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ABSTRACT
Ubiquitination is an essential process in proteastgranslational modification, which plays a

crucial role in cell life activities, such as prasemal degradation, transcriptional regulation, and
DNA damage repair. Therefore, recognition of ultigation sites is a crucial step to understand
the molecular mechanisms of ubiquitination. Howettee experimental verification of numerous
ubiquitination is time-consuming and costly. Taealate these issues, a computational approach is
needed to predict ubiquitination sites. This pgpeposes a new method called UbiSitePred for
predicting ubiquitination sites combined least #ltgoshrinkage and selection operator (LASSO)
feature selection and support vector machine.,Rirstuse binary encoding (BE), pseudo-amino
acid composition (PseAAC), the composition of kegzh amino acid pairs (CKSAAP),
position-specific propensity matrices (PSP¥)extract the sequence feature information; thus,
the initial feature space is obtained. Secondly,SBE® is applied to remove the feature
redundancy information and selects the optimaufeasubset. Finally, the optimal feature subset
is input into the support vector machine (SVM) tedict the ubiquitination sites. Five-fold
cross-validation shows that UbiSitePred model cahiewe a better prediction performance

compared with other methods, the AUC values fod S&et2, and Set3 are 0.9998, 0.8887, and

PCorresponding author.

E-mail address: yubin@qust.edu.cn (B. Yu).

! These authors contributed equally to this work.
1



0.8481, respectively. Notably, the UbiSitePred tnaerall accuracy rates of 98.33%, 81.12%, and
76.90%, respectively. The results demonstratetti@proposed method is significantly superior
to other state-of-the-art prediction methods amaides a new idea for the prediction of other
post-translational modification sites of proteifisie source code and all datasets are available at
https://github.com/QUST-AIBBDRC/UbiSitePred/.

Keywords. Ubiquitination sites; Binary encoding; Pseudo-amaoid composition; Composition

of k-spaced amino acid pairs; Position-specificoertsity matrices; Least absolute shrinkage and

selection operator.

1. Introduction

Protein post-translational modification (PTM) isethmain mode of regulating protein
structure and function, which plays a significaslerin regulating many cellular processes such as
various signaling pathways or networks in cell;yegexpression, inactivation and activation of
enzymes, and protein-protein interaction [1]. Roatslational modification is also closely related
to various pathological states, once a modificatibnormality occurs, it is likely to cause disease.
As the post-translational modification of proteiiss present in dynamically changing living
organisms, the type and degree of modification wainsform with changes in the internal
environment of the organism, and even some of thaiffnations will be fleeting. Therefore, it is
crucial for the further study of protein post-trimi®nal modification sites, and also important to
help research and design the novel drugs to theatelevant diseases. At present, the major types
of protein post-translational modifications includeethylation [2-3], nitrotyrosine [4],
phosphorylation [5], SUMOylation [6], prenylatior7][ ubiquitination [8], methyladenosine
[9,10,11], pseudouridine [12], phosphothreonine],[X3otonylation [14]. Ubiquitination is a
process in the most common post-translational nwadibn, which plays a crucial role in the
growth and development of organisms, such as proitalization, metabolism, function,
regulation, and degradation. At the same time, uibigation is also closely related to regulatory
function such as cell cycle, apoptosis, transail regulation, signal transduction, and DNA
damage repair [15,16]. Besides, ubiquitination ilabee can lead to several human diseases such
as cancer, neurodegenerative diseases, musculoglys immunity diseases and metabolic
syndrome [17].

With the life science research entering the posbge era, the protein sequence data
accumulated in the protein database has increagemhentially. Identifying the post-translational
modification sites of the protein is of great sfgr@ince for understanding the post-translational
modification process and its functions. Predictitgquitination sites provides not only valuable
opinion into grasping the ubiquitination molecutlaechanisms but also affords useful information

for further study of biological sciences and dryelopment, because of the critical regulatory
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role of ubiquitination. Currently, the methods fadentifying ubiquitylation sites include
site-directed mutagenesis [18] and mass spectrgifigd}. Ubiquitination is a rapid and reversible
post-translational modification of proteins; thuke traditional experimental methods are
time-consuming and labor-intensive. Bioinformatimgthods combined with machine learning
algorithms can efficiently, and large-scale idgntife ubiquitination sites [20-21].

Protein sequence feature extraction is an imponant of post-translational modification
sites prediction, and effective feature extractimethods have a positive effect on the recognition
of modification sites. The current feature extractimethods of protein sequences are mainly
based on sequence features, physicochemical arahdnical properties features, predicted
structural features and evolutionary informatioatfees. Qiu et al. [22] used the position weight
amino acid composition (PWAA) to extract the seq@eposition information of amino acid
residues to reveal the sequence information ardliadcrotonylation sites. The PWAA feature
coding method is also used to identify phosphoigfasites [23] and methylation sites [24]. The
composition of k-spaced amino acid pairs (CKSAAPRswwidely used to predict
post-translational modification sites, such as @agsylation sites [25], palmitoylation sites [26],
phosphorylation sites [27]. Tung and Ho [21] used gghysicochemical features to identify
ubiquitination sites in protein sequences. Wuyual €f28] used the prediction tool PSIPRED [29]
to extract secondary structure information of grotequences for predicting lysine acetylation
sites. The position-specific scoring matrix (PSSMJs employed to calculate the evolutionary
information of protein sequences through multigguence alignments. Abdollah Dehzangi et al.
[30] predicted succinylation lysine residues bazedSSM. Jia et al. [31] integrated the sequence
coupling information into a pseudo-amino acid cosifion (PseAAC) to predict the succinylation
sites. They also designed the predictor iSuc-Ps¢&Rjtto process the training dataset using
K-nearest neighbor cleansing (KNNC) and insert liypsis training samples (IHTS) to predict
lysine succinylation sites. Ju et al. [33] incoigded the CKSAAP coding into Chou's PseAAC to
predict crotonylation sites. Liu et al. [34] iddigd lysine phosphorylation sites in proteins by
incorporating four different levels of amino acidipcoupling information into PseAAC. Qiu et al.
[35] proposed a protein phosphorylation site prediciPhos-PseEn, by fusing different
pseudo-components into a set classifier. Xu €38l designed the cysteine S-nitrosylation sites
prediction tool ISNO-PseAAC by incorporating pasitispecific amino acid propensity into
PseAAC. They also coupled the amino acid pairingp ithe PseAAC designed cysteine
S-nitrosylation site predictor iISNO-AAPair [37]. Wiet al. [38] proposed that the protein
methylation site predictor iMethyl-PseAAC extragiotein sequence features by the PseAAC
algorithm. Protein hydroxylation is closely relatéd lung cancer and gastric cancer. To

understand the mechanism of hydroxylation and Haelg development, Xu et al. [39] developed
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the predictor iHyd-PseAAC based on the positiopaictficity of dipeptides into the general form
of PseAAC. Hydroxylation of proline and lysine isedicted. Jia et al. [40] integrated the
sequence coupling effect into the general PseAAQ idantified the carbonylation sites in the
protein by Monto Carlo sampling. Based on the davee discriminant algorithm, they
developed the protein SUMO site predictor pSumo-[B) which combined the sequence
coupling effect into the general PseAAC. Huangl.edd] developed a method called PredSulSite
that incorporated three types of encoding algomtts@condary structure, grouped weight and
autocorrelation function-digging features from siree sulfation proteins, for the identification of
tyrosine sulfation sites. Wang et al. [42] congedca novel malonylation sites online prediction
tool, called MaloPred, which can predict malonyatsites by combining sequence-based features,
evolutionary-derived information, and physicochemhiproperties. Liu et al. [43] predicted
N-methyladenosine sites by extracting the physieotbal properties of RNA sequences. Qiu et
al. [5] incorporated evolutionary information intiee general form of PseAAC and applied grey
system theory to predict human protein phosphaoyiatites.

Feature fusion will bring about redundant inforraatand produce dimension disaster, which
also causes troubles for calculation and even taffee forecasting results. Therefore, it is
necessary to select the optimal feature subséediision information, reduce noise and eliminate
redundant information. At the same time, it can mmaxnly retain valuable features, improve the
efficiency, performance, and robustness of the iptied model [44]. In 2007, Liu et al. [45]
introduced the concept of feature extraction ardctien, using properties sequential forward
selection (PSFS) to extract effective propertiearafno acids and a novel computational method
was developed for SUMO modification sites predittimased on support vector machine (SVM)
algorithm. The research team also used maximumaete minimum redundancy (MRMR) [46],
incremental feature selection (IFS) [46] and featorward selection (FFS) [47] to select features.
Cai et al. [48] created a method to predict N-fdatign sites based on the maximum relevance
minimum redundancy (MRMR) and incremental featwrledion method (IFS) to screen the
optimal feature subset. Ju et al. [49] construetetbvel bioinformatics tool named PropPred for
predicting lysine propionylation sites combined fhwithe F-score feature method and the
incremental feature selection algorithm to remdwe tedundant features, using support vector
machine as a classifier and the prediction accuraty reached 75.02%. Wang et al. [50]
proposed PrAS to predict amidation sites, whichoiporated position-based features,
physicochemical and biochemical properties feafupedicted structure-based features and
evolutionary information features, then used pesitcontribution feature selection (PCFS) to
form the optimized features, finally based on suppector machine classifier, PrAS achieved

AUC of 0.96, accuracy of 92.1%, sensitivity of 8b.2specificity of 94.9% and MCC of 0.76 on
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the independent test set. Tung and ho [21] propesethformative physicochemical property

mining algorithm (IPMA), the 31 features selectgdPMA from 531 physicochemical properties

for ubiquitylation sites prediction. Qiu et al. [5designed the methylation sites prediction tool
PSSMe based on the optimization method of informmagjain (1G). Wuyun et al. [28] established

the lysine acetylation sites prediction tool KA-gietor which used the Pearson correlation
coefficient (PCC) and the stepwise feature selacti®-S) method to select the optimal feature
subset.

In the past decades, with the rapid developmenprofeomics technology, the modified
protein sequences related to sites with constatguguwhich greatly promoted the study of
post-translational modification sites of proteifighe identification of these sites is of great
significance for understanding the mechanism oftgamofunction. Different types of machine
learning methods are widely used for sites preamtictbecause of their learning model and
predictive power. The current mainstream machirseniag prediction algorithms are logistic
regression (LR) [52], Naive Bayes (NB) [53-54], redunetwork (NN) [55-56], K-nearest
neighbor (KNN) [57-59], random forest (RF) [31,64],6support vector machine (SVM) [63,64],
etc. Logistic regression is a regression analjgsrghm based on logical functions. In 2014, Hou
et al. [52] proposed logistic regression classifidceP to predict acetylation sites. Naive Bayes
algorithm [52,53] is a powerful probabilistic netstkomodel learning method. Xue et al. [54]
developed a novel computational method NBA-Palmeta®n Naive Bayes to predict
palmitoylation sites. The artificial neural netwdska simulation of the biological neural system,
whose main characteristics include its parallebiinfation processing capabilities, as well as its
self-adaptive, self-organizing and fault-tolerahtuacteristics in the learning process. In 1999,
Nikolaj Blom et al. [55] in Denmark first realizethe prediction of non-specific protein
phosphorylation sites and the effectiveness ohtbdel was verified by using the neural network
algorithm. Tang et al. [56] developed GANNPhos tedict phosphorylation sites based on
genetic algorithm integrated neural network (GANN)ie KNN [57,58] is a commonly
supervised learning algorithm according to the lsinty between the test sample and the training
samples. In 2005, Li et al. [59] designed kinasee#ft phosphorylation sites prediction with
KNN algorithm. Hu et al. [60] constructed the Sfitation sites prediction model based on the
nearest neighbor algorithm (NNA). Random forest] [&l a simple and effective ensemble
learning classification algorithm, which has aneabent classification effect on data with more
features. Hasan et al. [62] designed the pred@mdCysSite using the random forest algorithm, to
identify protein S-sulfenylation sites with an AU@Ilue of 0.817. Jia et al. [31] developed the
predictor pSuc-Lys based on RF algorithm to recogihisine succinylation sites in proteins with

an accuracy of 90.83%. Support vector machine (S\éM) supervised learning model that map
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input samples to high-dimensional space by kenmsttfons and searches for optimal hyperplane
for classification. Zhao et al. [63] developed avr@oinformatics tool named PGIuS based on the
SVM algorithm for S-glutathionylation sites. Therfmemance of PGIuS was measured with an
accuracy of 71.41% and an MCC of 0.431. Chen db4l. created the prediction tool GSHSite
with support vector machine classifier to idenfglutathionylation sites.

Given the critical regulatory role of ubiquitinatio more and more researchers have
invested in the prediction of ubiquitination sitesd have made significant progress. Tung and Ho
[21] developed the UbiPred ubiquitination sitesdicgon tool, by using SVM with the feature set
of 31 informative physicochemical properties sedddby IPMA, which can improve the accuracy
from 72.19% to 84.44%. Radivojac et al. [65] usedr® acid components and physicochemical
properties to extract 586 protein sequence feammdgesigned the ubiquitination sites prediction
tool UbPred, the accuracy of UbPred reached 72%andUC value of 0.8. Cai et al. [66]
encoded protein sequences based on PSSM consersatices, amino acid factors and disorder
scores of the surrounding sequence. The mMRMR watogad to select optimal features, and the
nearest neighbor algorithm (NNA) was chosen asaasifler. The experiments indicated that
Mathews correlation coefficient (MCC) of their meth was higher than the values of the
prediction tools UbPred and UbiPred. Chen et &} iy using the composition of k-spaced amino
acid pairs (CKSAAP) for feature extraction and deped the predictive tool CKSAAP_UbSite in
combination with a support vector machine. Accuracg MCC of CKSAAP_UDbSite reached
73.40% and 0.4694, respectively. Because the apiplic of CKSAAP_UbSite is limited to the
proteome of yeast, they also developed the humaiguitihation prediction tool
hCKSAAP_UbSite [68], with an AUC value of 0.770. 2013, Chen et al. [69] systematically
analyzed the features of pupylation sites sequersieuctural and evolutionary in prokaryotic
proteins, the ubiquitination sites of prokaryotes &ukaryotes were compared in detail. In 2014,
the research team analyzed the algorithm and featudifferent predictive tools in detail, and
ubiquitination sites in Saccharomyces cerevisiamnbl sapiens, Mus musculus, and Arabidopsis
thaliana were analyzed, discussing the necessgp@dies-specific ubiquitination sites prediction
[70]. Nguye et al. [71] used amino acid composiidAC), amino acid pair composition (AAPC)
and evolutionary information to extract the featufeom the protein sequences. The support
vector machine (SVM) was applied to generate trediption model for ubiquitination sites
identification, and five-fold cross-validation shesvthat the SVM model has better generalization
ability. Wang et al. [72] proposed an evolutionagreening algorithm (ESA) to extract the
physicochemical properties of protein sequences. $¥YM was used to establish a prediction
model ESA-UbiSite, prediction accuracy reached 9R&e et al. [73] established the UbSite of

ubiquitination sites prediction using SVM, improvéte prediction accuracy of ubiquitination
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sites.

Although a series of research achievements have dleined in the prediction of protein
ubiquitination sites by statistical and machinern@ay methods, there is still much room for
improvement. First of all, the influence of the ti@a information of protein sequences on the
recognition of ubiquitination sites has not beepaended. The prediction methods based on
amino acid sequence feature information still haselbent development potential. Secondly, the
fusion of multiple features will generate redundaaad noise information. How to choose the
appropriate dimension-reduction method to retdffeidint features information effectively is also
one of the challenges we face. Finally, the datthefexperimental identification ubiquitination
sites has been significantly increased, and tisene ieffective prediction method and tool.

Inspired by this, we propose a novel method fotganoubiquitination sites prediction, called
UbiSitePred. First, binary encoding (BE), pseudaramacid composition (PseAAC), the
composition of k-spaced amino acid pairs (CKSAARY @osition-specific propensity matrices
(PSPM) are used to extract protein sequence featlitee best model parametédrsk and m
values are determined by five-fold cross-validatidinus, we can obtain the initial sequence
information to distinguish ubiquitination sites ffinonon-ubiquitination sites. Secondly, compared
with Mutual information, Elastic net, Extra-tre@ddRMD and LASSO feature selection methods,
LASSO is used to determine the optimal feature etybshich could remove redundant and
uncorrelated features to provide important featnfermation for the input classifier. Finally, a
prediction model for ubiquitination sites based support vector machine is constructed and
compared with five classifiers: Naive Bayes, K-msaneighbor, LibD3C, AdaBoost and random
forest. The experimental results show that the Ith#3ed method proposed in this paper can
significantly improve the predictive power of ubitijpation sites.

According to a recent series of publications [11884 a truly useful sequence-based
statistical predictor has been developed for bickigsystems and should follow the Chou's 5-step
rule [87]: (i) construct a baseline dataset tantiamd test the predictor; (ii) formulating a bidky
sequence sample with valid mathematical expresdimmiscan truly and adequately reflect the
intrinsic correlation with the target to be predit (iii) introducing or developing a robust
algorithm to calculate predictions; (iv) Perfornoss-validation tests correctly and objectively
assess the expected accuracy; (v) Establish afniesgaly web server that the public can access.
Below, we will explain how to implement these stepg by one.

2. Materials and Methods
2.1. Datasets
To fairly evaluate the prediction model performaméethe lysine ubiquitination sites and

compare with other literatures, it is necessargdl®ect an objective and representative dataset.
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Protein sequences are usually composed of 20 conamdmo acids, lysine (K) is an essential
amino acid that binds to ubiquitin and affects eotfunction through ubiquitination [88]. To
identify whether the lysine (K) is a ubiquitinatisite, we need to get information about the amino
acids around the lysine (K) residue. In this pafieee different datasets of protein ubiquitination
sites were selected. Data Set 1, Data Set 2 arad$#t3 were established by Cai et al. [20]. Data
Set 1 was collected from the UniProt database [@dfjsisting of 157 lysine ubiquitination sites
from 105 protein sequences, and the protein sequemttaining the ubiquitination site was used
as a positive sample. At the same time, for théeprsequence of 3676 lysines without annotated
ubiquitination sites, they were used as negativepsss. Regardless of whether it is a positive
sample protein sequence or a negative sample pregégjuence, the sample window size is 13.
Finally, 300 protein sequences with central lysitesites were obtained, and the number of
positive and negative samples each accounted ftft Bata Set 1 can download via
http://iclab.life.nctu.edu.tw/ubipred/. Data Searad Data Set 3 were from the independent testing
dataset and training dataset [68], respectively fdundant sequences were removed using the
Blastclust program [89] (ftp://ftp.ncbi.nih.gov/Bi&documentsblastclust.html) with a 30% identity
cutoff. Data Set 2 and Data Set 3 were compos@5b®7 ubiquitination sites from 3852 proteins,
then randomly chose the equal number of non-uliigtion sites as negative samples, and the
distance between lysine in the negative sampleuaiglitination sites in the same protein should
not be less than 50 amino acids. Data Set 2 cedsit6838 sequence fragments, 12236 sequence
fragments in Data Set 3, and this sample window &z27. Data Set 2 and Data Set 3 can be
downloaded from
http://protein.cau.edu.cn/cksaap_ubsite/downloa@d®etForhCKSAAP_UDbSite.rar. To ensure
the unified length of each peptide, a virtual rasiéX' was used to fill the corresponding positions
where there were no sufficient residues. To fatditthe follow-up work, Data Set 1, Data Set 2
and Data Set 3 are represented by Setl, Set2 eaBdr&spectively.
2.2. Binary encoding

Binary encoding (BE) mainly reflects the types aeldtive positions of amino acids around
ubiquitination sites and non-ubiquitination sitagprotein sequences. Binary encoding is a simple
encoding scheme that transforms the substrate seggi€haracter signals into numerical signals
by using an orthonormal encoding scheme, whicteetdrthe features information of 20 common
amino acid residues and residue X, according totder of ACDEFGHIKLMNPQRSTVWYX
[49]. Every amino acid residue in the sample segeefragment is transformed into a
21-dimensional binary feature vector. For examplaganine A is represented by
(10000000000000000000, tyrosine Y is represented b§0000000000000000001, the virtual

residue X is encoded as the ve¢@fX00000000000000000C. Therefore, for each sequence



fragment with the window size of, resulting in a 21x n-dimensional feature vector.
2.3 Pseudo-amino acid composition

Using the high-throughput tools that have been ldges, it is possible to extract
information on newly discovered protein sequencestime for basic research and drug
development. Based on the amino acid compositioiade Chou et al. [90] fused the sequence
information of amino acids with the physicochemig&aEbrmation of amino acids to propose a
method of pseudo-amino acid composition. This nektimaps protein sequences to the following

feature vectors:

P:[pll pzf"apzo-pzmlv"‘vpzw]T (1)

Each of these components is given as follows:

L, 1cus<20

20 A

>t rwd T,

FL: u=1 k=1 (2)
@,

_m  20+1<us< 20+

i f, +wy 1,
u=1

k=1

where w is the weight factor, which was set at 0.05 in0][9f,is expressed as the frequency
of occurrence of the amino acid in the sequence of the protein sequence in the sequieices
be seen from the above formula that the first 20egisions of the feature vector are the amino
acid composition, and the lattet dimension is the sequence correlation factor ctflg the
different levels of the amino acid sequence infdioma Sequence related factors are obtained by
the physicochemical properties of amino acids. Aespnt, researchers have applied the
pseudo-amino acid composition method vary widelgd &his method is widely used in
proteomics [91-97]. In particular, Chou et al. bailvery powerful web server called "Pse-in-One"
[98] and its updated version "Pse-in-One 2.0" [98fich converts protein, peptide, DNA and
RNA sequences into the required numerical vectothils paper, the feature extraction of protein
sequences was performed using the PseAAC onlinersgeveloped by Chou et al. [100]. On this
server, the optimalid can be determined from the accuracy of the priedicesult by selecting a
different parameter/ .
2.4. Composition of k-spaced amino acid pairs

The CKSAAP encoding strategy means that it calesldhe frequencies of thk-spaced
amino acid pairs for each given peptide fragmemt, @mino acid pairs distance information and
amino acid pairs composition information was tak&o account, which reflects the biological
characteristics near the ubiquitination modificatisites of the protein. At present, CKSAAP
encoding is not only used for the prediction of ghtworylation sites [27] but also applied to the

study of pupylation sites [101] and N-formylatidtes [102]. For example, AxxxG represents an
9



amino acid pair composed of alanine and glycinpaissted by three amino acids of any type, and
k =3 indicates the space between residue pairs. Farelit k, there are 441k -spaced amino
acid residue pairs for AA, AC, ..., AX, ..., XA, XC.., XX. For any given protein sequence with

the window size of W, the feature vector can be defined as:
NAA NAC NXX )

( , REPRPS ,
Ntotal Ntota] N

()

total

where N;; represents the number of amino acid pairs at spade,and N, represents the
number of amino acid pairs with distanée in the protein sequence with the window sizeWsf
so we can knowW,, =w—k-1. In this paper,k is 0, 1, 2, ..., 11, and the optimal parameler
is 6. For Setl, Set2, and Set3, the total dimensidne CKSAAP-based feature vectors is 3,087.
2.5. Position-specific propensity matrices

Position-specific propensity matrices (PSPM), pegabby Xu et al. [103] in 2013, uses the
position-specific propensity of amino acid pairsctinstruct vectors. The dataset is divided into
the positive dataset and negative dataset accotdinghether it contains ubiquitination sites.
When the sample fragment length of the positivaskdtis N, and the space between the amino
acid pairs is 0, we will get a position-specifipejptide composition matrix of#41x (- 1) for
A*.The j-th columnof A" is A =(&,&,;,a;, =8y ), &, denotes the frequency of
the i-th dipeptide in j—th column of the positive dataset. Similarly, we ocalotain the
frequency matrix A~ corresponding to the negative dataset, the poss@tific propensity
matrix with the size of441x (W - 1) is given by the formula:

n=a,a, @)

Where mrepresents the space among residue pairs. Repeaibtbve steps to calculate the

position-specific propensity matrix between two mmi acids pairs separated Iy,

correspondingly we obtain a matrix Z,..Z.., " Zyen-z of size
441x (n— 2),44% Q- 3),- ,444 . The matriXx Z _,,Z, 1. 20" +Zmn, Obtained above is
. .. . . L nx(n-1)

calculated as follows to obtain a position-spegificpensity matrix with 5|ze44le .

By Zy v Zggy Zpph e Zgl, e e AT

m=0 Zm:O . Zm:O Zm=l . Zm:l ...... Zm:n— 2

z=z 0z .0z _,0--0Z_ ,= Z2.,1 2.,2 2p-1 ?,1 Z.N_ 2 2.,1 (5)

221:1(,)1 ZT:fz ant%— 1 Zm;411,1 ijiur, 27 Zm::u_lz,

According to the above steps, the position-spegfiapensity matrixZ is obtained, for any
given protein sequence, the corresponding featactow can be obtained after being compared
with Z .

2.6. LASSO
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Given the dataseD ={(X, ¥)),(X, ¥,),"*,(X,,¥,,)} , Where xOR’,yOR, subject to the
square error as the loss function, the optimizaiojective is
min > (y, ~w'x )’ (6)
R

Eq. (6) is a general linear regression. To redheeter-fitting risk, Tibshirani [104] proposed the

least absolute shrinkage and selection operato68@) in 1996. The basic idea is to introduce

¢, norm regularization from minimizing residual sunf equares. The LASSO sparse

representation coefficientv can be described as follows:
JwW) =minY (v ~w'x )+ y|w, (7)
i=1

where the regularization parametércontrols the penalty of sparse coefficient esti()’rati"V\“1

is /, norm, and the sparse solution &f means that only the non-zero componehit
corresponding to the initial feature will appear time final model. ¥=0 is an adjustable
parameter, when th¢’ value is large enough, there will be more "sparselitions, some
low-correlation coefficients will be compresseddo remove these variables and achieve the
purpose of feature selection; when the valueYofis small, the impact of the regularization
constraint is relatively small, in which case alributes will be selected. In this paper, we set
¥y =0.005 and use the coordinate gradient descent methazptonization.
2.7. Support vector machine

Support vector machine (SVM) is an effective maehilearning algorithm based on
statistical learning theory, which was first propdsy Vapnik [105]. It is widely used in various
fields of bioinformatics research, including predin subcellular localization [106-109],
prediction of protein submitochondrial locationsl(], prediction of protein structural [111],
protein-protein interactions prediction [112], miot fold recognition [113], prediction of protein
post-translational modification sites [70,73], potidn of membrane protein types [114] and other
protein function research [115]. The basic idetifind the hyperplane in the samples space and
make the samples of different classes linearlyrsdgha At the same time, we can find the optimal
classifying hyperplane that can correctly divide gamples into maximal margin and minimal
error. If the original sample space is nonlineadparable, the SVM maps the input space to the
high-dimensional feature space through kernel fanctso that the sample data becomes linearly

separable. At this time, the optimal classificatigqperplane needs to satisfy:
N R o
= +CY €&
minwf* +C3 ¢ ©
sty (W o(x)+b)=1-¢,i=12;-m

where C is the penalty factor, the above problem is solwgthe Lagrange method to obtain the
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final classification discriminant function:
f(x) =sgn{d ay,K(x,x)+b} 9)
i=1

where a is the Lagrange multiplier, b is the classification threshold, and
K(x,x)=<@(x)p(x)> is the kernel function. The commonly used kerneictions include
linear kernel function, polynomial kernel functiommdial basis kernel function, and the sigmoid
kernel function. In particular, the radial basigret function can better solve the problem of
nonlinear, whether small sample or large samplasdat high dimensional or low dimensional,
etc., which shows excellent prediction performafides SVM with radial basis kernel functions is
also widely used in sites prediction, such as thgalitoylation sites [116], the cysteine
prenylation sites [117] and lysine phosphoglycdigta sites [118]. This paper uses the support
vector machine algorithm in Scikit-learn [119].

2.8. Performance evaluation and model construction

The methods for evaluating the effectiveness of thedel include self-consistency,
independent test, and k-fold cross-validation. Fold cross-validation was carried out in order to
evaluate the performance of the model, the datagete randomly divided into five mutually
exclusive subsets of similar size, each time ontherh is used as a test set, and the other four are
used as training sets for the training classifid the cross-validation process was repeated five
times. The average value of five-fold cross-valmatests was used as the verification result of
the performance of the classifier.

To assess the performance of the predictive modaile nintuitively, sensitivity (Sn),
specificity (Sp), overall accuracy (ACC) and Mattlsecorrelation coefficient (MCC) were used
to evaluate the prediction results. Sensitivity apécificity represent the ability of the model to
predict positive and negative samples correctlg, @averall accuracy is the ratio of the number of
samples correctly classified to the total numbesarhples, the Matthews correlation coefficient
balances the predictive performance of the metadeh even for different amounts of datasets.

The four evaluation metrics which are formulated3#540,43,74-76,86]:

N+
S=1--= 10
v (10
-
—1- 11
S . (11)
ACC ﬂfu (12)
N +N
_NI+N]
MCC = N"+N- (13)
N.-N° ., N'-N.
1 Ny
J( NG ) . )
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where N* denotes the number of ubiquitination sites to ireestigated, N~ represents the
number of non-ubiquitination sites to be investgat N indicates the number of true
ubiquitination sites which are incorrectly preditt®s non-ubiquitination sitesN, represents the

number of non-ubiquitination sites which are inectly predicted as ubiquitination sites.
According to (10), (11), (12), and (13), we can:seleen N* =0, it means that none of the

true ubiquitination sites was mispredicted to baafi-ubiquitination sites, we have the sensitivity

Sh=1. When NI =N, it means that all the true ubiquitination sitesravincorrectly predicted to

be non-ubiquitination sites, we have the sensytivéh = 0. Likewise, when N; =0, it means
that none of the non-ubiquitination sites was madprted to be of ubiquitination sites, we have
the specificity 9=1; WhereasN,; =N~, it means that all the non-ubiquitination sitesrave
incorrectly predicted to be of true ubiquitinatigites, we have the specificitgp=0. When

N® =N, =0, it means that none of the true ubiquitinatiorsin the positive dataset and none of

the non-ubiquitination sites in the negative ddtases incorrectly predicted, we have the overall

accuracy ACC =1 and MCC =1; whereas N’ =N* and N; =N~ means that all the true

ubiquitination sites in the positive dataset andenof the non-ubiquitination sites in the negative

dataset were incorrectly predicted, we have theradlveccuracy ACC =0 and MCC =-1;

Whereas N* =N*/2 and N; = N7/2, we have the overall accurackCC = 0.5 and MCC =0

means no better than random prediction. As we eanfom the discussion above, it is much
more intuitive and easier to understand when ufsingula (10), (11), (12), and (13) to examine a
predictor for its sensitivity, specificity, overatcuracy, and Mathews correlation coefficient.

Either the set of traditional metrics copied fromtimbooks or the intuitive metrics derived
from the Chou's symbols [120] is valid only for teimgle-label systems (where each sample
solely belongs to one class). For the multi-labedtesms (where a sample may simultaneously
belong to several classes), whose existence hasmigeenore frequent in system biology
[80,121-126], system medicine [77,78] and biomewidil27], an entirely different set of metrics
as defined in [128] is needed.

Also, the receiver operating characteristic (RO@ye based on Sn and 1-Sp is commonly
used to assess the discrimination ability of asifiés. The area under the ROC curve (AUC) is an
indicator to measure the robustness of the predictiodel, the closer the AUC value is to 1, the

better the model performs.
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For convenience, the ubiquitination sites predictieethod we propose in this paper is called
UbiSitePred, and the calculation flow is shown iig.FL. The experimental environment is
Windows Server 2012R2 Intel (R) Xeon (TM) CPU E®Q6@ 2.30GHz 2.30GHz with 32.0GB
of RAM, MATLAB2014a and Python 3.6 programming irapientation.

| . I T A .
| Data collection and preprocessmg | Data collection | i Feature extraction |
| |
[ \ | | [ ‘
| UbiProt —b- } \ N ‘ | BE |
| | } Positive } | \
\ \ [ !
i l }-; dataset | -} PseAAC |
|
. | | : | | CKSAAP |
. literatures—| | } Negative } ‘ |
: ! ! dataset ! !
: —l | .

Model evaluation

Model evaluation

| I
| 1 | | |
| I } I } !
| |
i w | SWM 1 } |
‘ (5-fold cross } ‘ classifier i \ LASSO }
| validation) ¢ - i

| | | |
1 } 1 B ‘ . BE+PseAAC+PSPM+C |
‘ w ‘ uild l ‘ KSAAP |
| AUC, ACC,Sn,Sp,MCC | | UbiSitePred | | A i
i | | model i | (EassE) |
\ ! :

The prediction steps of the UbiSitePred methodbmadescribed as:

1) Get the Setl, Set2, and Set3, enter the positidenagative samples of the protein sequences
and the corresponding class labels in the model.

2) Feature extraction. The protein sequence is tresgealspecial string, and the character signal
is converted into a numerical signal by coding. Uae the BE to extract protein sequences
features. b) Generatin@0+1 dimensional feature vectors using the PseAAC dlyor (c)
Feature extraction of protein sequence informatising the CKSAAP. (d) Encoding protein
sequences using PSPM. Then the four extractedrésatwe combined, each protein sequence
in the Setl with the 3462-dimensional vector; eaththe sequence in Set2 and Set3
constructs a 3910-dimensional vector space.

3) Feature selection. For the extracted protein featwsctor, LASSO is used to remove
redundancy and noise information, and the optireature subset is filtered through five-fold
cross-validation to provide good feature informatior the SVM classifier.

4) According to steps 2) and 3), the selected opthestiure subset and the corresponding class
labels are input into the SVM classifier to predia post-translational the ubiquitination sites

of the protein sequences.
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5) Model performance evaluation. Five-fold cross-vation was used to evaluate and calculate
AUC, ACC, Sn, Sp, MCC, draw ROC curve, and evaluite model's prediction
performance.

3. Results and discussion

3.1. Analysis of sequence characteristics
In this paper, we use the Two-Sample Logos [129]

(http://www.twosamplelogo.org/cgi-bin/tsl/tsl.cgd) obtain a comparison of the double sequence

identifiers of the datasets Setl, Set2, and Sdt8.flequency-based method revealed the amino

acid patterns around the ubiquitination site, molearly elucidating the residues near the
ubiquitination site, and clarifying the statisticsignificance and significant differences in the
residues surrounding the ubiquitination site. TwamBle Logos analysis showed significant
differences between the protein sequence of thguitliiation site and the protein sequence of the

non-ubiquitination site for the datasets Setl, Sat@ Set3, as shown in Fig. 2, Fig. 3, and Fig. 4,

respectively.
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23.3%
Fig. 2. Comparison of two sequences of amino acid seqgenear the ubiquitination and
non-ubiquitination sites of Set1.

As presented in Fig. 2, there is a significant estidfhce between the ubiquitination and
non-ubiquitination sites near the lysine residugha Setl. Near the ubiquitinated lysine, the
negatively charged glutamic (E) residue tends tocknat positions -6, -2, -1, 1, 6, and the
negatively charged aspartic (D) residue tends ticlenat position -2, -1, 1. There are no
significant amino acids in the enrichment positiefis2, 4 and 5, and there are also no significant
amino acids in the exhaustion positions -5, - and 5. Glutamic acid (E) and aspartic acid (D)
are more important in the upstream of the positisgaset, while glutamic acid (E) is also more
important in the downstream of the positive data8etording to these characteristics, it can be
inferred that the frequency difference in the apgeee of various amino acids in Setl at different

positions near lysine significantly affects thequbiination process of the lysine site.
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Fig. 3. Comparison of two sequences of amino acid seqgenear the ubiquitination and

non-ubiquitination sites of Set2.

As can be seen from Fig. 3, there is a significhifierence between the ubiquitination sites
and non-ubiquitination sites near the lysine resigduthe Set2. Compared to other amino acids,
the non-polar amino acid leucine (L) is enriched pakitions -2, 1, 2, 4, and non-polar
phenylalanine (F) frequency of occurrence is higitgositions -5, -2, -1, 1, 2, and the positively
charged arginine (R) is significantly higher at igoas -12, -9, -8, -7, 6 and 9. There are no
significant amino acids at the enrichment positiet8, -11, 8, 11, 13, and there are no
considerable amino acids at the depletion positit8s-12, -11, -9, -6, 6, 12, 13 as well . Besjde
arginine (R) and phenylalanine (F) are of more irtgooce in the upstream of the positive dataset,
while leucine (L) and phenylalanine (F) are equaitportant in the downstream of the positive
dataset. Based on these features, it can be idférag there is a significant difference between th

amino acids near the ubiquitination and non-ubinatfion sites in Set2.
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Fig. 4. Comparison of two sequences of amino acid seqsgenear the ubiquitination and
non-ubiquitination sites of Set 3.

As can be seen from Fig. 4, the ubiquitination sit&et3 is near the lysine. Compared with
other amino acids, the non-polar amino acid leu¢ineas obviously at the position -2, 1, 2, 4 and
the non-polar amino acid phenylalanine (F) occumenfrequently at positions -2, -1, 1, 2,
positively charged arginine (R) tends to enricpadition -12, -9, -8, -6, 5, 7, 9, 11, and posiiive
charged lysine (K) is significantly higher at pasiis -13, -9, -8, -7, 9, 12, 13. Furthermore, lgsin
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(K) is more important in the upstream of the pesitilataset, while leucine (L) and lysine (K) also
have a very important role in the downstream of fhesitive dataset. Based on these
characteristics, it can be inferred that thereadndous differences between the amino acids near
the ubiquitination and non-ubiquitination sitesSet3.
3.2. Selection of optimal parametersi value, k valueand mvalue

Extracting effective feature information from priot@equence is a vital step in the prediction
model of the protein post-translational modificatisites. To better obtain the important feature
information, the parameters of the model shoulédijested. We use five-fold cross-validation to
determine optimal parameters , k and M value of PseAAC, CKSAAP, and PSPM on Setl,
Set2, and Set3. Th@ value of PseAAC algorithm indicates the proxinofythe sequence, i.e.,
the sequence information of the protein sequemae(CKSAAP, and PSPM algorithm parameter
k and M values represent the interval between any two @naicid residues of the protein
sequence, which play a crucial role in the conssamf the model. If thed value, the k value,
and the M value are set too large, the dimension of theufeatector of the protein sequence
will be too high, which will bring more redundanhfermation and affect the predictive
performances. If thed value, thek value, and them value are set too small, the sequence
information contained in the feature vector will beduced, and the features in the protein
sequence cannot be extracted effectively. For #hiaseéts Setl, Set2, and Set3, to find the optimal
A valuek value and M value in the model, th& values andM values are set to 0, 1, 2,
3,4,5,6,7,8,9, 10, and 11, respectively. Duhéopresence of virtual amino acids in the protein
sequence, thel values of 1, 2, 3, 4, 5, 6, and 7 are sequent&dly SVM is employed as a
classifier to select optimall value, k value, and them value, using RBF kernel via five-fold
cross-validation. We use ACC and AUC to evaluageptediction performance. The ACC values
corresponding to the different parametets value in the PseAAC encoding are shown in Table
1. The changes in the ACC values and AUC valuegesponding to differentd values in the
PseAAC encoding are shown in Fig. 5. The ACC vat@sesponding to different intervals of
the amino acid residues in the CKSAAP are showmahle 2. The changes in ACC values and
AUC values corresponding to differemtvalues in the CKSAAP are shown in Fig. 6. The ACC
values corresponding to different intervals 8f the amino acid residues in the PSPM are shown
in Table 3, and the changes of the ACC value apdAHC value corresponding to differert

values in the PSPM are shown in Fig. 7.

Table 1

ACC values corresponding to different values in PseAAC.

ACC(%) A=1 A=2 A=3 A=4 A=5 A=6 A=7
Setl 66.00 65.33 65.67 68.00 68.00 66.33 67.00
Set2 63.10 63.28 63.50 63.04  63.60 63.12 63.16
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Set3 65.12 65.64 65.85 65.90 67.97 66.14 65.89
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Fig. 5.ACC values and AUC values corresponding to differan values in PseAAC.

As can be seen from Table 1, by changing the paemévalues, different prediction
effects are obtained. For the dataset Setl, tHeehkigrediction accuracy is 68% at the parameter
A=4 and A=5, which is 2.67% higher than the paramet&t2 . For the dataset Set2, the highest
prediction accuracy is 63.60% at the parameteb, and different parameters have little effect
on the prediction accuracy, and both fluctuate atlo63%. For the dataset Set3, when the
parameter valuel is set to 5, the prediction accuracy is 67.97%. Bi shows the changes in
ACC values and AUC values corresponding to diffegarameter values in PseAAC encoding.
As can be seen from Fig. 5, as the parameter vahesge, the ACC and AUC values of the Setl,
Set2, and Set3 also change. To obtain the optiaralhpeter A  of the PseAAC algorithm and the
parameter A of the unified model in the post-translational nfied ubiquitination site
prediction model, the optimah value is selected 5 in the model. Therefore, tseARAC
algorithm is used to extract the features of thetgin sequence, and each protein sequence

generates a 25-dimensional feature vector.

Table 2
ACC values obtained of differenkt values in the CKSAAP.
ACC (%) k=0 k=1 k=2 k=3 k=4 k=5
Setl 65.33 66.00 67.67 66.33 66.33 67.33
Set2 60.34 61.63 62.21 61.89 61.70 62.72
Set3 63.03 64.56 64.34 64.74 64.79 65.21
ACC (%) k=6 k=7 k=8 k=9 k=10 k=11
Setl 68.33 67.00 65.33 66.00 67.67 61.00
Set2 62.81 63.16 62.47 62.65 62.33 62.36
Set3 65.25 65.27 65.45 65.18 64.91 65.12
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Fig. 6. ACC and AUC values for differenk values in the CKSAAP.

Since the corresponding dimension of the CKSAAPodimg of the protein sequence
fragment is relatively large, and the window sideacsample is 13. Therefore, the interval
value of the amino acid pair in the CKSAAP codsésto 0 to 11 in order. From Fig 6, it can be
seen intuitively that with the increasing intereél k amino acid residues in Setl, the values of
ACC and AUC constantly change. The fluctuation @@\value is more obvious, and the highest
prediction accuracy is achieved when the intersak = 6. The change of the AUC value is in a
state of rising first and then decreasing, whichches the maximum value when the interval is
k=5. Set2 and Set3 increase the value of ACC and AuUE& relatively stable growth state with
the increase of amino acid residue interkal Set2 achieves the highest prediction accuracyhnwhe
the interval isk =7, and Set3 achieves the highest prediction accuwdwgn the interval is
k =8. For the AUC value, Set2 and Set3 reach the maximuintervals of 7 and 8, respectively.
Although the three datasets have different valaesaé¢hieving the highest prediction accuracy and
maximum AUC value, to unify the parameter of thedelp we choose the optimal parameter
k =6. From Table 2, the value of ACC in Setl reachemaimum of 68.33% at an interval value
of k=6. In the dataset Set2, the accuracy ACC value ase® from 60.34% corresponding to
k=0 at the beginning to 62.81% when=6. For the dataset Set3, the ACC value was 65.25%
at an interval value ok =6, which was an increase of 2.22% compared to thialiamino acid
interval of k =0. Considering the effect of the CKSAAP coded mediarnhe datasets Setl, Set2,
and Set3, we select the amino acid pair intervél. dfhe CKSAAP encode considers the additive
effect, for example,k =3 considering the cumulative effect of the aminalgmir interval 0, 1, 2,

3 on the predictive power of the support vector mrae. When the amino acid in the CKSAAP
code is k=6 for the optimal interval, the CKSAAP coded dime&ms corresponding to the

datasets Setl, Set2, and Set3 are all 3,087-diorensi

Table 3
ACC values corresponding to differemn values in PSPM.
ACC (%) m=0 m=1 m=2 m=3 m=4 m=5
Setl 88.00 91.67 95.00 97.33 96.33 95.33
Set2 57.96 62.06 64.17 65.66 66.88 67.52
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Set3 58.39 60.53 62.59 63.48 63.64 64.44

ACC (%) m=26 m=7 m=8 m=9 m=10 m=11
Setl 97.00 97.67 97.67 98.00 98.33  99.00
Set2 68.29 69.67 70.21 7118  73.03 72.61
Set3 64.29 64.75 65.67 66.25 67.66 66.17

o "

0.75 1
70+ —
o 0.7+ 1
—— Setl . —*— Setl
60 —+—Set2| 0.65 ——Set2

¥ Set3 Set3

L L L L 4 0.6 & L — L )
0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 1

m

Fig. 7.ACC values and AUC values corresponding to diffErgm values in PSPM.

Different interval values of the amino acid painghie PSPM encoding have different effects
on the prediction performance of the support veatachine classifier. Considering that the length
of the Setl sample sequence is 13, therefore, dheewy of amino acid residue intervals in the
PSPM coding are setto 0, 1, 2, 3, 4, 5, 6, 7, 809and 11, respectively. It can be seen from Fig
7 that the ACC and AUC values of the datasets S&#12, and Set3 change as the amino acid
interval M changes, and the prediction accuracy of Setl thlighlls when the amino acid
residue interval ism=4 and m=5, when the interval ism=11 the highest prediction
accuracy is achieved. For Set2 and Set3, whenntieeval is 0 to 10, the corresponding ACC
values are growing as the interval increases. Wherinterval is m=10, the highest prediction
accuracy is achieved. However, when the intervaiis 11, the prediction accuracy rate begins
to decrease. The AUC value of Setl increases Wihatmino acid residue spacing of the protein
sequence increases, reaching a maximum at inteo¥als=11. For Set2 and Set3, when the
interval is 0 to 10, the corresponding AUC valuepe increasing with the increase. When the
value is m=10, the AUC value reaches the maximum, but when imis11, the AUC value
starts to decrease. Considering comprehensivebgsehthe value corresponding to the maximum
value of ACC and AUC as the best parameter in PSNing, so choosen=10 as the
parameter. From Table 3, it can be seen that wieinterval value in the dataset Setlns=10,
the value of ACC is 98.33%, which is 10.33% higthem that when the interval of the amino acid
is m=0. For Set2, the ACC value increases from 57.96%Herintervam=0 to 73.03% for
the interval m=10. For the Set3, the value of ACC increases withititerval M, reaching a
maximum of 67.66% at an interval oh =10. Similar to CKSAAP, the spacing in PSPM coding

also refers to the cumulative effect of amino guédr spacing on the prediction performance of
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the support vector machine. When the amino acidipt@rval value ism =10, the datasets Setl,
Set2, and Set3 correspond to the dimensions 77 2281231, respectively.
3.3. Feature extraction

Using feature extraction algorithms to extract ahle information from protein sequences is
a vital link in the prediction of post-translationanodification sites. BE reflects the
position-specific information of amino acid residusround the ubiquitination site, PseAAC can
avoid completely losing the sequence-pattern in&tiom for proteins, CKSAAP mirrors the
interaction of residues inside the sequence sudiognthe ubiquitination site, PSPM uses
position-specific amino acid pairs to extract featunformation. In this paper, six feature
extraction algorithms have been selected, includmg separate feature coding methods (BE,
PseAAC, CKSAAP, PSPM) and one hybrid feature codimgethod called All
(BE+PseAAC+CKSAAP+PSPM) and feature encoding based ASSO dimension reduction
Optimal (BE+PseAAC+CKSAAP+PSPM (LASSO)). To verthe effectiveness of hybrid feature,
support vector machine was selected as a classifigedict ubiquitination sites, and AUC, ACC,
Sn, Sp, and MCC were used as metrics to evaluatpdtver of the prediction model. Because the
dataset after fusion has a large number of dimess&nd redundancy, the Optimal feature
extraction method is used as a comparison.

For the datasets Setl, Set2, and Set3, six feahamded feature sets are respectively input
into the support vector machine classifier for wiigation sites prediction, and five-fold
cross-validation method is used for evaluation. Phnediction results of the different feature
extraction algorithms for the datasets Setl, S®t@,Set3 are shown in Table 4, Table 5, and Table

6, respectively.

Table 4

Prediction results of different features of theadat Setl.

Setl AUC ACC (%) Sn (%) Sp (%) MCC
BE 0.6446 61.67 59.33 64.00 0.2343
PseAAC 0.7373 67.67 65.33 70.00 0.3584
CKSAAP 0.7442 68.33 60.00 76.67 0.3753
PSPM 0.9998 98.33 99.33 97.33 0.9674
All 0.9080 83.00 78.00 88.00 0.6643
Optimal 0.9998 98.33 98.67 98.00 0.9672

It can be seen from Table 4 that there are fouarsap feature encoding modes in the Setl.
Compared with the BE, PseAAC and CKSAAP encodinghods, the PSPM encoding method
has a greater influence on the ubiquitination gitsliction. The values of AUC, ACC, Sn, Sp, and
MCC corresponding to the PSPM are 0.9998, 98.33/83%, 97.33%, and 0.9674, respectively.
To extract more protein sequence information, ffaature coding methods were combined to
obtain the feature All, and the corresponding AU ACC values were 0.9080 and 83.00%,
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respectively. However, the values of AUC, ACC, Sp, and MCC corresponding to the optimal
feature set Optimal are 0.9998, 98.33%, 98.67%Q(@8, and 0.9672, respectively. The AUC and

prediction accuracies are 9.18% and 10.33 % highan the corresponding values of All,

respectively.

Table 5

Prediction results of different features of theadat Set2.

Set2 AUC ACC (%) Sn (%) Sp (%) MCC
BE 0.7124 65.12 64.67 65.57 0.3030
PseAAC 0.6865 63.50 64.58 62.42 0.2701
CKSAAP 0.6748 62.81 60.4 65.22 0.2567
PSPM 0.7967 73.03 72.19 73.88 0.4608
All 0.7819 71.03 69.44 72.62 0.4213
Optimal 0.8887 81.12 79.56 82.68 0.6232

As can be seen from Table 5 that there are fowaragpfeature encoding methods in the Set2.
The PSPM coding method extracts protein sequensefeaiure vectors and achieves better
performance compared with the BE, PseAAC and CKSAfBoding methods. The values of
AUC, ACC, Sn, Sp, and MCC are 0.7967, 73.03%, 74,193.88%, and 0.4608, respectively.
The value of ACC in the PSPM is 7.91%, 9.53%, 1% 2figher than the value of ACC in the BE,
PseAAC, CKSAAP, respectively. The feature All cepending the AUC value is 0.7819, the
accuracy is 71.03%, the sensitivity value is 69.44%@ the specificity value is 72.62%, and the
MCC is 0.4213. However, the values of the evalumiindexes corresponding to the optimal
feature set Optimal to exceed the index valueheffour individual codes and the All features,
and the values of AUC, ACC, Sn, Sp, and MCC ar8&7881.12%, 79.56%, 82.68% and 0.6232
respectively. The AUC value is 10.68% higher tHamihdex corresponding to the All feature, and

the MCC value is 20.19% higher than the index apoading to the All feature.

Table 6
Prediction results of different features of theadat Set3.

Set3 AUC ACC (%) Sn (%) Sp (%) MCC
BE 0.7323 67.42 67.65 67.18 0.3484
PseAAC 0.7183 66.27 68.39 64.15 0.3258
CKSAAP 0.7120 65.25 64.24 66.26 0.3051
PSPM 0.7421 67.66 66.74 68.59 0.3534
All 0.7732 70.33 69.78 70.89 0.4068
Optimal 0.8481 76.90 76.46 77.35 0.5382

From Table 6, we can see that for the dataset 8®#3values of AUC, ACC, Sn, Sp, and
MCC corresponding to PSPM encoding are 0.7421, 68%,666.74%, 68.59%, and 0.3534,
respectively. PSPM coding method extracts protelquences as feature vectors and achieves
better performance, compared with BE, PseAAC an&&KP coding methods. The value of

AUC in PSPM coding is 0.98% higher than BE, 2.38¢thar than the value of AUC in PseAAC,
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and 3.01% higher than the value of AUC in CKSAARMWever, the feature All with an AUC
value of 0.7732, an accuracy rate of 70.33%, aitbatysvalue of 69.78%, and a specificity value
of 70.89%, and the MCC is 0.4068. The values ofah&luation indexes corresponding to the
feature set All exceed the index values of the femcode modesand it shows that the feature
fusion can improve the predictive performance @& thodel to a certain extent. The AUC and
ACC of the optimal feature set Optimal are 0.8481.90% respectively, the AUC value is 7.49%
higher than the feature set All, and the ACC vaisie6.57% higher than the index value
corresponding to the All feature.

In summary, for the datasets Setl, Set2, and 8etdnfluence of the six feature encoding
methods on the robustness of the prediction madebmpared. In the single feature encoding
method, the PSPM encoding can effectively extiaetféature information of the amino acid pair.
For the fusion feature encoding method, the Altdeaextraction method in Set3 not only reflects
the positional information of amino acid residua®uad the ubiquitination sites but also
effectively utilizes the amino acid pair informatiand the physicochemical information of amino
acids, the mode information improves the predicperformance to a certain extent. But for Setl
and Set2, the prediction result is not as goodhasideal result, because hybrid feature brings
uncorrelated feature information to reduce the iptexh of the model performance, so choose
LASSO to remove the fusion of the redundancy antgeninformation and achieve a good
ubiquitination sites prediction result.

3.4. The effect of feature selection algorithm

We obtain the initial sequence feature informatignfusing BE, PseAAC, CKSAAP and
PSPM four feature encoding methods on Setl, Set?,S®t3. But more unrelated features are
generated at the same time. In this paper, we ehtias optimal feature subset to improve the
prediction accuracy of the model. The feature seleenethods include Mutual information (MI)
[130,131], Elastic net [132], Extra-trees (ET) [L3BIRMD [134,135] and LASSO. Selecting
different parameter values in LASSO has a diffeiefitence on the dimensionality reduction
effect. Therefore, to select the optimal featudgsst from the fusion feature set All, the parameter
¥ of LASSO are set to 0.001, 0.002, 0.005, 0.011®.8nd 0.02 respectively through five-fold
cross-validation. The SVM is a classifier, and fiediction accuracy is the evaluation criterion.
The results show that LASSO shows excellent dinoeradity reduction effect when the parameter
¥ value is 0.005. When using the Mutual informatidRMD to reduce the dimension of the
features dataset All, the dimension correspondinipé feature subset is consistent with LASSO.
The dimensional comparison of the fusion featumaskts with Setl, Set2, and Set3 for the five

feature selection methods is shown in Fig. 8.

23



3000 2596 2614

N
(%)
o
o

2000

1500

65865
1000 663 816

376
500 239

The number of features

Setl Set2 Set3

Mutual information m Elastic net m Extra-trees ®aMRMD mLASSO

Fig. 8. Comparison of dimensions with five feature selectizethods.

We can intuitively compare the five feature setmttimethods from Fig. 8, and it is found
that LASSO can remove more redundant informatioth select feature subsets more effectively
than MI, Elastic net, ET and MRMD. The Setl inifiehture space contains 3462 feature vectors,
after Ml, Elastic net, ET, MRMD and LASSO dimensidity reduction, the dimensions are 239,
376, 663, 239 and 239, respectively. Ml, MRMD, dtAISSO significantly remove redundant
features information. The Set2 fusion feature ddtasontain 3910-dimensional feature vectors,
after Ml, Elastic net, ET, MRMD and LASSO dimensidity reduction, the dimensions are 865,
2596, 1564, 865 and 865, respectively, and LASSfifstantly removes redundant features
information. The Set3 contains 3910-dimensionakuiea vectors, after MI, Elastic net, ET,
MRMD and LASSO dimensionality reduction, the dimiens are 816, 2614, 1629, 816 and 816,
respectively, and LASSO can effectively retain fieas.

Although dimension reduction can effectively remabe redundant information in the
protein sequence, at the same time, it is hopedthieaoptimal feature subsets can improve the
prediction performance of the model, and then $dhex optimal feature selection algorithm by
comparing the prediction results of different featiselection methods. The support vector
machine is selected as a classifier to predictébdaced dimension of Ml, Elastic net, ET, MRMD
and LASSO, and different dimension reduction meth@dre measured using AUC, ACC, Sn, Sp,
and MCC, as shown in Table 7.

As shown in Table 7, we use five methods to sdleetoptimal feature subset for Setl, the
corresponding overall accuracy for Ml, Elastic i€f, MRMD, and LASSO are 97.00%, 98.67%,
95.33%, 64.67%, and 98.33%, respectively. In agltito the MRMD method, the other four
feature selection methods AUC value, sensitivifgedficity, and MCC all achieved good

prediction results. According to AUC value, sendyi, specificity, and MCC, LASSO in the Set2
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dataset has a good dimensionality reduction effoe AUC value, ACC, sensitivity, specificity
and the MCC is 0.8887, 81.12%, 79.56%, 82.68%,0a6832, respectively. The value of AUC is
8.07%, 6.35%, 6.9%, and 16.4% higher than the spording values of MI, Elastic net, ET and
MRMD. After the Set3 dataset is selected by the 88S the AUC value is 0.8481, the overall
accuracy rate ACC value is 76.90%, the sensitivitue is 76.46%, the specificity with 77.35%
and the MCC is 0.5382. The value of ACC is 6.3981%, 4.2%, and 7.81% higher than the value

corresponding to dimension reduction through Mgdiit net, ET and MRMD, respectively.
Table 7
Comparison of prediction results of five featureeeion methods.

) Performance metrics
Datasets Feature selection methods
AUC ACC (%) Sn (%) Sp (%) MCC

Mutual information 0.9980 97.00 96.67 97.33 0.9413
Elastic net 1.0000 98.67 99.33 98.00 0.9743
Setl  Extra-trees 0.9971 95.33 95.33 95.33 0.9086
MRMD 0.6934 64.67 68.00 61.33 0.2946
LASSO 0.9998 98.33 98.67 98.00 0.9672
Mutual information 0.8080 72.68 70.66 74.70 0.4542
Elastic net 0.8252 74.58 73.21 75.96 0.4922
Set2 Extra-trees 0.8197 74.22 73.79 74.64 0.4847
MRMD 0.7247 67.04 67.45 66.63 0.3411
LASSO 0.8887 81.12 79.56 82.68 0.6232
Mutual information 0.7778 70.60 70.12 71.09 0.4122
Elastic net 0.8062 73.19 72.70 73.68 0.4639
Set3 Extra-trees 0.7993 72.70 72.59 72.82 0.4541
MRMD 0.7581 69.09 69.42 68.76 0.3819
LASSO 0.8481 76.90 76.46 77.35 0.5382

For the datasets Setl, Set2, and Set3, we compafeyé dimensionality reduction methods
of MI, Elastic net, ET, MRMD, and LASSO. Using Biasnet methods significantly reduces the
dimensionality reduction dimension of the datasetlS which brings convenience to the
calculation, but the prediction performance is ingbroved,and the datasets Set2 and Set3 have
no apparent dimensionality reduction effect. EThodtis not the effective removal of irrelevant
variables, to provide the best feature subset fassdication. To facilitate the comparison of
feature selection effects, the Ml and MRMD remdie same as LASSO, but the predicted
performance is significantly lower than that of LS. The LASSO dimension reduction method
integrates the feature process with the learndmitiga process by introducing, regularization
parameters, which can reduce redundancy and nd@enation. Five-fold cross-validation shows
that LASSO is superior to the predictive performaraf MI, Elastic net, ET and MRMD,
indicating that the optimal feature subsets deteschiby LASSO reject not only irrelevant

features and redundant features, but also presesgential features of protein sequences,
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effectively reduce the complexity of the model, elecate the calculation speed, improve the
model's prediction accuracy rate, and provide gfeadure information for the support vector
machine classifier. Therefore, we use LASSO tocseles optimal feature subsets.
3.5. Selection of classification algorithms

To construct an efficient ubiquitination sites potidn model, the selection of the
classification algorithm is of great importancethis paper, for the feature subset called Optimal,
Naive Bayes (NB), K-nearest neighbor (KNN), LibD3T36], AdaBoost [137], random forest
(RF), and support vector machines (SVM) six cléssiion algorithms are employed to predict
the ubiquitination sites of the post-translatiomaidification on the Setl, Set2, and Set3 datasets.
The SVM algorithm applies radial basis kernel fimret Both the NB algorithm and the AdaBoost
algorithm use the default parameters. The Euclidbstance is used in the KNN algorithm, and
the number of neighbors is 10. The number of decitiees selected in the RF is 500. The feature
subsets of Optimal are input into the classifieB, MNN, LibD3C, AdaBoost, RF, and SVM,
respectively, and the predictable outcome of theas#ds Setl, Set2, and Set3 under different
classifiers are shown in Table 8. To analyze theliption performance of datasets Setl, Set2, and
Set3 for different classifiers more intuitively,véi-fold cross-validation is employed in the
experiment to draw the line for the ACC and AUCued of the ubiquitination sites for the six
classifiers, the figures are shown in Fig. 9. Imlitdn, receiver operating characteristic (ROC)
curves are used to compare the robustness ofeatlitf@rediction models. Fig. 10, Fig. 11 and Fig.

12 are the ROC curves of the datasets Setl, SetZ5et3 obtained by the six classifier methods,

respectively.
Table 8
Comparison of the prediction results of the sissifers.
Datasets  Classifiers AUC ACC (%) Sn (%) Sp (%) MCC
NB 0.7161 60.67 74.67 46.67 0.2218
KNN 0.9924 95.33 97.33 93.33 0.9088
Setl LibD3C 1.0000 99.67 99.33 100.00 0.9934
AdaBoost 0.9993 99.00 98.67 99.33 0.9803
RF 1.0000 99.67 99.33 100.00 0.9934
SVM 0.9998 98.33 98.67 98.00 0.9672
NB 0.7113 61.33 83.30 39.37 0.2538
KNN 0.6379 59.37 61.27 57.48 0.1894
LibD3C 0.7945 72.64 72.71 72.57 0.4528
Set2 AdaBoost 0.8425 75.75 76.08 75.43 0.5152
RF 0.8421 76.02 77.30 74.73 0.5208
SVM 0.8887 81.12 79.56 82.68 0.6232
NB 0.7099 66.20 54.68 77.72 0.3353
Set3 KNN 0.6633 60.62 50.26 70.99 0.2175
LibD3C 0.7765 70.63 71.67 69.58 0.4126
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AdaBoost 0.7952 72.14 72.93 71.35 0.4429
RF 0.7977 72.37 74.50 70.24 0.4479
SVM 0.8481 76.90 76.46 77.35 0.5382

As can be seen from Table 8, the LibD3C and RF hlagebest prediction performance for
Setl, the AUC value is 1, the prediction accurac99.67%, the AUC value of the support vector
machine is 0.9998, and the prediction accuracy A€@8.33%. The AUC value of LibD3C and
RF are 0.02% higher than SVM, and the ACC valu¢ibb3C and RF are 1.34% higher than
SVM. Although the prediction performance of SVM doeot reach the expected effect, the
difference with the random forest classifier igytiNaive Bayes has the lowest forecast accuracy,
which is 39% and 38.33% lower than those of RF @Wl, respectively. For the Set2, the best
predictive performance is the model establishedgugie support vector machine classifier. The
AUC value is 0.8887, which is higher than the AU@lues of the other five classifiers,and the
accuracy rate is 81.12%. The poor prediction peréorce is based on the K-nearest neighbor
classifier model. The AUC value is 0.6379, anddheuracy rate is 59.37%, 25.08%, and 21.75%
lower than support vector machines respectively MCC of the SVM model was 0.6232, which
was 36.94%, 43.38%, 17.04%,10.8%, and 10.24% higjieen those of NB, KNN, LibD3C,
AdaBoost, and RF, respectively. For the Set3, th&t performance is support vector machine
classifier, the AUC value is 0.8481, and the aoyiia 76.90%, which is higher than the AUC
and ACC values of the other five classifiers. Tlmmpredictive performance is based on the
K-nearest neighbor classifier, and the AUC valu®.8633, the accuracy rate is 60.62%. The
MCC of the SVM model was 0.5382, which was 20.28407%, 12.56%, 9.53%, and 9.03%
higher than those of NB, KNN, LibD3C, AdaBoost, &, respectively. By comparing the AUC
value, ACC value and MCC value of the datasets,S&¢t2 and Set3 with six classifiers, the
support vector machine has excellent predictionfopgrance and can effectively predict

ubiquitination sites.
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It can be seen intuitively from Fig. 9 that theadsts Setl, Set2, and Set3 change the ACC
values and AUC values of six classifiers, such a$vé&l Bayes, K-nearest neighbor, LibD3C,

AdaBoost, random forest, and support vector mactioe the accuracy rate ACC varies from 59%
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to 99%, the AUC value varies from 0.63 to 1. Fog hUC and ACC values, the prediction
performance of the classifier SVM is superior te tither five classifiers, and the values of the
classifier AdaBoost and the random forest are nathrdifferent. The classifier KNN has poor
performance in predicting protein ubiquitinatiortesi and its correlation value changes are
relatively significant. The prediction performanckthe Naive Bayes and LibD3C is relatively
stable, but the performance is weaker than the@tippector machine. For the dataset Setl, the
accuracy of the LibD3C and random forest reaché®4d,.Ghe Naive Bayes prediction accuracy
rate is the lowest. For Set2 and Set3, the prediglierformance of the classifier SVM is better
than the other five classifiers, and K-nearest medg has the lowest prediction accuracy. Overall,
the classifiers AdaBoost, random forest and suppedtor machine have better prediction
performance, while LibD3C is an ensemble classifigth clustering and dynamic selection
strategy, and the prediction performance is alsmgdhe classifiers Naive Bayes and K-nearest

neighbor have poor prediction performance for protdiquitination sites.
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To evaluate the performance of different methodsibaquitination sites prediction, the ROC
is used as the performance criterion. If the RO&ewf one classifier is entirely enveloped by
the curve of another classifier, the latter hasebgirediction performance than the former. As can
be seen from Fig. 10, for the dataset Setl, the B@@ of LibD3C and RF includes ROC curves
corresponding to the classifiers NB, KNN, AdaBoastgd SVM. The AUC values of LibD3C and
RF are 28.39% higher than NB. As can be seen fram H, the Set2 which uses the SVM
classifier model has better robustness, and its RO@pletely encapsulates the ROC curve

corresponding to the classifiers NB, KNN, LibD3CdaBoost, and RF. The ROC curves of
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AdaBoost and RF coincide, indicates that the ptadicperformance of the two classifiers is
similar. The AUC value of the SVM is 4.62% and A&igher than AdaBoost and RF,
respectively. As can be seen from Fig. 12, we séhecSVM classifier build model in Set3 which
has the best robustness. The AUC value of the R@@aeaches 0.8481 which is significantly
higher than the other five methods, whose AUC vauis8.48% higher than KNN.

We select the best classifier according to fivelfotloss-validation on Setl, Set2, and Set3
dataset. For the three datasets, the K-neareshbwiglassifier is simple and effective, but the
amount of calculation is relatively large, and firediction performance is not stable. There are
few parameters needed to estimate the Naive Bajgwitam, but the assumption of
independence between attributes is often not esitediol, and there is still room for improvement.
As an ensemble classifier, LibD3C improves predictiperformance to some extent. Both
AdaBoost and random forest are tree-based ensatalsigifiers, so the prediction performance of
the two classifiers is not much different. Therstii a gap compared to the model of the support
vector machine classifier. The computational coxipjeof the support vector machine depends
on the number of support vectors, rather than theedsions of the sample space. In a sense, it
avoids "dimensional disasters," seizes essentiaples, eliminates a large number of redundant
samples, and is superior to the other five classifiConsidering comprehensively, the radial basis
support vector machine is chosen as the best fitaigsi predict the protein ubiquitination sites in
this paper.

3.6. Comparison with other methods

To more objectively evaluate the predictive perfante of the learning model established in
this paper, five-fold cross-validation is employiedthe same datasets Setl, Set2, and Set3. We
compare the proposed method UbiSitePred with Caal.ef20] which contains the Efficient
Bayesian Multivariate Classifier (EBMC), Naive BayéNB), Feature Selection NB (FSNB),
Model Averaged NB (MANB), Support Vector Machine/8), Logistic Regression (LR), Least
Absolute Shrinkage and Selection Operator (LASS®@® AUC values are shown in Table 9 and

Fig. 13.
Table 9
Comparison of UbiSitePred with other methods basedUC.

Datasets UbiSitePred EBMC NB FSNB MANB  SVM LR LASSO

Setl 0.9998 0.6714 0.5289 0.5613 0.5545 0.6597 40.72 0.6933
Set2 0.8887 0.6467 0.5330 0.5582 0.5502 0.6039 40.61 0.6041
Set3 0.8481 0.6667 0.5141 0.5633 0.5192 0.6102 76.64 0.6129
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Fig. 13.Comparison of UbiSitePred with other methods AUC.

From Table 9, we can see that for the dataset §a&1AUC value of the prediction model
UbiSitePred proposed by us is 0.9998, which is élighan the AUC value of other methods. The
AUC value of LR method is 0.7244, and the AUC vatiighe NB method is 0.5289. It can be
seen that for the dataset Setl, the model Ubi%iteRchieves better prediction performance,
which is 27.54%-47.09% higher than the AUC of othreathods. For the dataset Set2, the AUC
value of UbiSitePred, EBMC, and NB is 0.8887, 0.646d 0.5330, respectively. It can be seen
that for the dataset Set2, the model UbiSitePrédkges a better prediction performance, which is
24.20%-35.57% higher than the AUC of other methéws. the dataset Set3, the AUC value is
0.8481 of the prediction model UbiSitePred propdsgdis, which is significantly higher than the
AUC value of other methods in Set3. The AUC valsdi6667 in the EBMC method, and the
AUC value corresponding to the NB method is 0.518&an be seen that for the dataset Set3, the
model UbiSitePred achieves better prediction peréorce, and the AUC is 18.14%-33.4% higher
than Cai et al.[20].

From Fig. 13for the datasets Setl, Set2, and Set3, it candreistuitively that Cai proposed
seven methods for predicting ubiquitination sitépmteins, the AUC values of these methods
ranged from 0.51 to 0.73. However, the UbiSitePaad AUC values of the prediction model
established in this paper are all higher than @l8ich is better than the other 7 methods. The

AUC value is significantly improved, and satisfagtprediction results are obtained.

4. Conclusion

Protein is an important supporter of human physiiclal activity and physiological function,
and protein post-translational modification playsignificant role in the cell's life activities. &€h
study of PTM can help reveal the function oristed ahe laws of cell activity such as growth and

development, metabolism, signal transduction, difiéiation, and apoptosis. Ubiquitination is
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very important in a variety of cellular life actilds. Using machine learning methods to identify
ubiquitination sites is of great significance foetfurther understanding of the life activities of
cells. In this paper, UbiSitePred for protein ulitiqpation site prediction is proposed. For the Setl
Set2, and Set3, BE can intuitively acquire the tgpd positional features of amino acid residues
around the ubiquitination and non-ubiquitinatiotesi of lysine, PseAAC fuses the sequence
information of amino acids with the physicochemicdbrmation of amino acids, CKSAAP takes
into account the compositional information of theimo acid pairs, and PSPM extracts the
positional features from protein sequence. To imprthe performance of ubiquitination sites
prediction model, we select the optimal parameat&RseAAC, CKSAAP, and PSPM by five-fold
cross-validation. Then, by fusing the four codiegtfire methods to obtain the feature set All. The
LASSO significantly removes redundancy and noi$erination and effectively retains important
feature information for identifying ubiquitinatiosites. Support vector machine shows good
performance in solving non-linear problems and atifely avoid overfitting. Five-fold
cross-validation shows the AUC values of Setl, @et? Set3 reached 0.9998, 0.8887 and 0.8481,
respectively. Compared with other methods, theiptied results of UbiSitePred proposed in this
paper are higher than other methods, which inditzaé UbiSitePred not only can effectively
predict ubiquitination sites, but also it can pd®inew ideas for the construction of other
post-translational modification sites predictionltofor proteins.

As pointed out in [138], user-friendly and publichccessible web-servers represent the
future direction for reporting various important ngoutational analyses and findings
[10,12,74,139-142]. They have significantly enhahtiee impacts of computational biology on
medical science [143], driving medical science iato unprecedented revolution [97]. In our

future work, we shall strive to establish a webssefor the new method presented in this paper.
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Highlights

A new method (Ubi-SV M) to predict the ubiquitination sites.

Fusing BE, CKSAAP and PSPM methods to extract protein sequence features
information.

LASSO method can effectively remove redundant information in the protein sequences.
We investigate the effect of the five different classifiers on the results.

The proposed method increases the prediction performance over several methods.



