesis, and dendritic length (qualitatively) in the dentate gyrus of the hippocampus (Yang et al., 2014, but see Yang et al., 2012). Growth factors associated with neurogenesis, GMPβ1 and BDNF, are reduced or unaltered in the hippocampus in tumor-bearing rodents that display cognitive impairments or depressive-like behavior (Qi et al., 2009; Pyter et al. 2010; Yang et al. 2014) Neural redox homeostasis may underlie these changes in brain plasticity as reduced oxidase potential is detected in brains of tumor-bearing mice with depressive-like behavior (Chen et al., 2006; Papiez et al., 2009; Qi et al., 2009), which is reversible with antidepressant treatment (Qi et al., 2009).

Weight loss in a tumor-bearing model is also associated with cerebellar atrophy and reduced numbers and size of Purkinje neurons (Michalak et al., 2006), suggesting that neuronal apoptosis in the cerebellum may be a consequence of peripheral tumor growth. Other pathways downstream of brain cytokine production that are observed to be modulated in these models of cancer cachexia, but may be less relevant to affect/cognition, include changes in neuronal K+ channel expression (Coma et al., 2003; Vicente et al., 2004) and in metabolic neurohormone synthesis (Chance et al., 2003).

Lastly, altered amino acid production and turnover in the brain, the particularly relevant tryptophan catabolism (reviewed in Plata-Salaman, 2000; Turrin et al., 2004; Wang et al., 2001), and even in CSF (Opara et al., 2005) relative to pair-fed tumor-free controls or simply tumor-free controls. The null-finding exceptions are rare (Carson et al., 1998; Wang et al., 2001). Mounting evidence indicates that this central cytokine production is tumor-initiated rather than host-derived (Baltgalvis et al., 2010; Cahlin et al., 2000; Kawamura et al., 1999; Rebeca et al., 2008). Notably, evidence of elevations in circulating cytokines need not be present for tumor-induced inflammation to be transduced into brain cytokine production (Quan, 2014). In cancer models of depressive-like behavior and select cognitive impairments, elevations in brain proinflammatory cytokine production are observed primarily in the cortex and hippocampus (Norden et al., 2015; Pyter et al., 2010; Pyter et al., 2014; Pyter et al., 2009; Yang et al., 2014).

2.2. Affective-like and cognitive behavior

3. Cancer patients prior to treatment

A separate line of inquiry concerns cancer patients prior to treatment (i.e., prior to surgical resection of tumor, chemotherapy, radiation). Pre-treatment data provides important insights into both biological consequences of tumor development and attendant psychological and behavioral symptoms. For this review, we focus primarily on English language original reports indexed in PubMed that considered inflammatory factors and/or psychological and behavioral symptoms in cancer patients prior to treatment. Search terms included: “depression,” or “anxiety,” or “cognition,” or “neuropsychological test,” or “cancer,” or “tumor,” indexed from “no determined start date” to January, 2015. Studies that only examined these factors in patients during or following treatment were not included. For psychological and behavioral factors, we focused primarily on research that consider symptoms prior to diagnosis, as the diagnosis itself represents a major psychosocial stressor capable of inducing both depressive and immune consequences. For studies of cognitive impairment in cancer patients prior to treatment we focused on studies that assessed multiple cognitive domains and, due to the small number of available studies, included studies in which patients were post-surgery but pre-chemotherapy/radiation in addition to studies of patients prior to all treatment.

3.1. Inflammation in cancer patients prior to treatment

Similar to in rodent cancer models, tumor-derived inflammation in humans originates from tumor cells, the surrounding...
stromal cells (Gogushev et al., 1993; Kinoshita et al., 1999; Offner et al., 1995; Pusztai et al., 1994; Watson et al., 1990) or tumor-associated macrophages (TAMS), and infiltrating T-cells (Allavena et al., 2008a; Allavena et al., 2008b). Circulating pro-inflammatory cytokines are elevated in various cancer populations prior to any treatment including ovarian cancer (Lutgendorf et al., 2008), colorectal cancer (Belluco et al., 2000), lung cancer (Wojciechowska-Lacka et al., 1996), breast cancer (Benoy et al., 2002), pancreatic cancer (Okada et al., 1998), gastric cancer (Kim et al., 2003), prostate cancer (Michalaki et al., 2004), head and neck cancer (Riedel et al., 2005), renal cell carcinoma (Yoshida et al., 2002), and bladder cancer (Mahmoud El-Salahy, 2002). High concentrations of circulating inflammatory cytokines such as IL-6 and TNF-α are associated with later stage disease (Belluco et al., 2000; Kim et al., 2003; Kozlowski et al., 2003; Michalaki et al., 2004; Okada et al., 1998; Yoshida et al., 2002), poorly differentiated tumors (Gowsami et al., 2013; Kaminska et al., 2005; Ljungberg et al., 1997; Mahmoud El-Salahy, 2002; Yoshida et al., 2002) and tumor size/volume (Chung and Chang, 2003; Kaminska et al., 2005; Pantele et al., 1994) in a variety of malignancies. Elevations of circulating pro-inflammatory cytokines have also been associated with less common indices of disease severity including extent of tumor necrosis in colorectal cancer (Guthrie et al., 2013; Richards et al., 2012). Spontaneous release of pro-inflammatory cytokines in cultures of primary tumor further suggests that circulating levels of inflammatory molecules are at least partially tumor-derived in some malignancies (Burger et al., 1995; Toutrais et al., 2003; Wigmore et al., 2002). Inflammatory cytokines are also elevated in ascites fluid proximal to the tumor in ovarian cancer patients (Moradi et al., 1993) and malignant pleural effusions in lung cancer (Yamaguchi, 2000). In ovarian cancer, levels of IL-6 from ascites are strongly associated with IL-6 in plasma; (Costanzo et al., 2005), similar to that of malignant pleural effusions from lung cancer patients (Yamaguchi, 2000). Other systemic effects of tumor-associated inflammation have been noted, especially alteration of the hypothalamic–pituitary–adrenal (HPA) axis. Altered cortisol patterns have been identified in ovarian cancer patients (Weinrib et al., 2010), endometrial cancer patients (Sannes et al., 2013), and oral cancer patients (Bernabe et al., 2012) prior to treatment. In ovarian cancer patients, these patterns are significantly associated with IL-6 concentrations in the ascites fluid (Schrepf et al., 2015) and in plasma (Lutgendorf et al., 2008).

In addition to pro-inflammatory cytokines, cancer patients prior to treatment show altered patterns of tryptophan metabolism. IDO activity is associated with tumor induction and is often highly expressed in solid tumors (Munn and Mellor, 2013). Higher kynurenine/tryptophan ratios and lower tryptophan concentrations in blood compared to healthy controls have been reported in colorectal cancer, malignant melanoma, non-small cell and small cell lung cancer, ovarian cancer, endometrial cancer, vulvar cancer, and breast cancer patients (de Jong et al., 2011; Engin et al., 2010; Huang et al., 2002; Lyon et al., 2011; Sperner-Unterweger et al., 2011; Suzuki et al., 2010; Weinlich et al., 2007), although the opposite pattern was noted in a study of primary cervical cancer patients (Fotopoulou et al., 2011). Thus, it appears that increased IDO activity in peripheral blood is associated with many malignancies prior to treatment.

3.2. Affective/somatic symptoms of depression and cognitive impairment in cancer patients prior to treatment

Whether a clinical diagnosis of depression is associated with subsequent increased incidence of cancer in the following years remains a controversial subject (Oerlemans et al., 2007). However, for some malignancies, changes in affect and somatic symptoms are noted in the months prior to and at the time of a diagnosis of cancer, consistent with the time frame of tumor development. This review will focus on these symptoms.

In pancreatic cancer, there is strong evidence that affective symptoms of depression may manifest prior to diagnosis (Green and Austin, 1993; Joffe et al., 1986; Sebti et al., 2014). One study reported that clinically relevant depression occurs in 50% of patients in the year prior to diagnosis (Joffe et al., 1986). Among commonly reported symptoms in pancreatic cancer patients prior to diagnosis, affective symptoms like crying spells and feelings of helplessness were common in addition to somatic symptoms like loss of appetite, fatigue, anorexia, and insomnia (Green and Austin, 1993).

Symptoms that precede a diagnosis of ovarian cancer overlap considerably with somatic symptoms of depression. Case control studies using retrospective recall of symptoms report that fatigue (O.R. 3.9, 95% CI 2.5–6.1), weight loss or weight gain (OR 14.2, 95% CI 8.2–24.5), and loss of appetite (OR 8.8, 95% CI 4.3–18.2) are much more commonly reported by ovarian cancer patients prior to diagnosis than controls visiting the same clinics (Olson, 2001; Vine et al., 2003). Fatigue and weight loss/gain are also more common amongst those with advanced (stages III–IV) versus early (stages I–II) of ovarian cancer. The onset of these symptoms was most often reported as 2–7 months prior to diagnosis, suggesting that they are not part of pre-existing condition, but rather are consistent with the timeframe of tumor development. Another study examining medical records (and hence free of recall bias) found that loss of appetite, fatigue and anxiety are all significantly more common in ovarian cancer patients compared to controls in the 6 months preceding diagnosis (Friedman et al., 2005).

In a retrospective study of symptoms prior to lung cancer diagnosis, most symptoms were reported as occurring in the 12 months prior to diagnosis, and included 68% of patients reporting fatigue, 64% change in appetite, 59% changes in sleep, and 50% weight loss (Corner et al., 2005). These results were confirmed by a case-control analysis of symptoms recorded in primary care settings in the two years prior to a lung cancer diagnosis that found fatigue, loss of appetite, and loss of weight are more commonly reported by patients than controls (fatigue OR 2.3, 95% CI 1.9–2.9; loss of appetite OR 4.8, 95% CI 3.3–7.0; loss of weight OR 6.2, 95% CI 4.5–8.6; Hamilton et al., 2005). Importantly, when the final 180 days prior to diagnosis were excluded from the analyses fatigue, loss of appetite, and loss of weight no longer distinguish cases from controls. This suggests that these symptoms manifest relatively close to the time of diagnosis.

In women awaiting surgery for suspected ovarian cancer, symptoms of somatic and affective depression are more prevalent in those subsequently diagnosed with ovarian cancer than in those with tumors of low malignant potential, despite facing presumably similar levels of distress and no differences in levels of interpersonal difficulties (Lutgendorf et al., 2008). Nonetheless, it is possible that symptoms of invasive disease (e.g. bowel distension) may have contributed to suspicion of ovarian cancer and consequent symptoms of depression, though this possibility warrant further investigation. One study of women presenting at an outpatient clinic subsequently diagnosed with breast cancer found that 28% met criteria for state anxiety and depression prior to diagnosis though the prevalence of these affective disturbances were not reported for women who were subsequently found to be free of cancer (Van Esch et al., 2012). In contrast, another report using assessment of affective symptoms in women prior to diagnosis either with breast cancer or benign disease found that neither anxiety nor depression were higher in cancer patients than women with benign disease in the two years prior (Eskeninen and Ollonen, 2011). Similarly, another study that examined physical and mental well-being in the year before a prostate cancer diagnosis found no differences between men that were subsequently...
diagnosed with prostate cancer and matched healthy controls (Reeve et al., 2012). Therefore, increased symptoms of depression, and specifically affective symptoms, are not universal prodromal features of cancer.

That somatic symptoms may be more pronounced in cancer patients prior to treatment is unsurprising. In a large-scale mixed cancer population \(n = 213 \) post-diagnosis but pre-treatment somatic symptoms are responsible for most of the variance in Beck's Depression Inventory scores when compared to healthy controls (Weddington et al., 2007). More specifically, the effect sizes (Cohen's \(D \)) for the difference in affective symptoms averaged 0.12 between cancer patients and controls versus 0.34 for somatic items. Interestingly, some affective items are considerably less pronounced in cancer patients (i.e. sense of failure, \(d = -2.35 \), guilt, \(d = -1.00 \)), while every somatic item except loss of libido is more prevalent in cancer patients. Comparing patients with solid tumors to those with haematological malignancies reveals no differences in affective items or total depression scores, but significantly higher somatic scores in patients with solid tumors (Weddington et al., 2007).

A relatively small number of published studies have examined neuropsychological test performance in cancer patients prior to treatment. Eleven total studies were identified: 5 in breast cancer samples (Ahles et al., 2008; Hermelink et al., 2007; Hurria et al., 2006; Mandelblatt et al., 2014; Wefel et al., 2004), and 1 each in samples of prostate cancer (Green et al., 2004), ovarian cancer (Mayerhofer et al., 2000), testicular cancer (Wefel et al., 2011), head and neck cancer (Bond et al., 2012), lung cancer (Meyers et al., 1995), and leukemia (Meyers et al., 2005). Of these, five were in samples prior to the receipt of any treatment and five were samples in which some patients had completed surgery but not chemotherapy or radiation. Sample sizes ranged between 18 and 110 participants.

Reviewing the areas of cognitive impairment tested across studies resulted in enough crossover in several domains by percent of sample impaired to warrant comparison across studies: global impairment (6 studies), verbal learning – both total recall (5 studies) and delayed recall (4 studies), manual dexterity (4 studies), executive function (5 studies), visual scanning (5 studies), verbal fluency (5 studies), processing speed (4 studies) and auditory attention (3 studies) (Table 2). Some studies that did not report percentages of impaired patients are discussed but could not contribute to mean and median calculations. Mean and median percentages of cognitive impairment in cancer patients across studies were as follows: global impairment, 32% (median 33%); total verbal learning 31.7% (median 37.7%); delayed recall 39.3% (median 33%); executive functioning 23.3% (median 22%); manual dexterity 24.5% (median 24.5%); visual scanning 18.9% (median 16%); verbal fluency 10.6% (median 10%); processing speed 7.8% (median 6.2%); auditory attention 5.4% (median 5%). Several studies also compared cancer patients prior to treatment to controls or normative means using group means rather than percentage of sample impaired, and these generally revealed fewer differences.

These results reveal a broadly consistent pattern of impairment. Approximately one-third of patients demonstrated impairment in total recall and delayed recall on verbal learning tasks, and one-quarter demonstrated impairment on manual dexterity and executive functioning tasks. Approximately 20% demonstrated impairment on visual scanning tasks, while approximately 10% or fewer were impaired on verbal fluency, processing speed, and auditory attention tasks. The percentages of impaired patient in the verbal learning, executive function, manual dexterity, and visual scanning domains were considerably higher than what would be expected were the samples drawn from a healthy population, while verbal fluency, processing speed and auditory attention did not appear to differ substantially from normative expectations. Verbal learning (either total recall or delayed recall) was the most impaired domain in every study in which it was assessed, while processing speed and auditory attention were the least impaired domains in all but one study.

Methodological differences appeared to play a large role in the differential findings. For instance, studies which examined sample means in comparison to healthy controls or normative means appeared to find fewer differences than studies which determined if individual participants met criteria for impairment. For instance, one 2007 study of breast cancer patients found no significant difference in verbal learning using group means compared to normative means (Hermelink et al., 2007) while a 2004 study of breast cancer patients using individual scores compared to normative means found that the number of patients impaired on verbal learning tasks was twice what would be expected in a normal, healthy population (Wefel et al., 2004). As it would appear that many of the sample means studied would fall within a normal performance range according to normative means, group means likely masks individuals with impaired performance. This further suggests that cognitive impairment affects a particular, vulnerable subsample of cancer patients prior to treatment.

Studies that consider moderating factors reveal inconsistent results. For instance, 3 of 4 studies that considered fatigue as a moderating factor did not find it to be associated with any test results, while the fourth found it to be associated only with processing speed and global impairment. Similarly, depression was not related to neuropsychological test results in three of five studies, but was associated with processing speed in two studies and both verbal learning and global impairment in another. In one study of breast cancer, medical comorbidities were the only factor associated with worse neurocognitive performance, such that having 2 or more comorbidities was associated with a nearly 9 fold increase in the risk for cognitive impairment (Mandelblatt et al., 2014).

3.3. Inflammatory correlates of somatic/affective symptoms of depression and cognitive impairment

Elevations in peripheral markers of inflammation are linked to the elevations in somatic and affective symptoms in cancer patients prior to treatment in a variety of malignancies. In ovarian cancer patients with invasive disease, elevated IL-6 in plasma and ascites is associated with greater somatic, but not affective, symptoms of depression prior to diagnosis (Lutgendorf et al., 2008). In breast cancer patients prior to the receipt of treatment, a diagnosis of depression by structured interview (Structured Clinical Interview for DSM-IV, SCID) is associated with both elevated plasma IL-6 and abnormal dexamethasone suppression tests compared to non-depressed patients (Soygur et al., 2007). Similarly, levels of soluble IL-6 receptor (sIL-6r) and CRP are positively associated with fatigue and affective symptoms of depression in breast cancer patients prior to treatment (Courtier et al., 2013; Perl et al., 2013). In patients with peritoneal carcinomas, serum levels of IL-6 and CRP are associated with greater fatigue and somatic symptoms of depression, but not affective symptoms (Low et al., 2014). In prostate cancer patients with non-metastatic disease elevated TNF-α levels in serum are associated with fatigue, depression and anxiety (HADS) (Dirksen et al., 2013). In malignant melanoma patients, sIL6-r levels in serum are negatively associated with self-reported combined affective and somatic symptoms (Self-Reported Depression Scale; SDS) and sTNF-r levels positively associated (Friebe et al., 2007) In metastatic colorectal cancer patients serum IL-6 levels are positively associated with loss of appetite and nausea/vomiting, TGF-β levels are positively associated with loss of appetite and fatigue (Rich et al., 2005). In advanced lung cancer patients higher Glasgow Prognostic Scores
<table>
<thead>
<tr>
<th>First author (year)</th>
<th>Sample</th>
<th>Study characteristics and results of neuropsychological tests in cancer patients prior to chemotherapy/radiation.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample</td>
<td>Cancer type</td>
<td>Study characteristics and results of neuropsychological tests in cancer patients prior to chemotherapy/radiation.</td>
</tr>
<tr>
<td>Time</td>
<td>Post-surgery/pre-chemotherapy/radiation</td>
<td>Study characteristics and results of neuropsychological tests in cancer patients prior to chemotherapy/radiation.</td>
</tr>
<tr>
<td>Inclusion criteria</td>
<td>Stage 1–3, 18–70 years</td>
<td>Study characteristics and results of neuropsychological tests in cancer patients prior to chemotherapy/radiation.</td>
</tr>
<tr>
<td>Exclusion criteria</td>
<td>CNS disease, previous cancer/cancer treatment, neurologic disorder, substance abuse, brain injury, psychiatric disorder</td>
<td>Study characteristics and results of neuropsychological tests in cancer patients prior to chemotherapy/radiation.</td>
</tr>
<tr>
<td>n</td>
<td>70</td>
<td>Study characteristics and results of neuropsychological tests in cancer patients prior to chemotherapy/radiation.</td>
</tr>
<tr>
<td>Definition of Global impairment</td>
<td>S.D. below 2 domains below 1.5 S.D. of healthy controls, or 1 domain 2.0 S.D. below normative means</td>
<td>Study characteristics and results of neuropsychological tests in cancer patients prior to chemotherapy/radiation.</td>
</tr>
<tr>
<td>Global impairment</td>
<td>22%</td>
<td>Study characteristics and results of neuropsychological tests in cancer patients prior to chemotherapy/radiation.</td>
</tr>
<tr>
<td>Definition of impairment on individual tests</td>
<td>Below 1.5 S.D. of healthy controls</td>
<td>Study characteristics and results of neuropsychological tests in cancer patients prior to chemotherapy/radiation.</td>
</tr>
<tr>
<td>Verbal learning</td>
<td>N/A</td>
<td>Study characteristics and results of neuropsychological tests in cancer patients prior to chemotherapy/radiation.</td>
</tr>
<tr>
<td>Test</td>
<td>N/A</td>
<td>Study characteristics and results of neuropsychological tests in cancer patients prior to chemotherapy/radiation.</td>
</tr>
<tr>
<td>Delayed recall</td>
<td>N/A</td>
<td>Study characteristics and results of neuropsychological tests in cancer patients prior to chemotherapy/radiation.</td>
</tr>
<tr>
<td>Test</td>
<td>N/A</td>
<td>Study characteristics and results of neuropsychological tests in cancer patients prior to chemotherapy/radiation.</td>
</tr>
<tr>
<td>Auditory attention</td>
<td>N/A</td>
<td>Study characteristics and results of neuropsychological tests in cancer patients prior to chemotherapy/radiation.</td>
</tr>
<tr>
<td>Test</td>
<td>N/A</td>
<td>Study characteristics and results of neuropsychological tests in cancer patients prior to chemotherapy/radiation.</td>
</tr>
<tr>
<td>Processing speed</td>
<td>N/A</td>
<td>Study characteristics and results of neuropsychological tests in cancer patients prior to chemotherapy/radiation.</td>
</tr>
<tr>
<td>Test</td>
<td>N/A</td>
<td>Study characteristics and results of neuropsychological tests in cancer patients prior to chemotherapy/radiation.</td>
</tr>
<tr>
<td>Executive</td>
<td>N/A</td>
<td>Study characteristics and results of neuropsychological tests in cancer patients prior to chemotherapy/radiation.</td>
</tr>
<tr>
<td>Test</td>
<td>N/A</td>
<td>Study characteristics and results of neuropsychological tests in cancer patients prior to chemotherapy/radiation.</td>
</tr>
<tr>
<td>Verbal fluency</td>
<td>N/A</td>
<td>Study characteristics and results of neuropsychological tests in cancer patients prior to chemotherapy/radiation.</td>
</tr>
<tr>
<td>Test</td>
<td>N/A</td>
<td>Study characteristics and results of neuropsychological tests in cancer patients prior to chemotherapy/radiation.</td>
</tr>
<tr>
<td>Vissual scanning</td>
<td>N/A</td>
<td>Study characteristics and results of neuropsychological tests in cancer patients prior to chemotherapy/radiation.</td>
</tr>
<tr>
<td>Test</td>
<td>N/A</td>
<td>Study characteristics and results of neuropsychological tests in cancer patients prior to chemotherapy/radiation.</td>
</tr>
<tr>
<td>Dexterity</td>
<td>N/A</td>
<td>Study characteristics and results of neuropsychological tests in cancer patients prior to chemotherapy/radiation.</td>
</tr>
<tr>
<td>Test</td>
<td>N/A</td>
<td>Study characteristics and results of neuropsychological tests in cancer patients prior to chemotherapy/radiation.</td>
</tr>
<tr>
<td>First author (year)</td>
<td>Mayerhofer et al. (2000)</td>
<td>Study characteristics and results of neuropsychological tests in cancer patients prior to chemotherapy/radiation.</td>
</tr>
<tr>
<td>Sample</td>
<td>Epithelial ovarian cancer</td>
<td>Study characteristics and results of neuropsychological tests in cancer patients prior to chemotherapy/radiation.</td>
</tr>
<tr>
<td>Time</td>
<td>Pre-treatment</td>
<td>Study characteristics and results of neuropsychological tests in cancer patients prior to chemotherapy/radiation.</td>
</tr>
<tr>
<td>Inclusion criteria</td>
<td>Newly diagnosed EOC, normal blood panel</td>
<td>Study characteristics and results of neuropsychological tests in cancer patients prior to chemotherapy/radiation.</td>
</tr>
<tr>
<td>Exclusion criteria</td>
<td>Neurologic disorder, psychiatric disorder, brain metastases, substance abuse, cognition altering medication</td>
<td>Study characteristics and results of neuropsychological tests in cancer patients prior to chemotherapy/radiation.</td>
</tr>
<tr>
<td>n</td>
<td>28</td>
<td>Study characteristics and results of neuropsychological tests in cancer patients prior to chemotherapy/radiation.</td>
</tr>
<tr>
<td>Definition of global impairment</td>
<td>Median values compared to normative means</td>
<td>Study characteristics and results of neuropsychological tests in cancer patients prior to chemotherapy/radiation.</td>
</tr>
<tr>
<td>Definition of impairment on individual tests</td>
<td>Below 1.5 S.D. below normative mean</td>
<td>Study characteristics and results of neuropsychological tests in cancer patients prior to chemotherapy/radiation.</td>
</tr>
<tr>
<td>Verbal learning</td>
<td>N/A</td>
<td>Study characteristics and results of neuropsychological tests in cancer patients prior to chemotherapy/radiation.</td>
</tr>
<tr>
<td>Test</td>
<td>N/A</td>
<td>Study characteristics and results of neuropsychological tests in cancer patients prior to chemotherapy/radiation.</td>
</tr>
<tr>
<td>Delayed recall</td>
<td>N/A</td>
<td>Study characteristics and results of neuropsychological tests in cancer patients prior to chemotherapy/radiation.</td>
</tr>
<tr>
<td>Test</td>
<td>N/A</td>
<td>Study characteristics and results of neuropsychological tests in cancer patients prior to chemotherapy/radiation.</td>
</tr>
<tr>
<td>Auditory attention</td>
<td>N/A</td>
<td>Study characteristics and results of neuropsychological tests in cancer patients prior to chemotherapy/radiation.</td>
</tr>
<tr>
<td>Test</td>
<td>N/A</td>
<td>Study characteristics and results of neuropsychological tests in cancer patients prior to chemotherapy/radiation.</td>
</tr>
<tr>
<td>Processing speed</td>
<td>N/A</td>
<td>Study characteristics and results of neuropsychological tests in cancer patients prior to chemotherapy/radiation.</td>
</tr>
<tr>
<td>Test</td>
<td>N/A</td>
<td>Study characteristics and results of neuropsychological tests in cancer patients prior to chemotherapy/radiation.</td>
</tr>
<tr>
<td>Executive</td>
<td>N/A</td>
<td>Study characteristics and results of neuropsychological tests in cancer patients prior to chemotherapy/radiation.</td>
</tr>
<tr>
<td>Test</td>
<td>N/A</td>
<td>Study characteristics and results of neuropsychological tests in cancer patients prior to chemotherapy/radiation.</td>
</tr>
<tr>
<td>Verbal fluency</td>
<td>N/A</td>
<td>Study characteristics and results of neuropsychological tests in cancer patients prior to chemotherapy/radiation.</td>
</tr>
<tr>
<td>Test</td>
<td>N/A</td>
<td>Study characteristics and results of neuropsychological tests in cancer patients prior to chemotherapy/radiation.</td>
</tr>
<tr>
<td>Vissual scanning</td>
<td>N/A</td>
<td>Study characteristics and results of neuropsychological tests in cancer patients prior to chemotherapy/radiation.</td>
</tr>
<tr>
<td>Test</td>
<td>N/A</td>
<td>Study characteristics and results of neuropsychological tests in cancer patients prior to chemotherapy/radiation.</td>
</tr>
<tr>
<td>Dexterity</td>
<td>N/A</td>
<td>Study characteristics and results of neuropsychological tests in cancer patients prior to chemotherapy/radiation.</td>
</tr>
<tr>
<td>Test</td>
<td>N/A</td>
<td>Study characteristics and results of neuropsychological tests in cancer patients prior to chemotherapy/radiation.</td>
</tr>
</tbody>
</table>

a Estimated by Monte Carlo simulation.
b Employed a mixed sample ranging in size from 18 to 84 participants.
(a composite measure of abnormal albumin and CRP levels in blood) are correlated with both depression and anxiety levels (HADS) (Giannoussi et al., 2012) and serum CRP levels with fatigue (Brown et al., 2005). However, in a study of colorectal cancer patients, levels of TNF-α and CRP in plasma are not associated with baseline depressive symptoms (Archer et al., 2012). Similarly, in a study of depressed versus non-depressed hepatobiliary carcinoma patients, levels of TNF-α and IFN-γ in plasma did not differ between groups (Steel et al., 2007).

IDO activity has also been linked to somatic and depressive symptoms in cancer patients. Reduced serum tryptophan is associated with more severe somatic symptoms (RSC) but not anxiety or depression scales in a sample of colorectal cancer patients (Huang et al., 2002). In pancreatic cancer patients, a lower kynurenine acid:tryptophan ratio in serum is associated with worse symptoms of anxiety and depression (Botwinick et al., 2014). Regarding cognitive function, only one study has examined inflammatory correlates of impairment in cancer patients prior to treatment and found that levels of IL-6 were found to be associated with poorer executive functioning and levels of IL-8 were inversely associated with measures of memory (Meyers et al., 2005).

4. Conclusions and limitations

Viewed in tandem, the rodent and human literatures suggest that similar inflammatory mechanisms and behaviors, which were initially established with respect to behavioral changes following acute immune challenges (i.e. sickness behavior, cognitive impairment), are also features of chronic disease (i.e., cancer). Differences between cancer-associated behavioral changes and acute sickness behavior are likely due to differing time scales, the magnitude of inflammation, and subtle differences in underlying mechanisms. One possibility is that tumor growth, in early stages, represents a slow-priming effect on the immune system rather than full activation of conserved sickness responses. In fact, mounting a full sickness response over the span of tumor growth would not be viable given the high energetic cost of such behaviors (fever, anorexia). The sensitized neuroinflammatory responses to LPS administration in tumor-bearing rats (Pyter et al., 2014) and microglial activation (Norden et al., 2015; Pyter et al., 2014) support this priming hypothesis.

Significant gaps in knowledge remain. Sleep dysregulation is clearly prevalent in human cancer patients prior to treatment, but little information is known about sleep and associated mechanisms in tumor-bearing rodents. While models of tumor-bearing rodents suggest that some anxiety-like behaviors may be enhanced, little is known about symptoms of anxiety and inflammation in human cancer patients prior to diagnosis. Methodological disparities have thus far limited inference from behavioral results in tumor-bearing rodents. For instance, models which clearly result in reduced locomotion are not ideal for behavioral tests that required considerable movement such as the tail-suspension and Porsolt forced swim test. Similarly, models which result in wasting and anorexia are not ideal for behavioral tests predicated on food/consumption rewards. Additionally, inflammatory correlates of cognitive impairment have not been established in cancer patients prior to treatment. In other clinical populations, elevated peripheral biomarkers of inflammation (CRP, IL-6) have been associated with neurocognitive decline such as delayed verbal learning tasks (Bettcher et al., 2012; Grassi-Oliveira et al., 2011; Hudetz et al., 2011) and impaired executive functioning (Hoshi et al., 2010; Mooijaart et al., 2013). Increased markers of indoleamine-2,3-dioxygenase activity in peripheral blood have been linked to poorer global cognitive performance in stroke survivors and cardiac patients following surgery (Forrest et al., 2011; Gold et al., 2011). Some of these effects may be hippocampus-dependent, as damage limited to the hippocampus has previously been associated with impaired recognition memory and verbal learning in patients suffering hypoxia-induced brain damage (Hopkins et al., 1995) and hippocampal impairments generally produce worse performance on NOR tests in rodent models, though this relationship continues to be explored (Antunes and Biala, 2012).

This work has several implications for future research. The appearance of somatic symptoms in the months prior to a cancer diagnosis again raises the possibility of early detection for some malignancies. Against this proposition is the fact that most of these symptoms appear to be non-specific and experienced by a wide swath of the population. However, this conclusion is based on the limited survey of symptoms that are discovered in clinic visits. It is unlikely symptoms of anxiety and depression are widely monitored. It is possible, therefore, that somatic, depressive, or cognitive symptoms may have utility in combination with physiologic measures to contribute algorithmically to characterizing high-risk patients.

Measures of depression in cancer patients, even those that attempt to exclude somatic symptoms, likely capture considerable influence of tumor-derived processes in some malignancies. This is an issue that has posed a considerable challenge to researchers interested in affective disturbances in cancer patients. While depressive symptoms are sometimes modeled as a unitary construct, in cancer populations it appears that there are differential associations between somatic and depressive symptoms of depression and measures of inflammation (Lutgendorf et al., 2008). Many theories of depression and sickness behavior emphasize putative shared inflammatory mechanisms, however, there is also evidence that affective and somatic symptoms do not always occur in tandem in acute and chronic illness, and that specific presentations (e.g., melancholic vs. vegetative depression) may be undergirded by independent, albeit associated, mechanisms (Maes et al., 2012). We would advocate, therefore, the use of measures or structured interviews that allow both somatic and depressive symptoms to be measured, rather than measures which aggregate both or exclude somatic symptoms. In cancer populations both affective and somatic symptoms have important and sometimes divergent associations with quality of life outcomes throughout the trajectory of treatment (Reuter et al., 2004; Teng et al., 2014).

The understanding that cancer may fundamentally alter behavioral processes prior to any treatment should challenge existing paradigms and lead to changes in rodent models of cancer treatment and protocols for observational studies of cancer patients. The physiology and behavior of pre-diagnosis cancer patients may already be compromised before the advent of other challenges associated with cancer and cancer treatment. Fig. 1 represents a timeline of various factors involved in the cancer experience that may influence the associated behavioral outcomes. Notably, tumors, cancer-associated stressors, and cancer treatments can independently influence relevant neuroinflammatory pathways over chronological stages of cancer, as well as their likely synergistic/additive biological interactions. Finally, persistent negative behavioral symptoms in cancer survivors suggest that these neuroimmunological pathways are likely altered over the long term (Fig. 1D). Many rodent models of cancer treatment-related symptoms (CTRS) do not employ tumor-bearing animals. Given that there is now a substantial body of work suggesting that many of the behaviors of interest and associated physiological and CNS processes of interest to CTRS researchers are altered by the presence of tumors, this modeling approach is no longer adequate. Further, the immunologic changes secondary to cancer and the immunologic changes secondary to treatment are not necessarily additive, but may be interactive. In fact, these interactions have begun to be
explored in the context of fatigue and cognitive complaints in breast cancer patients (Bower et al., 2014; Bower et al., 2013; Bower, 2007; Ganz et al., 2013). Cancer represents a state of immunologic compromise; this is demonstrated potently by the differential response to subsequent acute immune challenges (i.e., LPS) seen in tumor-bearing rodents, and by the fact that many alterations of the immune system (e.g., enhanced production of pro-inflammatory cytokines) associated with cancer-treatment symptoms are the same as those that are clearly altered by tumor-related processes. That tumor bearing rats have an enhanced neuroinflammatory signaling cascade response to LPS challenge may be an important finding for cancer treatment symptom research, as Toll-Like receptor 4, which is responsive to LPS, also responds to damage-associated molecular patterns (DAMPs) that are thought to be more prevalent following some cancer therapies (Krysko et al., 2013). It is worth considering that predisposing genetic factors may increase the risk of both cancer and worse symptoms associated with the disease and treatment. Studies of genetic polymorphisms and symptom profiles in cancer patients pre-treatment may help to identify vulnerable patients. In fact, a recent investigation of breast cancer patients prior to treatment revealed that variations in cytokine genes are associated with sub-syndromal depressive symptoms through the treatment trajectory (Saad et al., 2014).

Moving forward, baseline measurements and monitoring of immune processes prior to treatment are an important step in observational studies of cancer patients at risk for cancer treatment symptoms. At least one meta-analysis of cancer treatment related cognitive impairment found no evidence for treatment associated impairment in studies which included a baseline measurement of cognitive function compared to those that used non-treatment controls (Anderson-Hanley et al., 2003). The lack of studies considering inflammatory processes and cognitive function in cancer patients is an urgent concern. Future research should incorporate in vitro challenges of isolated circulating immune cells from cancer patients prior to treatment in order to provide information about facets of immune compromise not inferable from systemic markers of inflammation. Additionally, there is evidence that depressive episodes may impact inflammatory pathways, as inflammatory markers are seen to increase with greater numbers

Fig. 1. Proposed causes underlying cancer-associated behavioral alterations as they evolve over the cancer process: (A) pre-cancer diagnosis, (B) post-cancer diagnosis, pre-treatment, (C) during cancer treatment, and (D) post-treatment, cancer remission.
of depressive episodes (Maes et al., 2012). It is possible, therefore, that inflammatory mechanisms associated with cancer-treatment symptoms may be altered by tumor-associated inflammation and depressive episodes triggered by diagnosis prior to the impact of treatment. Non-cancer controls, particularly those facing the same pre-surgical stress but subsequently found not to have malignant disease, can provide critical information about the relationship between tumor-associated biological mechanisms and psychological comorbidities. Well-designed imaging studies may play an important role in future research, as diffusion tensor imaging techniques have been able to identify structural alterations that predict future remission of depression following antidepressant treatment (Korognaak et al., 2014) and transition to chronic pain (Mansour et al., 2013) suggesting that neural signatures may be an important and underused marker of vulnerable phenotypes in cancer. Structural (e.g. reduced fractional anisotropy in the hippocampal formation) or functional (e.g. reduced functional connectivity in the prefrontal cortex) changes in networks associated with executive function and verbal learning are strong candidates. In fact, a recent fMRI study found that pre-treatment dysfunction in executive networks was more strongly associated with post-treatment fatigue and cognitive dysfunction than receipt of chemotherapy in a longitudinal study of breast cancer patients (Asken et al., 2014). As it would appear that a substantial proportion of cancer patients pre-treatment suffer from deficits in memory tasks, clinicians should consider what potential impact this may have on information provided to patients at this critical juncture. Patient retention of treatment-related information should be assessed in cancer patients prior to treatment to determine if alternative strategies for communication and retention need to be developed.

Acknowledgments

We thank Anthony Baker for creating Fig. 1. The authors are supported by Grants CA140933 (S.K.) and CA177325 (A.S.) from the National Cancer Institute, and Ohio State Medical Center (L.P.).

References

A. Schrepf et al. / Brain, Behavior, and Immunity 49 (2015) 1–17

Wilk, M.A., Brain, 2010. 10.1038/jn.2010.6.

Willis, K., 1972. 10.1016/0022-3728(72)90041-0.

