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INTRODUCTION 
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0.5. Incompleteness in Exponential Function Arithmetic. 
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0.7. Incompleteness in Nested Multiply Recursive 
Arithmetic, and Two Quantifier Arithmetic. 
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0.9. Incompleteness in Predicative Analysis and ATR0. 
0.10. Incompleteness in Iterated Inductive Definitions and 
Π1

1-CA0. 
0.11. Incompleteness in Second Order Arithmetic and ZFC\P. 
0.12. Incompleteness in Russell Type Theory and Zermelo Set 
Theory. 
0.13. Incompleteness in ZFC using Borel Functions. 
0.14. Incompleteness in ZFC using Discrete Structures. 
0.15. Detailed overview of book contents. 
0.16. Some Open problems. 
0.17. Concreteness in the Hilbert Problem List.  
 
This Introduction sets the stage for the new advances in 
Concrete Mathematical Incompleteness presented in this 
book.  
 
The remainder of this book can be read without relying on 
this Introduction. However, we advise the reader to peruse 
this Introduction in order to gain familiarity with the 
larger context.  
 
Readers can proceed immediately to the overview of the 
contents of the book by first reading the brief account in 
section 0.14C, and then the fully detailed overview in 
section 0.15. These are self contained and do not rely on 
the rest of the Introduction.  
 
In this Introduction, we give a general overview of what is 
known concerning Incompleteness, with particular emphasis 
on Concrete Mathematical Incompleteness. The emphasis will 
be on the discussion of examples of concrete mathematical 
theorems - in the sense discussed in section 0.3 - which 
can be proved only by using unexpectedly strong axioms.  
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The incompleteness phenomenon, in the sense understood 
today, was initiated by Kurt Gödel with his first 
incompleteness theorem, where he essentially established 
that there are sentences which cannot be proved or refuted 
using the usual axioms and rules of inference for 
mathematics, ZFC (assuming ZFC is free of contradiction). 
See [Go31], and [Go86-03], volume 1.   
 
Gödel also established in [Go31] that this gap is not 
repairable, in the sense that if ZFC is extended by 
finitely many new axioms (or axiom schemes), then the same 
gap remains (assuming the extended system is free of 
contradiction).  
 
With his second incompleteness theorem, Gödel gave a 
critical example of this incompleteness. He showed that the 
statement  
 

Con(ZFC) = "ZFC is free of contradiction" 
 
is neither provable nor refutable in ZFC (assuming ZFC is 
legitimate in the sense that it proves only true statements 
in the ring of integers). Again, see [Go31], and [Go86-03], 
volume 1. 
 
Although Con(ZFC) is a natural statement concerning the 
axiomatization of abstract set theory, it does not 
represent a natural statement in the standard subject 
matter of mathematics.  
 
While it is true that Con(ZFC) can be stated entirely in 
terms of finite strings of symbols from a finite alphabet, 
when stated in this way, it is no longer natural in any 
mathematical sense.  
 
These considerations led to the informal working 
distinction between  "mathematically natural" and 
"metamathematically natural".   
 
After the two incompleteness theorems, there remained the 
crucial question of whether there is a mathematically 
natural statement which is neither provable nor refutable 
in ZFC.  
 
This question had a potentially practical consequence. If 
the answer is no, then there is a clear sense in which 
mathematicians can forever be content to ignore the 
incompleteness phenomenon. However, if the answer is yes, 
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then there is a clear sense in which the incompleteness 
phenomenon can impact their work.  
 
Gödel addressed this question through his pioneering work 
on Cantor's Continuum Hypothesis (CH). CH states that every 
infinite set of real numbers is in one-one correspondence 
with either the integers or the real numbers.  
 
Gödel proved that ZFC does not suffice to refute CH. See 
[Go38], and [Go86-03], volume 2. That ZFC does not suffice 
to prove CH had to wait for the pioneering work of Paul J. 
Cohen, [Co63,64]. Also see [Je78,06].    
 
Thus by the mid 1960s, a mathematically natural statement - 
the continuum hypothesis - was shown to be neither provable 
nor refutable in ZFC. Mathematical Incompleteness from ZFC 
was born.  
 
Yet mathematicians generally did not feel that CH was 
relevant to their work. This feeling of irrelevance went 
much deeper than just their particular research interests. 
 
There is a fundamental alienation of "questions like CH" 
from mathematical culture. Specifically, CH fundamentally 
involves a level and kind of generality that is entirely 
uncharacteristic of important and fruitful mathematical 
questions.  
 
Mathematicians will normally use general abstract machinery 
- when convenient - in the course of treating a relatively 
concrete problem. Witness the extensive use of general 
abstract machinery in Wiles' proof of Fermat's Last 
Theorem, and how much of this machinery can be removed (see 
[Mc10]).  
 
The general abstract machinery will be tamed if it causes 
its own difficulties or ceases to be convenient for various 
reasons. But the standards for objects of primary 
investigation of major interest are quite different.  
 
Sets of real numbers that play a role in mathematics as 
objects of primary investigation, are constructed in some 
fashion that is related to clear mathematical purposes. In 
virtually all cases, sets of real numbers appearing as 
objects of primary investigation, are Borel measurable 
(i.e., lie in the σ sigma generated by the open sets), and 
usually very low in the standard hierarchy of Borel 
measurable sets.  
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For Borel measurable sets of real numbers, the continuum 
hypothesis is a theorem, even in the following strong form: 
 
every infinite Borel measurable set of reals is in one-one 

correspondence with the integers, or in Borel one-one 
correspondence with the reals. 

 
See [Al16], [Hau16], and [Ke94], p. 83.  
 
This situation is typical of so many statements involving 
sets and functions in complete separable metric spaces. The 
Borel measurable forms are theorems, and have nothing to do 
with incompleteness.  
 
Furthermore, the great generality present in so many such 
statements is rather empty from the point of view of 
mathematical culture: there are virtually no mathematically 
interesting examples beyond Borel sets.  
 
There have been subsequent examples of ZFC incompleteness 
of less generality than arbitrary sets of reals. Most 
notably, involving the projective hierarchy of sets of 
reals, which is obtained by starting with Borel sets in 
several dimensions, and applying the operations of 
projection and complementation.  
 
Yet again, we see that the statements are decided in ZFC 
for Borel sets, and there are virtually no mathematically 
interesting examples that come under this generality beyond 
Borel sets. 
 
We take the view that Concrete Mathematical Incompleteness 
begins at the level of Borel measurable sets and functions 
on complete separable metric spaces. In section 0.3, we 
refine this to  
 

Mathematical statements concerning Borel measurable sets  
and functions of finite rank in and between  

complete separable metric spaces. 
 
We take the position that once we are discussing possibly 
very discontinuous functions between complete separable 
metric spaces, the Borel sets and functions of finite rank 
are not overly general - there are sufficient 
mathematically interesting examples of such reaching out to 
at least the first few finite levels.  
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In sections 0.11 - 0.13, incompleteness ranging from 
fragments of ZFC through ZFC and more are discussed in the 
setting of finite rank Borel sets and functions. In most 
cases, the incompleteness already starts kicking in at the 
first few finite ranks of the Borel hierarchy.  
 
However, Borel measurable sets and functions in complete 
separable metric spaces - even of low finite rank - is 
still substantially beyond what is considered normal for 
significant mathematical questions in the present 
mathematical culture. 
 
Incompleteness begins to become potentially noticeable when 
the examples live in discrete structures. Here by discrete 
structures, we mean finitely generated systems such as the 
ordered ring of integers, and the ordered field of 
rationals. We work with sets in and functions between 
discrete structures.  
 
Examples of incompleteness ranging from fragments of ZFC, 
to ZFC and beyond, are discussed in sections 0.5 - 0.10, 
and section 0.14.  
 
Boolean Relation Theory, the subject of this book, involves 
sets in and functions on the nonnegative integers. There is 
a brief account in section 0.14, and a detailed account in 
section 0.15.   
 
Some new developments that push Concrete Mathematical 
Incompleteness even further into the more immediately 
accessible and perfectly natural, are presented in section 
0.14 without proof. The relevant manuscripts are under 
preparation.  
 
This Introduction concludes with a discussion of 
Concreteness in the realm of the Hilbert 1900 Problem List. 
This illustrates how the usual classification of 
mathematical statements used in mathematical logic (see the 
four displayed lists in section 0.3) relates to many 
contexts in core mathematics.  
 
The reader of this Introduction will see rather explicitly 
how the use of stronger and stronger fragments of ZFC, all 
the way through ZFC and extensions thereof by so called 
large cardinal hypotheses, supports proofs of more and more 
mathematically natural concrete statements. 
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In other words, this growing body of results shows rather 
explicitly what is to be gained by strengthening axiom 
systems for mathematics.  
 
Of course, there is an even greater loss realized by 
strengthening a consistent axiom system to an inconsistent 
one. The issue of why we believe, or why we should believe, 
that the relevant axiom systems used in this book are 
consistent - or, more strongly, that they prove only true 
arithmetic sentences - is an important one, but lies beyond 
the scope of this book. 
 
Since this Introduction is to be viewed as clarifying 
background material for the six Chapters, many of the 
proofs are briefly sketched. We also include folklore, 
results that can be easily gleaned from the literature, and 
results, without proof, that we intend to publish 
elsewhere. We provide an adequate, but by no means 
complete, list of references.  
 
We close these introductory remarks with a topic for 
specialists. 
 
We use the system EFA (exponential function arithmetic) as 
a base theory for most of the arithmetical claims. 
Sometimes SEFA (superexponential function arithmetic) is 
needed. EFA and SEFA are already presented and used in 
section 0.1 for a different purpose. 
 
A typical situation is the conservativity of IΣ1 (one 
quantifier induction) over PRA (primitive recursive 
arithmetic). Perhaps the simplest proof of this result is 
by a very natural model theoretic argument (see, e.g., 
[Si99,09], Theorem IX.3.16). SEFA arises because of the 
need for cut elimination (to which it is equivalent over 
EFA). Model theoretic proofs in such contexts are often 
simpler and well known, but cannot be formalized as given 
in SEFA, or in even stronger systems. A general method for 
augmenting the model theoretic arguments with additional 
ideas to get proofs in SEFA is given in [Fr99c]. Proof 
theoretic approaches to these results and many other such 
results are known, and originated much earlier. E.g., see 
[Min73], [Pa70], and [Tak90]. Careful formalizations of 
these proof theoretic arguments, here and in many other 
contexts, can also be made in SEFA.  
 
0.1. General Incompleteness. 
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General Incompleteness was initiated by Gödel's landmark 
First and Second Incompleteness Theorems, which apply to 
very general formal systems. The original reference is 
[Go31].  
 
Throughout this Introduction, we will use the following 
setup for logic.  
 
MSL (many sorted logic) is many sorted first order 
predicate calculus with equality. Here we have countably 
many sorts, countably infinitely many sorted constant, 
relation, and function symbols, and equality in each sort.  
 
Let T be a set of formulas in MSL. L(T) is the language of 
T, which consists of the sorts and symbols that appear in 
T. In particular, L(T) may not have equality in all of the 
sorts that appear in T.  
 
We say that ϕ is provable in T (provable from T, T implies 
ϕ), if and only if ϕ is a formula in L(T) which is provable 
from (the universal closures of elements of) T using the 
usual Hilbert style axioms and rules of inference for L(T). 
By the Gödel Completeness Theorem, this is the same as: T 
semantically implies ϕ.  
 
0.1A. Gödel's First Incompleteness Theorem. 
0.1B. Two Roles of Gödel's Second Incompleteness Theorem. 
0.1C. Sufficiency Property for Formalized Consistency. 
0.1D. Gödel's Second Incompleteness Theorem for 
Arithmetized Consistency. 
0.1E. Gödel's Second Incompleteness Theorem for Sequential 
Consistency. 
0.1F. Gödel's Second Incompleteness Theorem for Set 
Theoretic Satisfiability. 
0.1G. Gödel's Incompleteness Theorems and Interpretability. 
 
0.1A. Gödel's First Incompleteness Theorem. 
 
The powerful recursion theoretic approach to Gödel's First 
Incompleteness Theorem first appears in [Ro52] and [TMR53], 
through the use of the formal system Q. 
 
Q is a set of formulas in one sort and 0,S,+,•,≤,=. It 
consists of the following eight formulas.  
 
1. Sx ≠ 0. 
2. Sx = Sy → x = y. 
3. x ≠ 0 → (∃y)(x = Sy). 
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4. x + 0 = x. 
5. x + Sy = S(x + y). 
6. x • 0 = 0. 
7. x • Sy = (x • y) + x. 
8. x ≤ y ↔ (∃z)(z + x = y). 
 
The last axiom is purely definitional. An alternative is to 
discard axiom 8 and remove ≤ from the language. However, use 
of ≤ facilitates the statement of the following theorem.   
 
A bounded formula in L(Q) is a formula in L(Q) whose 
quantifiers are bounded, in the following way. 
 

(∀n ≤ t) 
(∃n ≤ t) 

 
where t is a term in L(Q) in which n does not appear.  
 
A Π0

1 (Σ01) formula in L(Q) is a formula in L(Q) that begins 
with zero or more universal (existential) quantifiers, 
followed by a bounded formula. 
 
The following is well known and easy to prove. 
 
THEOREM 0.1A.1. A Σ01 sentence in L(Q) is true if and only 
if it is provable in Q. Let T be a consistent extension of 
Q in MSL. Every Π0

1 sentence in L(Q) that is provable in T, 
is true. (Note that the second part follows from the 
first). 
 
THEOREM 0.1A.2. Let T be a consistent extension of Q in 
MSL. The set of all Π0

1 sentences in L(Q) that are i) 
provable in T, ii) refutable in T, iii) provable or 
refutable in T, is not recursive.  
 
Proof: This appears in [Ro52] and [TMR53]. It is proved 
using the construction of recursively inseparable 
recursively enumerable sets; e.g., {n: ϕn(n) = 0} and {n: 
ϕn(n) = 1}. QED 
 
We can obtain the following strong form of Gödel's First 
Incompleteness Theorem as an immediate corollary. 
 
THEOREM 0.1A.3. Gödel's First Incompleteness Theorem for 
Extensions of Q (strong Gödel-Rosser form in [Ross36]). Let 
T be a consistent recursively enumerable extension of Q in 
MSL. There is a true Π0

1 sentence in L(Q) that is neither 
provable nor refutable in T.  
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Proof: By Theorem 0.1A.1, we can, without loss of 
generality, remove "true". If this is false, we obtain a 
decision procedure for the Π0

1 sentences in L(Q) that are 
provable in T, by searching for proofs in T. This 
contradicts Theorem 0.1A.2. QED 
 
We can use the negative solution to Hilbert’s Tenth Problem 
in order to obtain other forms of Gödel's First 
Incompleteness Theorem that are stronger in certain 
respects, such as Theorem 0.1A.4. 
 
Hilbert's 10th problem asks for a decision procedure for 
determining whether a given polynomial with integer 
coefficients in several integer variables has a zero. 

 
The problem was solved negatively in 1970 by Y. 
Matiyasevich, building heavily on earlier work of J. 
Robinson, M. Davis, and H. Putnam. In its strong form, the 
MRDP theorem (in reverse historical order) asserts that 
every r.e. subset of Nk is Diophantine, in the sense that it 
is of the form  
 

{x ∈ Nk: (∃y ∈ Nr)(P(x,y) = 0)} 
 
where r,P depend only on k, and P is a polynomial of k+r 
variables with integer coefficients. (There are stronger 
forms of this theorem, where r is an absolute number, and 
involving only one polynomial P). See [Da73], [Mat93].  
 
The MRDP theorem has been shown to be provable in a certain 
weak fragment of arithmetic which we call EFA = exponential 
function arithmetic. See section 0.5 for the axioms of EFA. 
The proof of MRDP in EFA appears in [DG82].  
 
A Diophantine sentence in L(Q) is a sentence in L(Q) of the 
form  
 

(∀x1,...,xn)(s ≠ t) 
 
where s,t are terms in L(Q). We use the term "Diophantine" 
because (∀x1,...,xn)(s ≠ t) expresses the nonexistence in 
the nonnegative integers of a zero of the polynomial s-t.  
 
THEOREM 0.1A.4. Gödel's First Incompleteness Theorem for 
Diophantine Sentences (using [MRDP], [DG82]). Let T be a 
consistent recursively enumerable extension of EFA in MSL. 
There is a Diophantine sentence in L(Q) that is neither 
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provable nor refutable in T.  
 
Proof: Since EFA proves MRDP, we see that every Π0

1 sentence 
in L(Q) is provably equivalent to a Diophantine sentence, 
over T. Now apply Theorem 0.1A.3. QED 

 
It is not clear whether EFA can be replaced by a weaker 
system in Theorem 0.1A.4, such as Q. For then the theory T 
may not prove MRDP. 

 
An important issue is whether there is a “reasonable” 
Diophantine sentence (∀x1,...,xn)(s ≠ t) that can be used in 
Theorem 0.1A.4 for, say, T = PA or T = ZFC.  
 
We briefly jump to the use of PA = Peano Arithmetic. The 
axioms of PA are presented in section 0.5.  
 
Let us call a polynomial P a Gödel polynomial if  

 
i. P is a polynomial in several variables with integer 

coefficients. 
ii. The question of whether P has a solution in 

nonnegative integers is neither provable nor refutable in 
PA.  

 
We can also use formal systems other than PA here - for 
example, ZFC. The ZFC axioms are presented in section 0.11. 
 
A truly spectacular possibility is that there might be an 
"intellectually digestible" Gödel polynomial. 
 
However, we are many many leaps away from being able to 
address this question. For the present state of the art 
upper bound on the size of a Gödel polynomial, see [CM07].   
 
One interesting theoretical issue is whether we can 
establish any relationship between the least “size” of a 
Gödel polynomial using PA and the least “size” of a Gödel 
polynomial using ZFC.  
 
0.1B. Two Roles of Gödel's Second Incompleteness Theorem.  
 
Gödel's Second Incompleteness Theorem has played two quite 
distinct roles in mathematical logic.  
 
Firstly, it is the source of the first intelligible 
statements that are neither provable nor refutable. E.g., 
Con(PA) is neither provable nor refutable in PA, and 
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Con(ZFC) is neither provable nor refutable in ZFC. (We use 
the notation Con(T) for "T is consistent", or "T is free of 
contradiction"). 
 
Incompleteness from ZFC, involving mathematical statements 
- in the sense discussed in section 0.3 - came later. Most 
notably, the continuum hypothesis - a fundamental problem 
in set theory - was shown to be neither provable nor 
refutable in ZFC in, respectively, [Co63,64] and [Go38]. 
The Concrete Mathematical Incompleteness of ZFC came much 
later - see sections 0.13, 0.14.  
 
Secondly, the Second Incompleteness Theorem is used as a 
tool for establishing other incompleteness results. In 
fact, it is used in an essential way here in this book.  
 
Suppose we want to show that ZFC does not prove or refute a 
statement ϕ.  
 
i. First we show that ϕ is provable in an extension T of 
ZFC that we "trust". In this book, we use an extension of 
ZFC by a certain large cardinal axiom - strongly Mahlo 
cardinals of finite order. See section 0.13.  
 
ii. Then we build a model of ZFC using only ϕ and a 
fragment K of ZFC. We will assume that K implies EFA, so 
that K is strong enough to support Gödel's Second 
Incompleteness Theorem. In this book, we use K = ACA', a 
very weak fragment of ZFC, which implies EFA. See 
Definition 1.4.1. 
 
From i, we have established the consistency of ZFC + ϕ from 
the consistency of T. 
 
From ii, we have ZFC + ϕ proves Con(ZFC). So if ZFC proves 
ϕ, then ZFC proves Con(ZFC), violating Gödel's Second 
Incompleteness Theorem (assuming ZFC is consistent).  
 
Note that we have assumed that ZFC is consistent in order 
to show the unprovability of ϕ in ZFC. This is necessary, 
because if ZFC is inconsistent then ϕ (and every sentence 
in the language of ZFC) is provable in ZFC.  
 
There is a way of stating the unprovability of ϕ in a way 
that does not rely on the consistency of ZFC.   
 
THEOREM 0.1B.1. Let K be a fragment of ZFC, which is strong 
enough to support the Gödel Second Incompleteness Theorem. 
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Suppose K + ϕ proves Con(ZFC). Then ϕ is unprovable in 
every consistent fragment of ZFC that proves K. 
 
Proof: To see this, let S be a consistent fragment of ZFC 
that proves K. We can assume that S is finitely 
axiomatized. If S proves ϕ then by the hypotheses, S proves 
Con(ZFC). In particular, S proves Con(S). Since S extends 
K, S is subject to Gödel's Second Incompleteness Theorem. 
Hence S is inconsistent. This is a contradiction. QED 
 
We use the following variant of Theorem 0.1B.1 in section 
5.9. For the definition of SMAH, see section 0.13.  
 
THEOREM 0.1B.2. Suppose ACA' + ϕ proves Con(SMAH). Then ϕ 
is unprovable in every consistent fragment of SMAH that 
logically implies ACA'.  
 
Informal statements of Gödel's Second Incompleteness 
Theorem are simple and dramatic. However, current fully 
rigorous statements of the Gödel Second Incompleteness are 
complicated and awkward. This is because the actual 
construction of the consistency statement - as a formal 
sentence in the language of the theory - is rather 
complicated, and no two scholars would come up with the 
same sentence.  
 
Although this is a significant issue surrounding the first 
use of the Gödel Second Incompleteness Theorem as a 
foundationally meaningful example of incompleteness, this 
does not affect the applicability of Gödel's Second 
Incompleteness Theorem for obtaining incompleteness 
results.  
 
But the fact that we can so confidently use Gödel's Second 
Incompleteness Theorem without getting bogged down in the 
construction of actual formalizations of consistency, does 
strongly suggest that there is a robust formulation of 
Gödel's Second Incompleteness Theorem.   
 
It is possible to isolate syntactic properties of a formal 
consistency statement that are sufficient for Gödel's 
Second Incompleteness Theorem, and which are independent of 
the construction of any particular formal consistency 
statement. In this way, we can remove the ad hoc features 
in a rigorous formulation of Gödel's Second Incompleteness 
Theorem.  
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In [Fe60], [Fe82], sufficiency conditions for formalized 
consistency in predicate calculus are reached by a step by 
step analysis of the construction of the formalization. 
However, this leads to a very complicated and lengthy list 
of conditions. There may be room for future considerable 
simplification.  
 
Another approach to presenting sufficiency conditions for 
formalized consistency in predicate calculus is found in 
the Hilbert Bernays derivability conditions. See [HB34,39], 
[Fr10]. These are simpler than the conditions that arise 
from the preceding approach, although they are rather 
subtle. They also add clarity to the proof of Gödel's 
Second Incompleteness Theorem. 
 
We present a third kind of sufficiency condition for 
formalized consistency in predicate calculus. This is 
through the Gödel Completeness Theorem. The proofs of our 
results will appear elsewhere in [Fr∞].  
 
We also refer the reader to [Fr07b] and [Vi09], which are 
also concerned with novel formulations of Gödel's Second 
Incompleteness Theorem. 
 
0.1C. Adequacy Conditions for Formalized Consistency. 
 
Here is the key idea: 
 

For Gödel's Second Incompleteness Theorem,  
it is sufficient that the formalization of consistency used  

support the Gödel Completeness Theorem. 
 
We will use MSL = many sorted first order predicate 
calculus with equality. Infinitely many constant, relation, 
and function symbols are available. 
 
Let S be a set of sentences in MSL, and let σ be a sentence 
in MSL. We define the notion 
 

ϕ is an S sufficient formalization of Con(σ). 
 
Here Con(σ) refers to consistency in MSL. 
 
This means that ϕ is a sentence in L(S) such that there is 
a structure M in L(σ), whose components (domains, 
constants, relations, and functions) are given by 
definitions in L(S), such that S proves 
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ϕ → M satisfies σ. 
 
Here the consequent is a sentence of L(S) that is defined   
straightforwardly by relativization. Note that this 
definition is quite easy to make fully rigorous - by direct 
combinatorial construction, or by induction on formulas of 
MSL. The intensionality issues that plague the usual 
statements of Gödel's Second Incompleteness Theorem are not 
present here. 
 
The most natural system of arithmetic to use for S is EFA 
(see section 0.5). This system corresponds to the IΣ0(exp) 
of [HP93]. Note that the notion  
 

the usual formalizations of Con(σ) 
 
makes good sense. We can take these to mean those that have 
been constructed - or are intended - by actual 
practitioners. Note that such formalizations are rarely 
given in complete detail, and even more rarely, been 
thoroughly debugged. EFA is finitely axiomatizable (see 
[DG82] and [HP93], Theorem 5.6, p. 366). 
 
THEOREM 0.1C.1. Let σ be a sentence in MSL. Every usual 
formalization of Con(σ) in L(EFA) is an EFA sufficient 
formalization of Con(σ).  
 
Proof: Let Con(σ)* be a usual formalization of Con(σ) in 
L(EFA). We show that Con(σ)* is a sufficient formalization 
of Con(σ) in EFA.  We adapt a common proof of the Gödel 
completeness theorem to EFA. We effectively build a labeled 
0,1 tree T whose paths define models of a consistent σ. We 
then show that if T has finitely many vertices, then T can 
be converted to a proof in MSL of ¬σ. Otherwise, T has an 
infinite path, and any infinite path yields a model of σ.  
 
The conversion to a proof in MSL of ¬σ goes through in EFA. 
So assume T has infinitely many vertices. We define the 
following property P(v) on vertices v in T. P(v) if and 
only if  
 
i. There are arbitrarily high vertices extending v. 
ii. There exists n such that the following holds. There are 
at most n vertices extending any vertex to the strict left 
of v.  
 
It is clear, in EFA, that  
 



 15 

iii. Any two vertices obeying P are comparable.  
iv. There is no highest vertex obeying P.  
 
If there are arbitrarily high vertices obeying P, then we 
define a model of σ as usual. Otherwise, we have a "cut" in 
T. We can use standard cut shortening, if necessary, to 
form a "cut" in T that can be used to define a model of σ. 
QED 
 
THEOREM 0.1C.2. Let σ be a sentence in MSL. Every EFA 
sufficient formalization of Con(σ) implies every usual 
formalization of Con(σ) in L(EFA), over EFA + Con(EFA). 
(Here Con(EFA) is any usual formalization of Con(EFA) in 
L(EFA).) 
 
Proof: Let ϕ be an EFA sufficient formalization of Con(σ). 
Let M witness this assumption. We argue in EFA + Con(EFA) + 
ϕ that σ is consistent in MSL. Let π be a proof of ¬σ in 
MSL. By relativizing π to M, we obtain a proof in EFA of 
¬σM. But we already have a proof in EFA of σM. Hence EFA is 
inconsistent. Therefore π does not exist. Hence σ is 
consistent. QED   
 
We remind the reader that the usual formalizations of 
Con(σ) in arithmetic involves arithmetizing finite 
sequences of nonnegative integers. Accordingly, we define 
SEFA (super exponential function arithmetic) to be  
 
EFA + "for all n, there is a sequence of integers of length 
n starting with 2, where each non initial term is the base 

2 exponential of the previous term". 
 
SEFA corresponds to the system IΣ0 + Superexp in [HP93], p. 
376. It is well known that SEFA proves the cut elimination 
(see [HP93], Theorem 5.17). From this, it is easy to show 
that SEFA proves the 1-consistency of EFA.  
 
The following combines Theorems 0.1C.1, 0.1C.2.  
 
THEOREM 0.1C.3. Let σ be a sentence in MSL. The usual 
formalizations of Con(σ) in L(EFA) are characterized, up to 
provable equivalence in SEFA, as the weakest EFA sufficient 
formalizations of Con(σ) (weakest in the sense of SEFA). We 
can replace SEFA here by EFA + Con(EFA). (Here Con(EFA) is 
any usual formalization of Con(EFA) in L(EFA).) 
 
The proofs can be refined to replace EFA, SEFA by PFA, EFA. 
Here PFA is "polynomial function arithmetic". The more 
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standard notation is "bounded arithmetic" or IΣ0. This 
extends Q, within the language of Q, by adding the 
induction scheme for all bounded formulas (i.e., formulas 
with bounded quantifiers only). See [HP93].   
 
For this purpose, we need to consider WCon(σ), or "weak 
consistency of σ in MSL". This means that there is no cut 
free proof of σ in MSL. WCon(σ) is provably equivalent, 
over SEFA, to Con(σ). However, this is not the case in EFA.  
 
THEOREM 0.1C.4. Let σ be a sentence in MSL. The expert 
formalizations of WCon(σ) in L(PFA) are characterized, up 
to provable equivalence in EFA, as the weakest PFA 
sufficient formalizations of Con(σ) (weakest in the sense 
of EFA).  
 
We do not use "usual formalizations of Con(σ) in PFA", but 
instead "expert formalizations of Con(σ) in PFA". This is 
because such formalizations in PFA are normally done only 
by experts in weak systems of arithmetic, because of the 
limited facility for finite sequence coding.  
 
We extend sufficiency to sets of sentences in MSL. Let S,T 
be  sets of sentences in MSL. We define  
 

ϕ is an S sufficient formalization of Con(T) 
 
if and only if for every conjunction σ of finitely many 
sentences in T, ϕ is an S sufficient formalization of 
Con(σ). 
 
THEOREM 0.1C.5. Let T be a set of sentences in MSL. Every 
EFA sufficient formalization of Con(T) proves, over SEFA, 
the usual formalizations of the consistency of each finite 
fragment of T. If T is recursively enumerable, then the 
usual formalizations of Con(T) in L(EFA), based on any 
algorithm for generating T, are EFA sufficient 
formalizations of Con(T). We can replace SEFA here by EFA + 
Con(EFA). (Here Con(EFA) is any usual formalization of 
Con(EFA) in L(EFA).) 
 
THEOREM 0.1C.6. Let T be a set of sentences in MSL. Every 
PFA sufficient formalization of Con(T) proves, over EFA, 
the usual formalizations of the weak consistency of each 
finite fragment of T. If T is recursively enumerable, then 
the expert formalizations of Con(T) in L(PFA), based on any 
algorithm for generating T, are PFA sufficient 
formalizations of Con(T).  
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We should mention that in many cases, the usual 
formalizations use "natural" algorithms for generating the 
elements of T, rather than arbitrary ones. This would be 
the case for systems axiomatized by finitely many schemes. 
However, this interesting issue need not concern us here.  
 
0.1D. Gödel's Second Incompleteness Theorem for 
Arithmetized Consistency. 
 
The following is obtained from Theorem 0.1C.5.  
 
THEOREM 0.1D.1. Gödel's Second Incompleteness Theorem for 
Consistency Formalized in EFA. Let T be a consistent set of 
sentences in MSL that implies SEFA. T does not prove any 
EFA sufficient formalization of Con(T). 
 
The usual statement of Gödel's Second Incompleteness 
Theorem for arithmetized consistency, is covered here by 
taking T to be recursively enumerable, using any usual 
formalization of Con(T) in EFA, and applying Theorem 
0.1C.5. 
 
The following is obtained from Theorem 0.1C.6.  
 
THEOREM 0.1D.2. Gödel's Second Incompleteness Theorem for 
Consistency Formalized in PFA. Let T be a consistent set of 
sentences in MSL that implies EFA. T does not prove any PFA 
sufficient formalization of Con(T). 
 
The usual statement of Gödel's Second Incompleteness 
Theorem for arithmetized consistency (using expert 
formalizations of consistency), is covered here by taking T 
to be recursively enumerable, using any expert 
formalization of Con(T) in PFA, and applying Theorem 
0.1C.6. 
 
0.1E. Gödel's Second Incompleteness Theorem for Sequential 
Consistency. 
 
Gödel used arithmetized consistency statements. Subsequent 
developments have revealed that it is more natural and 
direct to use sequence theoretic consistency statements.  
 
We will use a particularly natural and convenient system 
for the formalization of syntax of L. We will call it 
SEQSYN (for sequential syntax). 
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SEQSYN is a two sorted system with equality for each sort. 
It is convenient (although not necessary) to use undefined 
terms. There is a very good and standard way of dealing 
with logic with undefined terms. This is called free logic, 
and it is discussed, with references to the literature, in 
[Fr09], p. 135-138. 
 
In summary, two terms are equal (written =) if and only if 
they are both defined and have the same value. Two terms 
are partially equal (written ≅) if and only if either they 
are equal or both are undefined. If a term is defined then 
all of its subterms are defined. 
 
The two sorts in SEQSYN are Z (for integers, including 
positive and negative integers and 0), and FSEQ (for finite 
sequences of integers, including the empty sequence). We 
have variables over Z and variables over FSEQ (we use Greek 
letters). We use ring operations 0,1,+,-,•, and ≤,= between 
integers. We use lth (for length of a finite sequence, 
which returns a nonnegative integer), val(α,n) (for the  
n-th term of the finite sequence α, which may be 
undefined), and = between finite sequences. The nonlogical 
axioms of SEQSYN are 
 
i. The discrete ordered commutative ring axioms. 
ii. Every α has a largest term. 
iii. lth(α) ≥ 0. 
iv. val(α,n) is defined if and only if 1 ≤ n ≤ lth(α). 
v. α = β if and only if for all n, (val(α,n) ≅ val(β,n)). 
vi. Induction on the nonnegative integers for all bounded 
formulas. 
vii. Let n ≥ 0 be given and assume that for all 1 ≤ i ≤ n, 
there is a unique m such that ϕ(i,m). There exists a 
sequence alpha of length n such that for all 1 ≤ i ≤ n, 
val(α,i) = m ↔ ϕ(i,m). Here ϕ is a bounded formula in 
L(SEQSYN) in which α does not appear. 
 
It remains to define the bounded formulas. We require that 
the integer quantifiers be bounded in this way: 
 
(∀n)(|n| < t →  
(∃n)(|n| < t ∧ 
 
where t is an integer term in which n does not appear. Here 
| | indicates absolute value. 
 
We also require that the sequence quantifiers be bounded in 
this way: 
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(∀α)(lth(α) ≤ t ∧ (∀i)(1 ≤ i ≤ lth(α) → |val(α,i)| ≤ t) →  
(∃α)(lth(α) ≤ t ∧ (∀i)(1 ≤ i ≤ lth(α) → |val(α,i)| ≤ t) ∧ 
 
where t is an integer term in which α does not appear. 
 
Note that SEQSYN does not have exponentiation, yet SEQSYN 
clearly supports the usual sequence (string) theoretic 
formalization of consistency. 
 
THEOREM 0.1E.1. SEQSYN is mutually interpretable with Q and 
with PFA. SEQSYN is interpretable in EFA but not vice 
versa. 
 
From the above, we see that the usual sequence (string) 
theoretic formalizations of consistency carry a weaker 
commitment than the usual (not the expert) arithmetic 
formalizations of consistency (which require finite 
sequence coding in EFA). 
 
We take EXP to be the following sentence in L(SEQSYN). 
 
There exists a sequence α of length n ≥ 1 whose first term 
is 2, where every non initial term is twice the previous 
term. 
 
THEOREM 0.1E.2. Let σ be a sentence in MSL. The usual 
formalizations of WCon(σ) in L(SEQSYN) are characterized, 
up to provable equivalence in SEQSYN + EXP, as the weakest 
SEQSYN sufficient formalizations of Con(σ) (weakest in the 
sense of SEQSYN + EXP).  
 
THEOREM 0.1E.3. Let T be a set of sentences in MSL. Every 
SEQSYN sufficient formalization of Con(T) proves, over 
SEQSYN + EXP, the usual formalizations of the weak 
consistency of each finite fragment of T. If T is 
recursively enumerable, then the usual formalizations of 
Con(T) in L(SEQSYN), based on any algorithm for generating 
T, are SEQSYN sufficient formalizations of Con(T).  
 
THEOREM 0.1E.3. SEQSYN + EXP and EFA are mutually 
interpretable. They are both finitely axiomatizable. 
 
Proof: As remarked earlier, EFA is finitely axiomatizable 
(see [DG82] and [HP93], Theorem 5.6, p. 366). Now we cannot 
conclude from the mutual interpretability that SEQSYN + EXP 
is also finitely axiomatizable. As an instructive example, 
it is well known that Q and bounded arithmetic are mutually 
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interpretable ([HP93], Theorem 5.7, p. 367), but it is a 
well known open problem whether bounded arithmetic is 
finitely axiomatizable. But in this case, we have a 
synonymy of the strongest kind, and that preserves finite 
axiomatizability. QED 
 
THEOREM 0.1E.4. Gödel's Second Incompleteness Theorem for 
Consistency Formalized in SEQSYN. Let T be a consistent set 
of sentences in MSL that implies SEQSYN + EXP. T does not 
prove any SEQSYN sufficient formalization of Con(T). 
 
0.1F. Gödel's Second Incompleteness Theorem for Set 
Theoretic Satisfiability. 
 
Let T be a finite set of sentences in ∈,=. By the Set 
Theoretic Satisfiability of T, we mean the following 
sentence in set theory (∈,=): 
 

there exists D,R, where R is a set of ordered pairs  
from D, such that (D,R) satisfies each element of T. 

 
Let RST (rudimentary set theory) be the following 
convenient set theory in ∈,=. 
 
a. Extensionality. 
b. Pairing. 
c. Union. 
d. Cartesian product. 
e. Separation for bounded formulas. 
 
It can be shown that RST is finitely axiomatizable. 
 
THEOREM 0.1F.1. Gödel's Second Incompleteness Theorem for 
Set Theoretic Satisfiability. Let T be a consistent finite 
set of sentences in ∈,= which implies RST. T does not prove 
the Set Theoretic Satisfiability of T. 
 
COROLLARY. Let T be a consistent set of sentences in ∈,=, 
which implies RST. Let ϕ be a sentence in ∈,= such that T + 
ϕ proves the set theoretic satisfiability of each finite 
subset of T. Then T does not prove ϕ.  
 
It does not appear that we can obtain Gödel's Second 
Incompleteness Theorem for PA and fragments, in any 
reasonable form, readily from Gödel's Second Incompleteness 
Theorem for Set Theoretic Satisfiability. 
 
0.1G. Gödel's Incompleteness Theorems and Interpretability. 
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The notion of Interpretation between theories is due to 
Alfred Tarski in [TMR53], and has generated an extensive 
literature. See [Fr07], lecture 1 for a guide to many 
highlights. Also see [FVxx].  
 
THEOREM 0.1G.1. Let T be a consistent set of sentences in 
MSL, in which Q is interpretable. The sets of all sentences 
in MSL that are i) provable in T, ii) refutable in T, iii) 
provable or refutable in T, are not recursive.  
 
Proof: Let π be an interpretation of Q in T. Use π to 
convert the claims to a claim concerning extensions of Q. 
See Theorem 0.1A.2. This is the approach taken in [TMR53]. 
QED  
 
We can obtain the following strong form of Gödel's First 
Incompleteness Theorem as an immediate corollary. 
 
THEOREM 0.1G.2. Let T be a recursively enumerable 
consistent set of sentences in MSL, in which Q is 
interpretable. There is a sentence in L(T) that is neither 
provable nor refutable in T.  
 
Gödel's Second Incompleteness Theorem is used in an 
essential way to prove the following fundamental fact about 
interpretations, from [Fe60]. See [Fr07], lecture 1, 
Theorem 2.4, p. 7.  
 
THEOREM 0.1G.3. For every consistent sentence ϕ in MSL,  
there is a consistent sentence ψ in MSL,  such that ϕ is 
interpretable in ψ, and ψ is not interpretable in ϕ. 
 
Gödel's Second Incompleteness Theorem also is used in an 
essential way to prove the following well known fact about 
PA. 
 
THEOREM 0.1G.4. No consistent extension T of PA in L(PA) is 
interpretable in any consequence of T.  
 
We can view Theorem 0.1G.4 as a form of Gödel's Second 
Incompleteness Theorem for extensions of PA, since it 
immediately implies the following strong form of Gödel's 
Second Incompleteness Theorem for extensions of PA.  
 
THEOREM 0.1G.5. Let T be a consistent extension of PA in 
L(PA), and S be a finite fragment of T. No S sufficient 
formalization of Con(T) is provable in T.  
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0.2. Some Basic Completeness. 
 
Note that General Incompleteness depends on being able to 
interpret a certain amount of arithmetic.  
 
However, there are some significant portions of 
mathematics, which do not involve any significant amount of 
arithmetic.  
 
This opens the door to there being recursive 
axiomatizations for such significant portions of 
mathematics. This is in sharp contrast to Gödel's First 
Incompleteness Theorem.  
 
A powerful way to present such completeness theorems is to 
identify a relational structure M and give what is called 
an axiomatization of M. For judiciously chosen M, the 
assertions that hold in M generally form a significant 
portion of mathematics. 
 
Specifically, an axiomatization of M is a set T of 
sentences in L(M) (the language of M) such that  
 

For any sentence ϕ of L(M),  
ϕ is true in M if and only if  

ϕ is provable in T. 
 
We say that T is a finite (or recursive) axiomatization of 
M if and only if T is an axiomatization of M, where T is 
finite (or recursive). 
 
We frequently encounter M which are recursively 
axiomatizable but not finitely axiomatizable. The important 
intermediate notion is that of being axiomatizable by 
finitely many relational schemes.  
 
Axiom schemes arise in many fundamental axiomatizations. 
Three particularly well known examples are not 
axiomatizations of structures. These are PA (Peano 
Arithmetic), Z (Zermelo Set Theory), and ZFC (Zermelo Set 
Theory with the Axiom of Choice).   
 
We will not give a careful formal treatment of relational 
schemes here, but be content with the following semiformal 
description.  
 
To simplify the discussion, it is convenient to work 
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entirely within the first order predicate calculus with 
equality, rather than the more general MSL.  
 
Fix a language L' in first order predicate calculus with 
equality. A scheme is a formula in L' possibly augmented 
with extra relation symbols called schematic relation 
symbols. The instances of a relational scheme consists of 
the result of making any legitimate substitutions of the 
schematic relation symbols appearing by formulas of L'. One 
must treat different occurrences of the same schematic 
symbol in the same way, and put the appropriate restriction 
on the free variables of the formulas used for 
substitutions.  
 
Schemes can be generalized to include schematic function 
symbols. However, we will be using only schematic relation 
symbols here. 
 
Note that Induction in PA, Comprehension in Z, and both 
Comprehension and Replacement in ZFC, are schemes. 
Induction and Comprehension use a single unary schematic 
relation symbol, whereas Replacement uses a single binary 
schematic relation symbol. Replacement can also be 
formalized with a single unary schematic function symbol.  
 
Here we provide axiomatizations by finitely many schemes 
for each of the 21 basic structures given below.  
 
We use the method of quantifier elimination throughout. The 
quantifier elimination arguments that we use are well 
known, and we will not give details.  
 
It is typical in the use of quantifier elimination, that 
the structures at hand do not admit quantifier elimination 
themselves, but need to be expanded in order to admit 
quantifier elimination. Then the quantifier elimination for 
the expansion is used to derive conclusions about the 
original structure.  
 
An expansion of a structure is obtained by merely adding 
new relations, functions, or constants to the structure. A 
definitional expansion of a structure is an expansion whose 
new symbols have explicit definitions in the language of 
the original structure.  
 
We say that M' is the definitional expansion of M via π = 
ϕ1,...,ϕn if M' is the expansion of M whose components are 
given by the definitions in π made in the language of M.  
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A typical example is the definitional expansion (N,<,+) of 
(N,+) via the definition 
 

x < y ↔ x ≠ y ∧ (∃z)(x+z = y). 
 
Sometimes we make a definitional expansion, followed by the 
introduction of new constants. Specifically, we 
definitionally expand (Z,+) to (Z,0,+,-,2|,3|,...), and 
then introduce the constant 1 to form (Z,0,1,+,-
,2|,3|,...). Note that the constant 1 is not definable in 
(Z,+).  
 
The following easy results are quite useful when working 
with axiomatizations. They were used, essentially, by 
Tarski.  
 
THEOREM 0.2.1. Let M' be the definitional expansion of M 
via π, and M'' expand M' with constants new to M'. Let S be 
a set of sentences that hold in M. Let T be an 
axiomatization of M''. Assume that S proves the well 
definedness of π for the constant and function symbols new 
in M'. Assume S proves the result of existentially 
quantifying out the new constants in the conjunction of any 
given finite subset of T after π is used to replace the new 
symbols of T in the conjunction. Then S is an 
axiomatization of M.  
 
Proof: Let M,M',S,T be as given. Let ϕ hold in M. Then ϕ 
holds in M'', and so ϕ is provable in T. In any given proof 
of ϕ in T, let T' result from conjuncting the axioms of T 
used, replacing the new symbols of M' by their definitions 
given by π, and then existentially quantify out the new 
constants in M''. Then T' logically implies ϕ, and also S 
proves T'. Hence S proves ϕ. Also by hypothesis, S holds in 
M. QED 
 
THEOREM 0.2.2. Let M,M',M'' be as given in Theorem 0.2.1, 
where the language of M'' is finite. M is finitely 
axiomatizable if and only if all (some) axiomatizations of 
M are logically equivalent to a finite subset. M is 
finitely axiomatizable if and only if M' is finitely 
axiomatizable. If M'' is finitely axiomatizable then M is 
finitely axiomatizable.  
 
Proof: The first claim (well known), involving only M, is 
left to the reader.  
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For the third claim, the process of converting an 
axiomatization of M'' to an axiomatization of M given by 
Theorem 0.2.1, results in a finite axiomatization of M if 
the given axiomatization of M'' is finite.  
 
For the second claim, it suffices to show that if M is 
finitely axiomatizable then M' is finitely axiomatizable. 
The axiomatization of M' consists of the axiomatization of 
M together with the definitions given by the interpretation 
of M in M'. QED 
 
There has been considerable work locating basic 
mathematical structures with recursive - and usually simple 
and informative - axiomatizations. We believe that there 
are many striking cases of this that are yet to be 
discovered across mathematics.  
 
Here is the list of 21 fundamental mathematical structures 
with recursive axiomatizations. 
 
LINEAR ORDERINGS 
 
(N,<), (Z,<), (Q,<), (ℜ,<). 
 
SEMIGROUPS, GROUPS 
 
(N,+), (Z,+), (Q,+), (ℜ,+), (C,+).  
 
LINEARLY ORDERED SEMIGROUPS/GROUPS  
 
(N,<,+), (Z,<,+), (Q,<,+), (ℜ,<,+). 
 
BASE TWO EXPONENTIATION 
 
(N,+,2x). 
 
FIELDS 
 
(ℜ,+,•), (C,+,•), (RALG,+,•), (CALG,+,•). 
 
Here RALG is the subfield of real algebraic numbers. CALG 
is the subfield of complex algebraic numbers. 
 
ORDERED FIELDS 
 
(ℜ,<,+,•), (RALG,<,+,•). 
 
EUCLIDEAN GEOMETRY 
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(ℜ2,B,E). 
 
Here B is the three place relation of betweenness. I.e., 
B(x,y,z) ↔ x,y,z lie on a line and y is strictly between x 
and z. Also E is the four place relation of equidistance. 
I.e., E(x,y,z,w) ↔ d(x,y) = d(z,w).  
 
Among these 21, (N,<), (Z,<), (Q,<), (ℜ,<) are finitely 
axiomatizable. The axioms for the remaining 17 are not 
usually presented as finitely many axiom schemes, and some 
thought is required in order to put them in this form. Of 
the 17, all but (N,+,2x) are not finitely axiomatizable. We 
conjecture that (N,+,2x) is not finitely axiomatizable. 
 
Below, we freely invoke Theorems 0.2.1 and 0.2.2. 
 
THEOREM 0.2.3. (N,<) is finitely axiomatized by  
i. < is a strict linear ordering. 
ii. There is a < least element. 
iii. Every element has an immediate successor. 
iv. Every element with a predecessor has an immediate 
predecessor. 
 
Proof: i-iv clearly hold in (N,<). We use Theorem 0.2.1 
with the definitional expansion (N,<,0,S) via π, where π 
defines 0 as "the least element", and π defines S as "the 
immediate successor". (N,<,0,S) has the following well 
known axiomatization, using elimination of quantifiers. 
See, e.g., [En72], p. 184.  
 
a. < is a strict linear ordering. 
b. 0 is < least. 
c. x ≠ 0 → (∃y)(x = S(y)). 
d. x < S(y) ↔ x < y ∨ x = y. 
 
Since π is provably well defined in i-iv, and the results of 
applying π to a-d are provable in i-iv, we see that i-iv is 
an axiomatization of (N,<). QED 
 
THEOREM 0.2.4. (Z,<) is finitely axiomatized by  
i. < is a strict linear ordering. 
ii. Every element has an immediate predecessor and an 
immediate successor.  
 
Proof: i-ii clearly hold in (Z,<). We use Theorem 0.2.1 
with the definitional expansion (Z,<,S) via π, where π 
defines S as "the immediate successor". (Z,<,S) has the 
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following well known axiomatization, using elimination of 
quantifiers.  
 
a. < is a strict linear ordering. 
b. (∃y)(x = S(y)). 
c. x < S(y) ↔ x < y ∨ x = y. 
 
Since π is provably well defined in i,ii, and the results of 
applying π to a-c are provable in i,ii, we see that i,ii is 
an axiomatization of (N,<). QED 
 
THEOREM 0.2.5. (Q,<), (ℜ,<) are finitely axiomatized by  
i. < is a strict linear ordering. 
ii. There is no least and no greatest element. 
iii. Between any two elements there is a third.  
 
Proof: This is a particularly well known application of 
elimination of quantifiers, resulting in this 
axiomatization. No expansion is needed. QED 
 
THEOREM 0.2.6. (N,+) is axiomatized with a single scheme by 
i. (x+y)+z = x+(y+z), x+y = x+z → y = z. 
ii. There are unique 0 ≠ 1 such that (x+y = 0 ↔ x,y = 0) ∧ 
(x+y = 1 ↔ {x,y} = {0,1}).  
iii. Every definable set containing 0 and closed under +1 
is everything.  
(N,+) is not finitely axiomatizable. 
 
Proof: i-iii clearly hold in (N,+). We use Theorem 0.2.1 
with the definitional expansion (N,<,0,S,+,≡2,≡3,...) via π, 
where π defines  
 
< as x ≠ y ∧ (∃z)(x+z = y).  
0 as the 0 from ii. 
S(x) = x+1, where 1 is from ii.  
≡d, d ≥ 2, as x ≡d y ↔ (∃z)(x = y+dz ∨ y = x+dz). 
 
Obviously, i-iii proves π is well defined.  
 
We now use the well known elimination of quantifiers for 
(N,<,0,S,+,≡2,≡3,...) from [Pr29], [En72], p. 188. Here ≡d, d 
≥ 2, is congruence modulo d. This results in the following 
axiomatization of (N,<,0,S,+,≡2,≡3,...). 
 
a. < is a strict linear ordering. 
b. 0 is the least element. 
c. x ≠ 0 → (∃y)(x = S(y)). 
d. x < S(y) ↔ x < y ∨ x = y. 
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e. + is commutative, associative. 
f. x+0 = x. 
g. x+S(y) = S(x+y). 
h. x+z < y+z ↔ x < y. 
i. x < y ↔ (∃z)(S(x+z) = y). 
j. dx < dy ↔ x < y. 
k. x ≡d y ↔ (∃z)(x = y + dz ∨ y = x + dz).   
l. (∃y)(x ≡d y ∧ y < Sd(0)).  
 
where d ≥ 2.  
 
We prove that the results of applying π to a-l are provable 
in i-iii. 
 
This is the same as treating <,0,S,≡d as abbreviations in 1-
iii, and verifying a-l in i-iii. It is convenient to also 
use the abbreviation x ≤ y ↔ x < y ∨ x = y, in i-iii. 
 
By ii), 1+1 ≠ 0 ∧ 1+1 ≠ 1.  
 
We claim x+1 ≠ 0. Suppose x+1 = 0. Then x+(1+1) = (x+1)+1 = 
0+1 = 1. By ii), 1+1 ∈ {0,1}, which is impossible.   
 
We claim x+0 = x. Let E = {x: x+0 = x}. By ii), 0 ∈ E. Let 
x ∈ E. Then x+0 = x, and by i),ii), (x+1)+0 = x+(1+0) = 
x+1. Hence E contains 0 and is closed under +1. By iii), E 
is everything. 
 
We claim x ≠ 0 → (∃y)(x = y+1). Let E = {x: (∃y)(x = y+1)} 
∪ {0}. Then E contains 0 and is closed under +1. Hence by 
iii), E is everything. 
 
We claim 0+x = x. Let E = {x: 0+x = x}. Then 0 ∈ E. Let x ∈ 
E. Then 0+(x+1) = (0+x)+1 = x+1. Apply iii). 
 
We claim x+y = y+x. Let E = {y: x+y = y+x}. By the previous 
paragraph, 0 ∈ E. Let x ∈ E. Then x+y = y+x, x+(y+1) = 
(x+y)+1 = (y+x)+1 = y+(x+1). Apply iii). 
 
We claim x ≤ y ↔ (∃z)(x+z = y). Suppose x ≤ y. If x < y 
then we are done. If x = y then use z = 0. Now suppose x+z 
= y. If z = 0 then we are done. If z ≠ 0, write z = w+1. 
Hence z = S(w), and we are done. 
 
Obviously ≤ is reflexive. We claim ≤ is transitive. Let x+u 
= y ∧ y+v = z. Then x+u+v = z, and so x ≤ z.  
 



 29 

We claim y ≤ x → y+1 ≤ x ∨ y = x. Let y ≤ x. Write y+z = x. 
If z = 0 then y = x, and we are done. Assume z ≠ 0, and 
write z = w+1. Then y+w+1 = x = y+1+w, and so y+1 ≤ x.  
 
We claim x ≤ y ∨ y ≤ x. Let E = {y: x ≤ y ∨ y ≤ x}. 
Obviously 0 ∈ E. We now show that E is closed under +1. 
Suppose y ∈ E. Then x ≤ y ∨ y ≤ x. We want x ≤ y+1 ∨ y+1 ≤ 
x.  
 
We are done if x ≤ y. So assume y ≤ x. By the previous 
claim, y+1 ≤ x ∨ y = x. In either case, we are done. 
 
We claim x ≤ y ∧ y ≤ x → x = y. Let x+z = y ∧ y+z = x. Then 
x+z+z = x = x+0, z+z = 0, z = 0, x = y. 
 
We have established that ≤ is a reflexive linear ordering. 
Hence < is a strict linear ordering. 
 
I.e., we have proved the result of applying π to a) in i-
iii. 
 
For b), suppose x < 0. Let x+y = 0. Then x,y = 0, which is 
impossible.  
 
For c), this has already been proved. 
 
For d), let x < y+1. Write y+1 = x+z+1. Then y = x+z, and 
so x ≤ y. Suppose x < y. Then x < y+1. Suppose x = y. Then x 
< y+1.  
 
For e), associativity is from i), and commutativity has 
been proved.  
 
For f), we have proved x+0 = x. 
 
For g), use associativity. 
 
For h), let x+z < y+z. Let x+z+w = y+z, w ≠ 0. By 
cancellation and commutativity, x+w = y, and so x ≤ y. If x 
= y then x+z = y+z, which is impossible. Hence x < y. Now 
let x < y. Write x+w+1 = y. Then x+z+w+1 = y+z, and so x+z 
< y+z. 
 
For i), let x < y. Write y = x+z+1. Then S(x+z) = y. Now 
let S(x+z) = y. Then y = x+z+1, and so x < y.  
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For j), let dx < dy. We want x < y, and so assume y ≤ x and 
write y+z = x. Then d(y+z) < dy. Hence dy+dz < dy+0. By h), 
dz < 0, which is impossible.  
 
For k), this is by definition. 
 
For l), let E = {x: (∃y,z)(x = dy+z ∧ z < Sd(0))}. 
Obviously, 0 ∈ E. Suppose x ∈ E. Let x = dy+z ∧ z < Sd(0). 
Then x+1 = dy+z+1 ∧ z+1 ≤ Sd(0). If z+1 < Sd(0) then x+1 ∈ 
E. Otherwise, x+1 = dy+Sd(0) = d(y+1)+0 ∧ 0 < Sd(0). In 
either case, x+1 ∈ E. Hence E contains 0 and is closed 
under +1. By iii), E is everything. Hence (∀x)(∃y)(x ≡d y ∧ 
y < Sd(0)).  
 
To show that (N,+) is not finitely axiomatizable, by 
Theorem 0.2.2 it suffices to show that any finite fragment 
of a-l has a model not satisfying all of a-l. This is 
because a-l is a definitional extension of i-iii. 
 
Let p be any prime. Let D consist of all expressions nx/m + 
t, where (n,m) = 1, n,t ∈ N, m ∈ N\{0}, and p does not 
divide m. Define the structure (D,<,0,S,+) in the obvious 
way, and extend it to (D,<,0,S,+,≡2,≡3,...) via π.   
 
Evidently, a-i hold in (D,<,0,S,+,≡2,≡3,...). Also, l) holds 
provided d ≥ 2 is not divisible by p.  
 
But l) fails for d = p. This is because we cannot write any 
of x,x-1,...,x-p+1 as a multiple of p in this structure. 
QED  
 
THEOREM 0.2.7. (Z,+) is axiomatized with two schemes by  
i. (Z,+) is an Abelian group. 
ii. Every definable subgroup of + with a definable linear 
ordering is {0}.  
iii. R,S be definable binary relations. Suppose for all x, 
{y: R(x,y)} is a subgroup of + containing x, and {y: 
S(x,y)} is a proper subgroup of +. Then (∃x)((∀y)(R(x,y) ∧ 
¬S(y,x)). 
(Z,+) is not finitely axiomatizable. 
 
Proof: Clearly i) holds in (Z,+).  
 
For iii), the proper subgroups of + are the multiples of 
some fixed d = 0,2,3,... . Hence 1 lies outside of all of 
them. Set x = 1.  
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For ii), we use the definitional expansion (Z,0,+,-
,2|,3|,...) of (Z,+) via π, where 0 is defined as the 
additive identity, +,- as addition and the additive 
inverse, and d|x as (∃y)(dy = x), d ≥ 2.  
 
We use the well known elimination of quantifiers for linear 
arithmetic adapted to the structure (Z,0,1,+,-,2|,3|,...).  
 
The quantifier elimination boils down to considering 
statements of the form  
 

(∃x)(d1|s1 ∧ ... ∧ dn|sn ∧ ¬e1|t1 ∧ ... ∧ ¬en|tn ∧  
r1 = 0 ∧ ... ∧ rn = 0 ∧ v1 ≠ 0 ∧ ... ∧ vn ≠ 0) 

 
where the di,ei are integers ≥ 2, and the si,ti,ri,vi are 
terms. We can replace negated divisibilities by 
disjunctions of divisibilities, and then rewrite the 
divisibilities as congruences, obtaining the form 
 

(∃x)(a1x ≡d_1 s1 ∧ ... ∧ anx ≡d_n sn ∧  
r1 = 0 ∧ ... ∧ rn = 0 ∧ v1 ≠ 0 ∧ ... ∧ vn ≠ 0) 

 
where the ai,di are integers, ai ≥ 1, di ≥ 2, and the 
si,ti,ri,vi are terms, and x does not appear in the si. We 
then consolidate all coefficients on x, obtaining the forms  
 

(∃x)(cx ≡d_1 s1 ∧ ... ∧ cx ≡d_n sn ∧  
cx = r1 ∧ ... ∧ cx = rn ∧ cx ≠ v1 ∧ ... ∧ cx ≠ vn) 

 
(∃x)(x ≡d_1 s1 ∧ ... ∧ x ≡d_n sn ∧  

x = r1 ∧ ... ∧ x = rn ∧ x ≠ v1 ∧ ... ∧ x ≠ vn) 
 
where the di are integers ≥ 2, and the si,ti,ri,vi are terms 
in which x does not appear. We can assume that there are no 
equations, obtaining the form  
 

(∃x)(x ≡d_1 s1 ∧ ... ∧ x ≡d_n sn ∧  
x ≠ v1 ∧ ... ∧ x ≠ vn). 

  
This is clearly equivalent to  
 

(∃x)(x ≡d_1 s1 ∧ ... ∧ x ≡d_n sn) 
 

and hence has a solution if and only if it has a solution 
among the nonnegative integers below the product of the 
d's. This results in a quantifier free formula.  
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For ii), first note that every subgroup of + is the set of 
multiples of some d ≥ 0. If the multiples of d > 0 has a 
definable linear ordering in (Z,+), then Z has a definable 
linear ordering in (Z,+), in which case N is definable in 
(Z,+). Then N is definable in (Z,0,1,+,-,|2,|3,...), and so 
N is quantifier free definable in (Z,0,1,+,-,|2,|3,...). 
This is impossible (left to the reader).  
 
We now use this quantifier elimination to complete the 
proof. In order to support the manipulations for this 
quantifier elimination, it suffices to have  
 
a. (Z,0,+,-) is an Abelian group, with inverse - and  
identity 0. 
b. d|x ↔ (∃y)(x = dy). 
c. dx = dy → x = y. 
d. dx ≠ 1. 
e. d|x ∨ d|x+1 ∨ d|x+1+1 ∨ ... ∨ d|x+1+...+1 with d 
disjuncts.  
 
where d ≥ 2.  
 
We claim that every quantifier free sentence in 0,1,+,-
,2|,3|,... is provable or refutable in a-e. This is left to 
the reader. 
 
It now follows that a-e is an axiomatization of (Z,0,1,+,-
,2|,3|,...).  
 
We now verify the condition in Theorem 0.2.1. Accordingly, 
fix a positive integer t, let K consist of a) and those 
instances of b-e based on 2 ≤ d ≤ t. Let K' be the result of 
applying π, and then existentially quantifying out the 
constant 1. 
 
We can pull out the conjuncts emanating from a)-c) since 
they do not mention 1. We claim that the result of applying 
π to a-c, is provable in i-iii. This is obvious for a),b).  
 
For c), suppose dx = dy ∧ x ≠ y. Then dz = 0, z ≠ 0, where 
z = x-y. Let G be the group {0,z,2z,...,(d-1)z} under +. 
Obviously G is definable since it has at most d elements. 
It also has a definable linear ordering since it has at 
most d elements. By ii), it is {0}, which is a 
contradiction. Hence c) has been proved in i-iii. 
 
It remains to prove  
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#) (∃x)(¬2|x ∧ ... ∧ ¬t!|x ∧  
(∀y)(t!|y ∨ t!|y+x ∨ ... ∨ t!|y+(t!-1)x)) 

 
in i-iii, after applying π. Here t ≥ 2.  
  
Let R(x,y) be  
 

t!|y ∨ t!|y+x ∨ ... ∨ t!|y+(t!-1)x. 
 

and let S(y,x) be  
 

(y = 2 ∧ 2|x) ∨ ... ∨ (y = t! ∧ t!|x) ∨  
(y ≠ 2 ∧ ... ∧ y ≠ t! ∧ x = 0). 

 
Note that i-iii proves (∀x)({y: R(x,y)} is a group under + 
containing x), and (∀y)({x: S(x,y)}) is a proper subgroup 
of +. Hence # immediately follows using iii). Therefore i-
iii is an axiomatization of (Z,+). 
 
To show that (Z,+) is not finitely axiomatizable, we give 
another axiomatization of (Z,+), and show that it is not 
logically equivalent to any finite subset, and invoke 
Theorem 0.2.2.  
 
i'. (Z,+) is an Abelian group. 
ii'. dx = dy → x = y. 
iii'. (∃x)((¬2|x ∧ ... ∧ ¬d|x) ∧ (∀y)(d|y ∨ d|y+x ∨ ... ∨  
d|y+(d-1)x)). 
 
where d ≥ 2 and d|x is the usual abbreviation. It is clear 
from the above that the existential closure of every finite 
subset of a-e is provable in i'-iii'. Therefore i'-iii' is 
a complete axiomatization of (Z,+).  
 
Let p be any prime. Let D consist of all expressions nx/m + 
t, where (n,m) = 1, n,t ∈ Z, m ∈ N\{0}, and p does not 
divide m. Define the structure (D,+) in the obvious way.   
 
Evidently, i',ii' hold in (D,+) for 2 ≤ d < p. Also iii') 
holds in (D,+) for 2 ≤ d < p with x = 1.  
 
We claim that iii') fails in (D,+) for d = p. To see this, 
let  
 

(∀y)(p|y ∨ p|y+z ∨ ... ∨ p|y+(p-1)z). 
 
Now suppose z = nx/m + t. By setting y = 1, we have  
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p|1 ∨ p|1+z ∨ ... ∨ p|1+(p-1)z). 
 
It follows that p|n ∧ p|t. Now set y = x. Then we obtain 
 

p|x ∨ p|(n+m)x/m ∨ p|(2n+m)x/m ∨ ... ∨ p|((p-1)n+m)x/m. 
 
Now (p,m) = 1, and so the numerators and denominators of 
the displayed fractions are not divisible by p. Thus we 
have a contradiction. QED 
 
THEOREM 0.2.8. (Q,+), (ℜ,+), (C,+) are axiomatized with a 
single scheme by 
i. (X,+) is an Abelian group with at least two elements. 
ii. Every definable subgroup of (X,+) with at least two 
elements is (X,+).  
(Q,+), (ℜ,+), (C,+) are not finitely axiomatizable. 
 
Proof: There is a well known quantifier elimination without 
expansion. This gives the axiomatization  
 
a. (X,+) is an Abelian group with at least two elements. 
b. dx = dy → x = y. 
c. (∃y)(dy = x). 
 
where d ≥ 2. From this we obtain that the definable subsets 
in (X,+) are finite or cofinite. Every subgroup of (X,+) is 
either infinite or {0}. Hence every subgroup of (X,+) 
definable in (X,+) is either cofinite or {0}. But if it is 
cofinite then it is obviously (X,+). This establishes that 
i,ii hold in (X,+).  
 
a) is provable in i,ii. For b), suppose dx = 0, x ≠ 0, d ≥ 
2, and form the finite subgroup {0,x,...,(d-1)x}. This 
contradicts ii).  
 
For c), let d ≥ 2 and form the subgroup of multiples of d. 
By a,b, this subgroup has at least two elements. By ii), 
this subgroup is (X,+). Hence c) holds.   
 
Let p be a prime. Let D be the rationals which, in reduced 
form, has denominator not divisible by p. Form (D,+). Then 
a,b hold, and c) holds for 2 ≤ d < p. d ≥ 2, However, c) 
fails for d = p. Hence (X,+) is not finitely axiomatizable. 
QED 
 
THEOREM 0.2.9. (N,<,+) is axiomatized with a single scheme 
by  
i. (x+y)+z = x+(y+z), x+y = x+z → y = z. 
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ii. There are unique 0 ≠ 1 such that x+y = 0 ↔ x,y = 0, and 
x+y = 1 ↔ {x,y} = {0,1}.  
iii. x < y ↔ x ≠ y ∧ (∃z)(x+z = y). 
iv. Every definable set containing 0 and closed under +1 is 
everything.  
(N,<,+) is not finitely axiomatizable. 
 
Proof: Obviously i-iv hold in (N,<,+). Let ϕ hold in 
(N,<,+). Replace all occurrences of s < t in ϕ by the 
definition according to iii). Then the resulting formula ϕ' 
holds in (N,+), and so by Theorem 0.2.6, is provable in the 
i-iii of Theorem 0.2.6. Hence ϕ' is provable in the above 
i-iv. Also ϕ ↔ ϕ' is provable in the above i-iv. Hence ϕ is 
provable in the above 1-iv. Hence ϕ is provable in the 
above i-iv.  
 
(N,<,+) is not finitely axiomatizable since (N,<,+) is a 
definitional extension of (N,<), and (N,<) is not finitely 
axiomatizable by Theorem 0.2.6. QED   
 
THEROEM 0.2.10. (Z,<,+) is axiomatized with a single scheme 
by  
i. (Z,+) is an Abelian group.  
ii. < is a strict linear ordering. 
iii. x+y < x+z → y < z.  
iv. Every definable set with an element > 0 has a least 
element > 0.  
(Z,<,+) is not finitely axiomatizable. 
 
Proof: i-iv clearly hold in (Z,<,+). We use Theorem 0.2.1 
with the definitional expansion (Z,<,0,1,+,-,2|,3|,...) via 
π, where π defines  
 
0 as the additive identity. 
1 as the immediate successor of 0. 
x-y as the additive inverse. 
d|x ↔ (∃y)(x = dy). 
 
where d ≥ 2. The well known quantifier elimination for 
(Z,<,0,1,+,-,2|,3|,...) leads to the complete 
axiomatization  
 
a. (Z,0,+,-) is an Abelian group, with inverse - and 
identity 0.  
b. < is a strict linear ordering. 
c. x+y < x+z → y < z. 
d. d|x ↔ (∃y)(x = dy). 
e. x+1 is the immediate successor of x.  
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f. x > 0 → (∃y)(0 ≤ y < d(1) ∧ d|x-y). 
 
where d ≥ 2. It is easy to see that the result of applying π 
to a-f is provable in i-iv. Hence i-iv is an axiomatiation 
of (Z,<,+).  
 
To see that (Z,<,+) is not finitely axiomatizable, we argue 
that a-f is not logically equivalent to any finite subset 
of a-f.  
 
Let p be any prime. Let D consist of all expressions nx/m + 
t, where (n,m) = 1, n,t ∈ Z, m ∈ N\{0}, and p does not 
divide m. Define the structure (D,<,0,1,+,-,2|,3|,...) in 
the obvious way. Then a-e hold. Also f) holds for 2 ≤ d < p. 
But f) fails for d = p. QED  
 
THOEREM 0.2.11. (Q,<,+), (ℜ,<,+) are axiomatized with a 
single scheme by  
i. + is an Abelian group. 
ii. < is a dense linear ordering without endpoints. 
iii. x+y < x+z → y < z.  
iv. Every definable subgroup of (X,+) with at least two 
elements is (X,+).  
(Q,<,+), (ℜ,<,+) are not finitely axiomatizable.  
 
Proof: (X,<,+) has a well known quantifier elimination, 
which yields the following axiomatization. 
 
a. + is an Abelian group. 
b. < is a dense linear ordering without endpoints. 
c. x+y < x+z → y < z. 
d. (∃y)(dy = x). 
 
where d ≥ 2. It is clear from the quantifier elimination 
that every set definable in (X,<,+) is a finite union of 
intervals with endpoints in X ∪ ±∞. Hence i-iv hold in 
(X,<,+). Also d) is derived from i-iv by forming the 
subgroup of all multiples of d ≥ 2, and applying iv). This 
establishes that i-iv is an axiomatization of (X,<,+).  
 
To see that (X,<,+) is not finitely axiomatizable, argue as 
in the last paragraph of the proof of Theorem 0.2.8. QED 
 
THEOREM 0.2.12. (N,+,2x) is axiomatized with a single scheme 
by  
i. (x+y)+z = x+(y+z), x+y = x+z → y = z. 
ii. There are unique 0 ≠ 1 such that x+y = 0 ↔ x,y = 0, and 
x+y = 1 ↔ {x,y} = {0,1}.  
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iii. 20 = 1, 2x+1 = 2x + 2x.  
iv. Every definable set containing 0 and closed under +1 is 
everything. 
 
Proof: Obviously i-iv hold in (N,+,2x). We use the 
definitional expansion of (N,+,2x) and its axiomatization 
given in Appendix B, p. 3. The definitional expansion is M 
= (N,+,-',≤,0,1,÷n,2x,l2,λ2), n ≥ 0, where π is as follows.  
 
x -' y = 0 if y > x; x - y otherwise. 
x ≤ y ↔ (∃z)(x+z = y). 
0 is the 0 of ii). 
1 is the 1 of ii). 
For n > 0, x÷n is the unique y such that ny ≤ x < n(y+1). 
For n = 0, x÷n = 0. 
l2(x) is the unique y such that 2y ≤ x < 2y+1 if x > 0: 0 
otherwise. 
λ2(x) = 2l_2(x) if x > 0; 0 otherwise. 
 
By Theorem 0.2.6, i-iv proves every sentence true in M that 
has only +. I.e., i-iv contains Presburger Arithmetic. 
Hence π is provably well defined in i-iv, except possibly 
for l2(x) and λ2(x).  
 
Let E = {x: (∀y < x)(2y+1 ≤ 2x)}. Then 0 ∈ E. Let x ∈ E. 
Since (∀y ≤ x)(2y+1 ≤ 2x+1), we have x+1 ∈ E. We conclude 
that E is everything. From this, we see that there is at 
most one y such that 2y ≤ x < 2y+1.  
 
Let E = {x: (∃y)(2y ≤ x < 2y+1)} ∪ {0}. Obviously 0 ∈ E. Let 
x ∈ E, 2y ≤ x < 2y+1. To see that x+1 ∈ E, note that 2y ≤ x+1 
< 2y+1, holds or x+1 = 2y+1. Hence E is everything. 
 
We have established that l2(x) is well defined.        
 
Appendix B does quantifier elimination for M, with an 
axiomatization of M on page 3. We briefly sketch why the 
result of applying π to these axioms is provable in i-iv. 
 
The axiomatization uses the Euler function, φ(m) = the 
number of positive integers ≤ m that are relatively prime 
with m. Of course, this function is only used externally. 
 
Appendix B uses the following well known fundamental fact 
about the Euler totient function. If m is an odd positive 
integer then 2φ(m)-1 is a multiple of m. 
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(1) TPres. Presburger Arithmetic. We have already remarked 
that by Theorem 0.2.6, the result of applying π to TPres is 
provable in 1-iv. 
 
(2) (∀x)(λ2(x) ≤ x < 2λ2(x)). Obvious from π at λ2, l2. 
 
(3) (∀x,y)(x ≥ y → l2(x) ≥ l2(y)). Obvious from π at l2. 
 
(4) l2(1) = 0. Obvious from π at l2. 
 
(5) (∀x)(x ≥ 1 → l2(2x) = l2(x)+1). Obvious from π at l2 and 
iii). 
 
(6) (∀x)(x ≥ 1 → 2l_2(x) = λ2(x)). Obvious from π at l2, λ2. 
 
(7) (∀x)(l2(2x) = x). Obvious from π at l2. 
  
(8) (∀x)(2x+1 = 2x + 2x). By iii).   
 
(9) (∀x)(x ≥ 1 → 2x-1 ≥ x). Let E = {x: 2x+1 ≥ x} ∪ {0}. 
Obviously 0 ∈ E. Suppose x ∈ E. Then x+1 ∈ E. Hence by iv), 
E is everything.  
 
(10) (∀x)(if x is a multiple of φ(m) then 2x-1 is a multiple 
of m), where m is an odd positive integer. It suffices to 
prove that for all y, 2φ(m)y-1 is a multiple of m. We apply 
iv). Let E = {y: 2φ(m)y-1 is a multiple of m}. Obviously, 0 ∈ 
E. Let y ∈ E. Then 2φ(m)y-1 is a multiple of m. Now if we 
keep multiplying 2φ(m)y by 2, φ(m) times, then the exponent 
raises by m, and so we arrive at 2φ(m)(y+1). Hence 2φ(m)(2φ(m)y-1) 
= 2φ(m)(y+1)-2φ(m) is a multiple of m. Since 2φ(m)-1 is a multiple 
of m, we see that 2φ(m)(y+1)-1 is a multiple of m. Hence y+1 ∈ 
E. Since we have established that E contains 0 and is 
closed under +1, we apply iv) to obtain that for all y, 
2φ(m)y-1 is a multiple of m. QED 
 
We conjecture that (N,+,2x) is not finitely axiomatizable. 
 
THEOREM 0.2.13. (ℜ,+,•), (RALG,+,•) are axiomatized with a 
single scheme by  
i. (X,+,•) is a field.  
ii. The relation y-x is a nonzero square, is a strict 
linear ordering of x,y. 
iii. Every definable nonempty bounded set has a least upper 
bound.  
(ℜ,+,•), (RALG,+,•) are not finitely axiomatizable. 
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Proof: It is well known that i-iii hold in (X,+,•). We now 
use Theorem 0.2.1 and the definitional expansion 
(X,<,0,1,+,•) via π, where < is defined by x < y ↔ y-x is a 
nonzero square, 0 is defined as the unique x with x+x = x, 
1 is defined as the unique x with (∀y)(xy = y).  
 
The well known elimination of quantifiers leads to the 
axiomatization  
 
a. (X,0,1,+,•) is a field. 
b. < is a strict linear ordering. 
c. x < y → x+z < y+z. 
d. 0 < x ∧ 0 < y → 0 < x•y. 
e. 0 < x → (∃y)(x = y2). 
f. Every polynomial of odd degree ≥ 1 with leading 
coefficient 1 has a zero.  
 
We claim that the result of applying π to a-f is provable in 
i-iii. Clearly this holds of a,b.  
 
For c), suppose y-x is a nonzero square. Then (y+z)-(x+z) 
is a nonzero square.  
 
For d), suppose x,y are nonzero squares. Then x•y is a 
nonzero square.  
 
For e), suppose x is a nonzero square. Then x is a square. 
 
This also verifies the usual ordered field axioms, 
formulated with <, within i-iii. Hence we can show in i-iii 
that every monic polynomial of odd degree ≥ 1 is positive 
for all sufficiently positive x, and negative for all 
sufficiently negative x.  
 
Let E be the set of all x such that P(x) < 0. Then E is 
obviously nonempty and bounded. Let w be the < least upper 
bound of E, according to iii. Using the ordered field 
axioms, we see that P(w) = 0.  
 
We have thus proved that i-iii is an axiomatization of 
(X,+,•).  
 
It is well known that a-f, the theory of ordered real 
closed fields, is not finitely axiomatizable. Fix an odd 
prime p. We can build the partial real closure K[p] of the 
field of rationals, adding square roots of positive 
elements and roots of odd degree monic polynomials of 
degree < p only. The p-th root of 2 is missing, but axioms 
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a-e hold, and axiom f) holds for odd degree < p. Hence by 
Theorem 0.2.2, (X,+,•) is not finitely axiomatizable. QED 
 
We will be using the following combinatorial lemma. 
 
LEMMA 0.2.14. If (A,<) is an uncountable linear ordering, 
then there exists a ∈ A such that (-∞,a) and (a,∞) are 
infinite.  
 
Proof: Suppose not. Then for all a ∈ A, (-∞,a) or (a,∞) is 
uncountable.  
 
Define the equivalence relation a ~ b if and only if there 
are finitely many points between a and b.  
 
Since every equivalence class is countable, there are 
uncountably many equivalence classes. Let 1 ≤ α ≤ ω be such 
that there are uncountably many equivalence classes of 
cardinality α.  
 
case 1. α < ω. Let [a,b], [c,d] be equivalence classes of 
cardinality α, a < b < c < d. Then b is a limit point from 
the right, and c is a limit point from the left. Hence (-
∞,b), (b,∞) are infinite.  
 
case 2. α = ω. Let I < J < K be three equivalence classes 
of cardinality ω. For all a ∈ J, (-∞,a), (a,∞) are 
infinite. QED  
 
THEOREM 0.2.15. (C,+,•), (CALG,+,•) are axiomatized with two 
schemes by 
i. (X,+,•) is a field. 
ii. Every definable subgroup of (X,+) with at least two 
elements is (X,+).    
iii. Let f:X2 → X be definable. Let (A,<) be a definable 
strict linear ordering, A ⊆ X. Assume that for all z ∈ A, 
fz:X → X is either constant, or the identity, or the sum or 
product of two fw:X → X with w < z. Then for all z ∈ A, 
fz:X → X is constant or onto.  
(C,+,•) and (CALG,+,•) are not finitely axiomatizable. 
 
Proof: We use Theorem 0.2.1 and the definitional expansion 
(X,+,•,0,1) by π, where 0 is the unique z with (∀w)(z+w = w) 
and 1 is the unique z ≠ 0 with (∀w)(z•w = w).  
 
(X,+,•,0,1) has a very well known quantifier elimination 
leading to the very well known axiomatization  
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a. (X,+,•,0,1) is a field. 
b. dz = dw → z = w. 
c. Every polynomial of degree ≥ 1 has a zero.   
 
where d ≥ 2. Using the quantifier elimination, we easily 
obtain the well known crucial property that every set 
definable in (X,+,•) is finite or cofinite. We also see that 
X has no strict linear ordering. 
 
Obviously i) holds in (X,+,•). For ii), let G be a definable 
subgroup with at least two elements. Obviously G is 
infinite. But G is finite or cofinite. Hence G is cofinite. 
Therefore G = X.  
 
For iii), we first show that in (C,+,•), every definable 
linear ordering on a definable subset of C is finite. To 
see this, we have A is finite or cofinite. Suppose A is 
cofinite. By Lemma 0.2.14, there exists a ∈ A, such that 
{x: x < a} and {x: x > a} are infinite. This is impossible.  
 
It then follows by the well known elementary equivalence of 
(C,+,•) and (CALG,+,•), that in (CALG,+,•), every definable 
linear ordering on a definable subset of CALG is finite. 
 
To complete the verification of iii), let f,A,< be as 
given. By the above, A is finite. It is clear by finite 
induction that every fz is a polynomial. Polynomials in 
(X,+,•) are constant or onto because (X,+,•) is 
algebraically closed.  
 
The result of applying π to a) is obviously provable in i-
iii. For b), assume dz = 0, z ≠ 0, and form the group 
{0,z,...,(d-1)z}. This group is definable in (X,+,•), and so 
by ii), it is (X,+). This is a contradiction. 
 
For c), let P be a polynomial of degree ≥ 1 with leading 
coefficient 1. Let Q1,...,Qn be polynomials, where each Qi 
is either constant, the identity, or the sum or product of 
two Qj, j < i, and where Qn = P. Use A = {1,...,n} ⊆ X with 
the usual < to apply iii). Use f:X2 → X, where  
 

f(z,w) = Qz(w) if z ∈ {1,...,n}; 0 otherwise. 
 
By iii), Qn = P is constant or onto. It remains to prove in 
i-iii that P is not constant. 
 
Every model of i-iii is a field of characteristic zero. 
Form algebra, in every field of characteristic zero, every 
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polynomial of degree ≥ 1 is not constant. By the Gödel 
completeness theorem, i-iii proves that P is not constant.  
 
We have established that i-iii is an axiomatization of 
(X,+,•).  
 
To see that (X,<,•) is not finitely axiomatizable, let p be 
a prime, and let F be the algebraically closed field of 
characteristic p. Then a-c hold in F. Also b) holds for 2 ≤ 
d < p. But b) fails for d = p. QED 
 
THEOREM 0.2.16. (ℜ,<,+,•), (RALG,<,+,•) are axiomatized with 
a single scheme by 
i. (X,+,•) is a field.  
ii. < is a strict linear ordering. 
iii. x < y ↔ y-x is a nonzero square. 
iv. Every definable nonempty set with an upper bound has a 
least upper bound.  
(ℜ,+,•), (RALG,+,•) are not finitely axiomatizable. 
 
Proof: Clearly i-iv hold in (ℜ,<+,•), (RALG,<,+,). Also 
(ℜ,<,+,•), (RALG,<,+,) are respective definitional 
extensions of (ℜ,+,•,), (RALG,+,•) by the interpretation π 
that defines  
 
x < y if and only if y-x is a nonzero square.  
 
So an axiomatization consists of the above definition of <, 
together with the axioms i-iii from Theorem 0.2.13. This 
axiomatization is equivalent to the present i-iv.  
 
By Theorems 0.2.2, 0.2.13, (ℜ,+,•), (RALG,+,•) are not 
finitely axiomatizable. QED  
 
THEOREM 0.2.17. (ℜ2,B,E) is axiomatized with a single 
scheme. (ℜ2,B,E) is not finitely axiomatizable.  
  
Proof: Tarski's axiomatization of Euclidean geometry uses B 
= betweenness, and E = equidistance, equality, and points, 
as the primitives. It has finitely many axioms together 
with an axiom scheme of continuity. See [Ta51], [TG99].   
 
(ℜ2,B,E) is well known to be not finitely axiomatizable, 
using the (K[p]2,B,E), where K[p] is as defined in the last 
paragraph of the proof of Theorem 0.2.13. By the 
axiomatization of real closed fields a-f there, we see that 
any finite set of sentences true in (ℜ2,B,E) is true in 
some (K[p]2,B,E). Furthermore, the existence of a p-th root 



 43 

of 2 in ℜ corresponds to a true statement in (ℜ2,B,E) that 
fails in (K[p],B,E). Hence there cannot be a finite 
axiomatization of (ℜ2,B,E). QED 
 
We shall briefly mention three additional fundamental 
structures that have been investigated intensively.  
 
The first is (ℜ,+,•,ex). It has been proved that every 
subset of ℜ definable in (ℜ,+,•,ex) is a finite union of 
intervals with endpoints in ℜ ∪ {±∞}. It is not known if 
(ℜ,+,•,ex) is recursively axiomatizable. However, it has 
been shown that if a famous conjecture in transcendental 
number theory, called the Schanuel Conjecture, is true, 
then (ℜ,+,•,ex) is recursively axiomatizable. See [MW96], 
[Wi96], [Wi99].   
 
The second is the field (Qp,+,•) of all p-adic numbers and 
its finite algebraic extensions, where p is any given 
prime. See [AK65], [AK65a], [AK66], [Co69], [Eg98].  
 
The third is the structure S2S. This is a two sorted 
structure ({0,1}*,℘({0,1}*),∈,S0,S1), where S0 and S1 are 
the two successor functions on the set {0,1}* of finite bit 
strings defined by S0(x) = x0, S1(x) = x1. It is more common 
to present S2S, equivalently, either ({0,1}*,S0,S1), or 
(T,<), where second order logic is used instead of the 
customary first order logic. Here T is the full binary tree 
viewed abstractly, with its usual partial order <.  
 
A recursive axiomatization of S2S was first given using 
automata, in [Rab68]. For a modern treatment using game 
theory, see [BGG01], section 7.1.  
 
Is is often said that in "tame" contexts such as the 
ordered group of integers, or the ordered field of reals, 
we avoid the Gödel Incompleteness Phenomena.  
 
However, the Gödel Incompleteness Phenomena simply shifts 
to the computational complexity context, where the results 
are based on diagonal constructions pioneered by Kurt 
Gödel. Even in these "tame" structures, one has the same 
kind of no algorithm results. One also has Gödelian type 
results involving lengths of proofs. We conjecture that 
there is a rich theory of Concrete Mathematical 
Incompleteness, involving lengths of proofs, in such "tame" 
contexts. See, e.g., [FR74], [Rab77], and [FeR79]. 
 
0.3. Abstract and Concrete Mathematical Incompleteness. 
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The focus of this book is on Concrete Mathematical 
Incompleteness. We use the following working definition of 
the Mathematically Concrete:  
 

Mathematical statements concerning Borel measurable sets  
and functions of finite rank in and between  

complete separable metric spaces. 
 
We take the Mathematically Abstract to begin with the 
transfinite levels of the Borel hierarchy, and continue in 
earnest with the low levels of the projective hierarchy of 
subsets of functions between complete metric spaces, 
starting with the analytic sets, followed by the higher 
levels of the projective hierarchy. Here there are still 
only continuumly many such subsets and functions. 
 
Yet higher abstract levels include arbitrary subsets of and 
functions between complete separable metric spaces. Here 
there are more than continuumly many such subsets and 
functions. At still higher levels, the objects are no 
longer subsets or functions between complete separable 
metric spaces.  
 
The overwhelming majority of mathematicians work within the 
Mathematically Concrete as defined above. In fact, the 
overwhelming majority work considerably below this level.  
 
An indication of the special status of the functions and 
sets highlighted here is afforded by the following result, 
which is proved by standard techniques, and is part of the 
folklore of descriptive set theory.  
 
THEOREM 0.3.1. Let X be a complete separable metric space. 
The following classes of functions from X into X are the 
same. 
i. The Borel measurable functions of finite rank from X to 
X. 
ii. The closure under composition of the pointwise limits 
of sequences of continuous functions from X to X. 
iii. The bold faced arithmetic functions from X into X in 
the sense of recursion theory.  
This equivalence also holds for functions of several 
variables, using generalized composition in ii). 
 
Clause ii) shows that we get to finite rank Borel by means 
of composition, and a family of reasonable discontinuous 
functions. Pointwise limits of continuous functions occur 
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in classical mathematics, particularly in connection with 
power series and Fourier series. Often these are not 
everywhere convergent, and we can use a default value where 
the limit does not exist. This is a variant of ii), for 
which Theorem 0.3.1 obviously still holds. One also sees 
functions defined as the sup of an infinite sequence of 
continuous functions, where we have uniform boundedness, or 
a point at infinity, so that the sups exist everywhere. 
This clearly falls under ii).  
 
It would be very interesting to understand the closure 
under composition of special classes of functions, or the 
closure under composition of continuous functions with 
various specific simply presented discontinuous functions. 
 
The highlight of this section is a discussion of various 
aspects of Concreteness in core mathematics, including 
levels of Concreteness. Many interesting issues arise, 
including a rather systematic program.  
 
This systematic program, which we call Mathematical 
Statement Theory, is spelled out more carefully and applied 
to the Hilbert Problem List of 1900 in section 0.17.  
 
A somewhat different, but well established program, which 
we founded in the late 1960's to mid 1970's, is Reverse 
Mathematics, and is discussed in detail in section 0.4.  
 
We close this section with a brief history of 
Incompleteness, in which Abstract Mathematics plays a 
central role.   
 
In order to proceed informatively and robustly, we will 
make free use of the standard analysis from logic of the 
quantifier complexity of formal sentences. The relevant 
standard robust categories of sentences from logic based on 
quantifier complexity are 
 

Π0
0, Π0

1, ... . 
Σ00, Σ01, ... . 
Π1

0, Π1
1, ... . 

Σ10, Σ11, ... . 
 
Here Π0

n (Σ0n) refers to sentences starting with n 
quantifiers ranging over N, the first of which is universal 
(existential), followed by formulas using only bounded 
numerical quantifiers, connectives, and equations and 
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inequalities involving multivariate primitive recursive 
functions from N into N.  
 
Also Π1

n (Σ1n) refers to sentences starting with n 
quantifiers ranging over subsets of N, the first of which 
is universal (existential), followed by a formula using 
only numerical quantifiers, connectives, equations and 
inequalities involving multivariate primitive recursive 
functions from N into N, and membership in subsets of N.  
 
In practice, one normally encounters blocks of like 
quantifiers. It is a standard fact from mathematical logic 
that blocks of like quantifiers, in our context, behave 
like a single quantifier.  
 
Since the languages on which these quantifier complexity 
classes are based are streamlined for logical simplicity, 
we make free use of the so called coding techniques from 
logic in order to actually gauge the strength of real 
mathematical statements. The appropriate robustness of the 
method of coding for such purposes is well established.  
 
Another approach is to base the quantifier complexity 
classes on rich languages. This is less standard, and we 
will not take that approach here. The results obtained 
using this alternate approach would be essentially the 
same.  
 
We do not use superscripts higher than 1 because any 
Mathematically Concrete assertion can be viewed as a Π1

n 
sentence, for some n ≥ 1.  
 
In fact, actual Mathematically Concrete assertions are 
often Π0

3 or simpler. The quantifier complexity classes Π0
1, 

Π0
2, and Π0

3 play very special roles at the concrete end of 
the spectrum.  
 
The Π0

0 = Σ00 sentences have the special property that we can 
prove or refute them by running a computer - at least in 
principle. The computer resources needed may or may not be 
practical. A particularly interesting example of this is 
the proof of the Four Color Conjecture. The statement 
 

existence of an unavoidable  
finite set of reducible configurations 

 
is a Σ01 sentence because unavoidability and reducibility 
are local properties (unavoidability only involves graphs 
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of size related to the set). This Σ01 sentence immediately 
implies the Four Color Conjecture. Appel and Haken gave an 
explicit instantiation of the outermost existential 
quantifier, and then proceeded to prove the resulting Π0

0 
sentence with the help of a computer.  
 
The Π0

1 sentences have the special property that if they are 
false, then we can find a counterexample and verify that it 
is a counterexample by computer - at least this can be done 
in principal. Obviously, any counterexample may be so huge 
that verifying it directly is impractical. Of course, the 
use of theory may make it practical even if the actual 
counterexample is so huge - by greatly reducing the actual 
computer resources.  
 
A particularly well known example of a Π0

1 sentence refuted 
by counterexample is Euler's Quartic Conjecture, which 
states that no fourth power of a positive integer is the 
sum of three fourth powers of positive integers. It was 
refuted in [El88] with  
 

26824404 + 153656394 + 187967604 = 206156734. 
 
Of course, here verifying that this is a counterexample 
barely requires a computer. Roger Frye subsequently found 
the counterexample  
 

958004 + 2175194 + 4145604 = 4224814 
 
by a computer search using techniques suggested by Elkies, 
and demonstrated that this is the counterexample in fourth 
powers with smallest right hand side. Apparently, some 
theory is needed to obtain minimality. See [Gu94], p. 140. 
Note that Frye's minimality result is a Π0

0 = Σ00 sentence.  
 
The category Π0

∞ = ∪nΠ0
n also has special significance. This 

is the category of "arithmetic sentences". Many scholars 
feel that the integers and associated finite objects have a 
kind of objective existence that is not shared by arbitrary 
infinite objects such as an infinite sequence of integers. 
They often believe that statements involving only such 
finite objects - no matter how much quantification over all 
such finite objects are present - have a matter of factness 
that protects them from foundational issues in a way that 
statements involving infinite objects do not.  
 
Some scholars have this kind of attitude towards only, say, 
Π0

1 sentences. Others have varying degrees of cautiousness 
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about the matter of factness of even Π0
0 = Σ00 sentences, 

which can involve integers far too large for computer 
processing. For example, the number A7198(158,386), which 
arises in Theorem 0.7.11, or even an exponential stack of 
100 2's.  
 
We have the following noteworthy representatives. 
 
Π0

1. Fermat's Last Theorem (Wiles' Theorem), Goldbach's 
Conjecture, the Riemann Hypothesis. 
 
Π0

2. Collatz Conjecture. 
 
Π0

3. Falting's Theorem (Mordell's Conjecture), Thue-Siegel-
Roth Theorem. 
 
Note that some of these statements are conjectures and some 
of these statements are theorems. There are a number of 
interesting issues related to these classifications above.  
 
Consider the known FLT. It could be argued that FLT is in 
fact Π0

0, since it is known to be equivalent to 0 = 0. 
However, that equivalence depends on some substantial 
portion of the new ideas in its proof. In fact, that 
equivalence relies on all of the new ideas in its proof! 
 
So in this classification scheme applied to theorems, we 
must only use equivalence proofs that are orthogonal to the 
proof of the theorem. Perhaps surprisingly, in practice 
this requirement is sufficiently robust to support our 
classification scheme.  
 
In section 0.17, we formulate Mathematical Statement 
Theory, where we are sensitive to such issues, so that this 
classification theory meaningfully applies to actual 
theorems.  
 
FLT and Goldbach's Conjecture are obviously, on the face of 
it, Π0

1. One need go no further than consider their utterly 
standard formulations.  
 
However, RH is quite a different matter. Looking at the 
standard formulation, we only obtain Π1

1, because of the 
quantification over all real numbers. This is hugely higher 
than any Π0

n.  
 
But there are well known concrete equivalences of RH. We 
present one of many well known Π0

1 equivalences in section 
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0.17, when we discuss H8 = Hilbert's Eighth Problem. There 
is also a Π0

1 equivalence of RH in [Mat93], Chapter 7. Hence 
RH is what we call essentially Π0

1.   
 
The Collatz Conjecture is stated as follows. Define f:Z+ → 
Z+ by f(n) = n/2 if n is even; 3n+1 if n is odd. For all n ∈ 
Z+, if we keep iterating f starting at n, then we eventually 
arrive at 1.  
 
Note that the Collatz Conjecture takes the form                                    
 

(∀n ∈ Z+)(∃ a finite sequence ending in 1,  
which starts with n and continues by applying f). 

 
This can be put in Π0

2 form using standard coding techniques 
from logic that rely on the fact that a finite sequence 
form Z+ is a finite object of a basic kind.  
 
Π0

2 sentences practically beg to become Π0
1 sentences 

through the use of an upper bound. Thus, if we could show, 
e.g., that  
 
#) (∀n ∈ Z+)(∃ a finite sequence ending in 1, which starts 
with n and continues by applying f, where all terms are at 
most (8n)!!) 
 
without using ideas in the proof of Collatz Conjecture (at 
the moment we are not even close to being able to do this), 
then we would say that the Collatz Conjecture is 
essentially Π0

1.  
 
Another possibility is that after we prove the Collatz 
Conjecture, we actually prove a stronger theorem that is Π0

1 
- such as #). In this case, we won't say that the Collatz 
Conjecture is, or is essentially, Π0

1, since we are relying 
on the proof of the Collatz Conjecture. But we would 
certainly want to note that  
 

The Collatz Conjecture is implied by a Π0
1 theorem. 

 
Of course, another possibility is that we are able to prove 
the equivalence of the Collatz Conjecture with, say, #), 
without using ideas in the proof of the Collatz Conjecture 
- but in fact, historically, we only saw this after we 
proved the Collatz Conjecture. In this case, we would say 
that the Collatz Conjecture is essentially Π0

1.  
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Of course, independently of the discussion above, if we 
were to prove the equivalence of the Collatz Conjecture 
with #), we would have made a major contribution that would 
be readily recognized.  
 
We now come to Falting's Theorem. This asserts that there 
are finitely many solutions to an effectively recognizable 
class of Diophantine problems over Q. This takes the form  
 

(∀n)(there are finitely many m such that P(n,m)) 
 
where P is an appropriate (primitive recursive) binary 
relation. Because of standard coding techniques, we can 
collapse several integers to a single integer for our 
purposes.  
 
This in turn takes the form 
 

(∀n)(∃r)(∀m)(P(n,m) → m < r) 
  
which is obviously Π0

3. Note how this is significantly 
higher - i.e., less concrete - than Π0

2 (Collatz 
Conjecture).   
 
Π0

3 sentences also practically beg to become Π0
1 sentences 

through the use of an upper bound - just like Π0
2 sentences.  

 
Suppose we could show, e.g., that Mordell's Conjecture is 
equivalent to  
 

##) (∀n)(∀m)(P(n,m) → m < (8n)!!) 
 
without using ideas in the proof of Mordell's Conjecture 
(Falting's Theorem), then we would say that Mordell's 
Conjecture is essentially Π0

1.  
 
Of course, independently of the discussion above, if we 
prove ##)  then we would have made a major contribution 
that would be readily recognized.  
 
A situation quite analogous to Falting's Theorem, in this 
sense, is the Thue-Siegel-Roth Theorem. It states that if α 
is an irrational algebraic number, and ε > 0, the 
inequality 
 

|α - p/q| < 1/q2+ε 
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has finitely many solutions in integers p and q. This is 
also in Π0

3 for the same reason - and also begs to graduate 
to Π0

1. 
 
We now jump to the upper reaches of the quantifier 
complexity classes that we are using. These most commonly 
appear as Π1

1, Π1
2, Σ11, Σ12.  

 
This level of quantifier complexity has special 
significance for our purposes.  
 
THEOREM 0.3.2. Let ϕ be a Π1

2 or Σ12 sentence. The main 
methods of set theory - inner models and forcing - cannot 
establish that ϕ is unprovable in ZFC. In particular, any 
two transitive models of ZFC with the same ordinals agree 
on the truth value of ϕ.  
 
Theorem 0.3.2 essentially tells us that if a sentence is Π1

2 
or Σ12, then establishing its unprovability in ZFC requires 
something quite different than standard techniques from set 
theory. The only techniques available for establishing the 
unprovability in ZFC of mathematical sentences in these 
complexity classes are essentially those used for sections 
0.13, 0.14, and laid out in detail in Chapters 4,5 of this 
book. 
 
Furthermore, we claim that mathematics has, for many 
decades,  been focused on problems that are well within the 
Π1

2 and Σ12 classes. This seems to be increasingly the case 
in recent years, particularly with the steady increase in 
the power of computation. The question "can you compute 
this" and "how efficiently can you compute this" have 
become more attractive now that many answers to the second 
question are actually implemented. This has inevitably 
affected the interest in the Concrete, even if one is still 
far removed from implementability.   
 
It is still the case that you will see abstract 
mathematical statements from time to time considered by 
core mathematicians. The usual situation in which this 
arises is where the great generality is not causing its own 
inherent difficulties.  
 
But if difficulties arise, traced to the generality and 
abstraction - not to the intended mathematical purposes - 
then interest wanes in the abstract formulation, and 
attention shifts to more concrete formulations where these 
"foreign" difficulties are absent.  
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This basically amounts to a kind of separation of the "set 
theoretic difficulties" from the "fundamental mathematical 
difficulties".  
 
For instance, we still teach that every field has a unique 
(in the appropriate sense) algebraic closure. This is a 
highly abstract assertion, because the field is completely 
arbitrary. However, the set theoretic difficulties, which 
are not negligible, are highly manageable through Zorn's 
Lemma.  
 
On the other hand, the highly abstract continuum hypothesis 
(discussed below under H1) is now well known to cause major 
difficulties disconnected from the normal issues in 
analysis.  
 
Borel measurable sets and functions in separable metric 
spaces, lie at the outer cusp of what mathematicians 
generally accept as appropriate for the formulation of 
problems of genuine mathematical interest.  
 
Thus the "Borel Continuuum Hypothesis" arises, and is a 
rather basic and striking classical result in descriptive 
set theory. See [Ke95] and the discussion below in H1 of 
section 0.17.  
 
Sometimes a highly abstract statement not only causes no 
logical difficulties, but it even is obviously equivalent 
to a much more concrete statement. See the discussion below 
in H14 of section 0.17.  
 
These points are elaborated in some detail, as we discuss 
the levels of Concreteness associated with Hilbert's famous 
list of 23 problems, 1900, in section 0.17.  
 
It appears that exactly one of the Hilbert problems lies 
outside Concrete Mathematics, according to our working 
definition above. This is H1, the first one in the list. 
 
We conjecture that all of the other problems on this list, 
and all closely related problems, are  
 
i. Essentially Π1

2 or essentially Σ12; or  
ii. Will get proved or refuted in ZFC, and stronger 
statements will emerge from those proofs that are 
essentially Π1

2 or essentially Σ12 (and in most cases, much 
lower).  
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Two other problem lists, created one hundred years later, 
are the 18 Smale problems, 1998, and the 7 Clay Millennium 
Prize Problems, 2000. See [Sm00] and 
[http://www.claymath.org/millennium/]. 
 
We also conjecture that all of the problems on these other 
two lists, and all closely related problems, have 
properties i,ii above. 
 
So what are we to make of this adequacy of the usual 
foundations of mathematics through ZFC with regard to these 
problem lists? 
 
This matter is addressed in some detail in the Preface. 
Specifically, the development of mathematics is still 
extremely primitive on evolutionary - let alone 
cosmological - time scales. Although the scope of deep 
mathematical activity represented by these three lists of 
problems and the efforts leading up to them may look 
incredibly impressive to us, they are certain to look 
mundane in a few centuries (or even earlier), let alone in 
thousands (or millions!) of years.  
 
We maintain that Boolean Relation Theory is just one of 
many subjects of gigantic scope (see section 1.2) that are 
yet to be discovered or developed, but which are entirely 
inevitable given their internal coherence, motivating 
themes, and simplicity of concept.  
 
We believe that Concrete Mathematical Incompleteness - 
where large cardinals are shown to be sufficient, and 
weaker large cardinals are shown to be insufficient - will 
ultimately become commonplace.  
 
What is much less clear is whether mathematicians will 
ultimately decide to accept large cardinal hypotheses, even 
under such utility. A major drawback of the large cardinal 
hypotheses in this regard is that they postulate objects 
that are radically foreign to mathematical practice.  
 
It would seem more palatable to have forms of the large 
cardinal hypotheses involving objects that are least 
familiar to mathematicians, if not used generally in 
mathematical practice.  
 
This is not possible in terms of literal equivalence. 
However, for applications of large cardinals such as the 
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ones in this book (the Exotic case), as well as any Π0
2 

consequence, an alternative is to use only the 1-
consistency of the large cardinal hypotheses, and not the 
actual existence of the large cardinal. This opens the door 
to reformulations of large cardinal hypotheses in terms of 
familiar, or at least more familiar, objects.   
 
One radical possibility along these lines is through the 
axiomatization of concepts that are entirely foreign to 
mathematics, but are, instead, a part of common everyday 
thinking. Plausible, or perhaps compelling, principles 
might be identified involving such concepts. Formal systems 
based on such principles may emerge, and imply the 1-
consistency of the relevant large cardinal hypotheses. See 
[Fr06] and [Fr11] for work along these lines.   
 
Another possibility is to directly analyze the mental 
pictures that are used to process large cardinals. Mental 
pictures are normally a crucial component in sophisticated 
mathematical reasoning, whether or not large cardinals are 
involved. They are a crucial component in the widespread 
acceptance of the usual ZFC axioms.  
 
Moreover, mental movies are a particularly powerful 
component in mathematical reasoning, in the sense of short 
coherent sequences of mental pictures.  
 
Mental pictures, and the more powerful mental movies, are 
combinatorial objects of very limited finite size.   
 
The idea is to develop a combinatorial analysis of such 
finite movies, and discover some fundamental principles 
about them that imply the consistency or the 1-consistency 
of a range of large cardinal hypotheses.  
 
We now close with a brief history of Incompleteness in 
which Abstract Mathematics plays a central role.  
 
Let us review the initial stages of work on Incompleteness.  
 
We can view Gödel's First Incompleteness Theorem as an 
existence theorem only, or we can view it as proving the 
independence of an arithmetization of the Liar's paradox. 
In either case, one cannot view it as providing an 
intelligible instance of mathematical incompleteness.  
 
Gödel's Second Incompleteness Theorem does provide an 
important and intelligible example - e.g., Con(ZFC). 
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However, the intelligibility of Con(ZFC) depends on an 
understanding of "formalizations of abstract set theory".  
 
One can object to this comment on the grounds that Con(ZFC) 
can be stated purely in terms of the ring of integers, or 
the hereditarily finite sets - using the standard coding 
devices. This "removes" the reference to abstract set 
theory and to formalizations.  
 
However, when one removes the references to formalizations 
of abstract set theory, the presentation of Con(ZFC) 
becomes unintelligible - in particular, unintelligibly 
complex. This is a crucially important point, even though 
we do not have (yet) any kind of surrounding rigorous 
theory that formally supports important distinctions of 
this kind.  
 
We are beginning to get a sense of definite criteria for 
judging the intelligibility or naturalness of mathematical 
statements. We believe that there are ways of judging 
intelligibility or mathematical naturalness that are 
independent of particular mathematical research interests 
or the sociology of mathematics. This topic lies well 
beyond the scope of this book.  
 
The next big development in Incompleteness involved two 
obviously important problems in abstract set theory - the 
first implicitly used by Cantor, and the second emphasized 
by Cantor. These were the axiom of choice, and the 
continuum hypothesis. The consistency of ZFC + CH relative 
to ZF was established in [Go38]. The consistency of ZF + 
¬AxC, and ZFC + ¬CH, relative to ZF, was later established 
in [Co63,64].  
 
Note that here there is no reference to formalizations of 
abstract set theory. AxC and CH are problems directly in 
abstract set theory.  
 
However, AxC and CH are not concrete - in anything like the 
way that Con(ZFC) is.  
 
Con(ZFC) is formulated in terms of finite objects only. It 
asserts the nonexistence of a finite configuration. Its 
intelligibility depends on some understanding of abstract 
set theory. But nevertheless, with the help of coding, it 
asserts the nonexistence of a finite configuration. 
 
In contrast, AxC and CH cannot be formulated in this way, 
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regardless of coding devices. These statements live 
inherently in the abstract set theoretic universe. 
 
Subsequent developments in Incompleteness initially 
centered around analyzing a large backlog of problems from 
abstract set theory, mostly with the help of Cohen's method 
of forcing introduced in [Co63,64]. Some of the problems in 
this backlog were well known from the set theoretic parts 
of analysis, group theory, and other subjects. Early 
pioneers in this extensive development include Donald 
Martin, Saharon Shelah, Robert Solovay, and others. See 
[Je78,06] for a comprehensive treatment.  
 
A notably different method of attack on Abstract 
Incompleteness arose from Ronald Jensen's work on Gödel's 
constructible universe, which provides tools for 
establishing that various statements hold in L (Gödel's 
constructible universe). This establishes relative 
consistency with ZFC, where the independence is normally 
establishes by forcing. E.g., see [Jen72], [De84]. 
 
These applications of forcing and constructible sets 
established that ZFC neither proved nor refuted many 
problems in Abstract Mathematics, but generally did not 
determine or even shed light on their truth or falsity, 
from the abstract set theoretic point of view. 
 
Work on the projective hierarchy of sets of reals took 
hold, forming an entry point for large cardinals in 
Incompleteness.  
 
The projective hierarchy begins with Borel and analytic 
sets (analytic sets are projections of Borel sets), and 
forms a hierarchy indexed by the natural numbers.  
 
Classical analysts from the first half of the twentieth 
century sought to extend their impressive understanding of 
the structure of Borel and analytic sets to the more 
general projective sets.  
 
During the 1960s and 1970s, it was discovered that 
projective determinacy implies all of these sought after 
generalizations to projective. 
 
Large cardinal hypotheses were shown to imply projective 
determinacy in [MSt89]. Specifically, Martin and Steel 
proved in ZFC that if there are infinitely many Woodin 
cardinals then projective determinacy holds. In addition, 
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projective determinacy establishes all of the 
generalizations  
 
Woodin has proved in ZFC that if there are infinitely many 
Woodin cardinals below a measurable cardinal, then L(ℜ) 
determinacy holds, extending the work of Martin and Steel. 
See [St09], [Lar04]. These results are shown to be roughly 
optimal. For a detailed account, see [KW10]. (Here L(ℜ) is 
the constructible closure of ℜ, and L(ℜ) determinacy 
asserts that in all infinite length games with integer 
moves and winning set in the constructible closure of ℜ, 
one player has a winning strategy). 
 
For a much more detailed picture of set theoretic 
incompleteness, see [Je78,06].  
 
We close with a brief account of an important development 
initiated by Richard Laver, taken from [DJ97].  
 
In [La92], properties of the free left-distributive algebra 
on one generator are proved using an extremely large 
cardinal - a nontrivial elementary embedding from some V(λ) 
into V(λ). These consequences included the recursive 
solvability of the word problem for this algebra.    
 
These algebraic results were later proved in [Deh94], 
[Deh00] using completely different methods based on braid 
groups and generalizations thereof. The new proofs use only 
very weak fragments of ZFC, and in fact weak fragments of 
PA.  
 
But some further algebraic results were obtained using the 
large cardinal. [La95] produces a sequence of finite left-
distributive algebras An, which can be constructed in simple 
combinatorial terms without the large cardinal. [La95] 
proves that A∞ is also free.  
 
"A∞ is free" can be rephrased in purely algebraic form, as 
a Π0

2 sentence asserting that certain equations do not imply 
certain other equations under the left distributive law.  
 
In [DJ97a], it is shown that "A∞ is free" is not provable in 
PRA (primitive recursive arithmetic). At present, the only 
proof of "A∞ is free" uses the extremely large cardinal.  
 
Even if (as many expect) the large cardinal is subsequently 
removed, this does show how large cardinals can provide 
insights into Concrete Mathematics.  
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But here we give an application of large cardinals to 
combinatorics that is proved in Chapter 4 from large 
cardinals, and shown to be necessary (unremoveable) in 
Chapter 5.  
 
In fact, we believe that in the future, large cardinals 
will be systematically used for a wide variety of Concrete 
Mathematics in an essential, unremoveable, way.   
 
0.4. Reverse Mathematics. 
 
The ZFC axioms (Zermelo Frankel with the axiom of choice) 
have served for nearly a century as the de facto standard 
by which we judge whether a mathematical theorem has been 
proved.  
 
Early on, it was clear that ZFC serves as convenient 
overkill for this purpose. Mathematical results generally 
require use of only a "small part" of the power of the ZFC 
axioms.  
 
Interest naturally developed in determining which fragments 
of ZFC are sufficient to prove which specific theorems.  
 
In order to systematize this work in an informative way, a 
collection of standard fragments of ZFC are needed. This 
turns out to be rather awkward given the way the axioms of 
ZFC are laid out. 
 
The advantages of working with the pair of primitives, 
natural numbers and sets of natural numbers (or natural 
numbers, and the closely related alternative choice of 
functions from natural numbers into natural numbers), 
became apparent, both for proof theory and for the logical 
analysis of mathematical theorems. See [Kre68], [Fe64], 
[Fe70].  
 
Thus Feferman, Kreisel, and others, began to use the system 
Z2 and its fragments for the purpose of identifying logical 
principles sufficient to prove various mathematical 
theorems.  
 
Reverse Mathematics (RM) is an open ended project in which 
a wide range of mathematical theorems are systematically 
classified in terms of the "minimum" logical principles 
sufficient to prove them. 
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After RM was founded through [Fr74], [Fr75-76], and [Fr76], 
S. Simpson focused on the area, made important advances in 
RM, supervised many Ph.D. students in RM, and wrote the 
authoritative book [Si99,09] covering RM.    
 
But how can we identify the "minimum" logical principles 
sufficient to prove a given mathematical theorem? 
 
Our key insight goes back to at least 1969 (cited in [Fr75-
76]), and culminated in the polished formulations of 
[Fr74], [Fr76].  
 
We first identify a weak "base theory" T of core 
fundamental principles, in the form of a subsystem of Z2.  
 
We then realize through experimentation with examples, that 
the base theory is strong enough so that the equivalence 
relation  
 

base theory T proves A is equivalent to B 
 
on basic mathematical theorems, has relatively few 
equivalence classes. 
 
These insights already supported a robust theory of 
"logical strength" of mathematical theorems, although the 
phrase "logical strength" now has a more focused meaning. 
See the DEEP UNEXPLAINED OBSERVED FACT below. 
 
We went further and identified natural preferred logical 
systems associated with the various equivalence classes of 
mathematical theorems that arise.  
 
We identified a group of natural fragments of Z2 such that 
many mathematical theorems correspond exactly to one of 
these fragments in the sense that  
 

base theory T proves that theorem A is  
equivalent to the formal system S 

 
so that theorem A is calibrated by the system S.  
 
Note that under this conception, we have both the usual  
 

proving of mathematical theorems from formal systems 
 
and the unusual 
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proving of formal systems from mathematical theorems  
(over the base theory). 

 
Hence we introduced the name "reverse mathematics" for this 
classification project.  
 
Our choice of base theory for RM underwent some evolution, 
culminating with RCA in [Fr74] and the improved, weaker, 
finitely axiomatized RCA0 in [Fr76]. The choice of RCA0 has 
remained the working standard for RM since that time.  
 
In [Fr75-76], one of our earliest results is cited in these 
terms: 
 
"1. In 1969 I discovered that a certain subsystem of second 
order arithmetic based on a mathematical statement (that 
every perfect [sic] tree that does not have at most 
countably many paths, has a perfect subtree) was provably 
equivalent to a logical principle (the weak Π1

1 axiom of 
choice) modulo a weak base theory (comprehension for 
arithmetic formulae)." 
 
The use of the first "perfect" here was an apparent 
typographical error, and should be struck out here [sic].  
 
Already in [Fr74], [Fr76], we used the system ATR0 for that 
level instead of the weak Π1

1 axiom of choice.  
 
But note that our use of arithmetic comprehension as the 
base theory, at least for this early reversal from 1969. 
This is what appears as ACA in [Fr74] - but not as the base 
theory.  
 
Our choice of base theory in [Fr74] is the much weaker RCA 
= recursive comprehension axiom scheme, which has full 
induction in its language (the language of Z2). We 
subsequently sharply weakened the induction axiom to what 
is really essential, resulting in the base theory RCA0 of 
[Fr76].  
 
The most commonly occurring systems of RM were first 
introduced as a group (with some additional systems) in 
[Fr74]. These are   
 

RCA, WKL, ACA, ATR, Π1
1-CA 

 
and were later weakened, in [Fr76], to the finitely 
axiomatized systems 
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RCA0, WKL0, ACA0, ATR0, Π1

1-CA0 
 
by limiting the induction axioms to what is essential. Many 
reversals of some basic mathematical theorems are also 
presented in [Fr74] and [Fr76].  
 
Two additional levels are also introduced in [Fr74] and 
[Fr76]. These levels had figured prominently in earlier 
investigations of fragments of Z2. These are the closely 
related  
 

HCA, HAC, HDC, and HCA0, HAC0, HDC0 
 
of hyperarithmetic comprehension, choice, dependent choice, 
better known as  
 

Δ11-CA, Σ11-AC, Σ11-DC, Δ11-CA0, Σ11-AC0, Σ11-DC0 
 
and the system TI of transfinite induction, better known as 
BI (bar induction of lowest type).  
 
All of these systems above, starting with RCA, that are 
based on full induction (i.e., without the naught), figured 
prominently in earlier work on fragments of Z2 by S. 
Feferman and G. Kreisel and others. Their main motivation 
was proof theoretic. The development of the naught systems 
with restricted induction serves the particular needs of 
Reverse Mathematics.  
 
The hyperarithmetic systems above have not played an 
important role in RM until recently. But now see [Mo06], 
[Mo∞], [Ne09], [Ne∞1], [Ne∞2]. 
 
TI, or at least significant fragments of TI, have figured 
importantly in the metamathematics of Kruskal's theorem. 
For example,  
 

RCA0 + Kruskal's theorem for wqo labels  
with bounded valence;  

 
and  
 

the theory Π1
2-TI0 

 
prove the same Π1

1 sentences. See [RW93] and [Fr84].  
 
In the development of RM, many systems have arisen beyond 
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the most frequently occurring ones discussed above. In the 
main Chapters of this book alone, which is not focused on 
RM, the systems ACA' and ACA+ arise (Definitions 1.4.1, 
6.2.1). In [Si99,09], we find, additionally, Σ11-IND, Π1

1-
TR0, Σ11-TI0, and WWKL0.  
 
Incomparability under provability does naturally arise in 
Reverse Mathematics. A particularly clear example, that 
involves only modest amounts of coding, is as follows. 
Consider  
 
i. Every ideal in the polynomial ring in n variables over 
any finite field is finitely generated. 
 
ii. Every infinite tree of finite sequences of 0's and 1's 
has an infinite path. 
 
In [Si88], it is shown that i) above is provably equivalent 
to "ωω is well ordered" over RCA0. WKL0 is RCA0 + ii).  
 
Now RCA0 + "ωω is well ordered" does not imply WKL0 since 
the former has the ω model consisting of the recursive 
subsets of ω, whereas this does not form a model of WKL0.  
 
Also, WKL0 does not imply RCA0 + "ωω is well ordered" since 
the ordinal, in the sense of proof theory, of WKL0 is ωω, 
whereas the ordinal of the former is considerably higher. 
See [Si99,09], p. 391.   
 
The systems that arise above form a hierarchy - but not in 
the sense of being linearly ordered under provability. 
Instead, we have linearity under interpretability. 
Moreover, we expect that as the range of systems used in RM 
expands from the analysis more and more mathematical 
theorems, we will maintain this linearity under 
interpretability. 
 
We summarize this observed phenomena as follows.  
 
DEEP UNEXPLAINED OBSERVED FACT. For any two naturally 
occurring mathematical theorems A,B, naturally formulated 
in the language of RM, either RCA0 + A is interpretable in 
RCA0 + B, or RCA0 + B is interpretable in RCA0 + A.  
 
This phenomenon also holds in wide ranging contexts, 
including in set theories, provided a suitable base theory 
is chosen.    
 



 63 

This phenomenon begs for an explanation. At present, there 
isn't any. Theoretically, lots of incomparability arise 
under interpretability. See [Fr07], Lecture 1.  
 
In light of this observed comparability, the phrase 
"logical strength" for formal systems has come to mean 
"interpretation power". Sometimes it also means 
"consistency strength". We have shown that interpretation 
power and consistency strength are equivalent, in a certain 
precise sense. See [Fr80a], [Smo84], [Vi90], [Vi92], 
[Vi09], [FVxx].  
 
The principal theme of [Fr75-76] is actually a criticism of 
the use of fragments of Z2 for RM. Our idea was that the 
language of Z2 is far too impoverished to adequately 
represent mathematical statements. We categorically 
rejected the use of coding, which is generally required for 
formalization within Z2.  
 
Nevertheless, we quickly came to realize that there were 
just too many unresolved issues involved in setting up a 
coding free RM. We chose not to publish the approach of 
[Fr75-76] (although we circulated those manuscripts 
widely), but rather focus initially on the more 
straightforward approach of [Fr74], [Fr76], initiating the 
Reverse Mathematics program. 
 
The setup in [Fr76] is a compromise. It uses variables over 
N and variables over unary, binary, and ternary functions 
from ω into ω, with the numerical constant 0 and a unary 
function constant for successor.  
 
The system ETF - elementary theory of functions - is then 
formulated in this language, which is equivalent to the now 
standard RCA0 (adapted in the obvious way to the language of 
ETF). Note that ETF avoids any use of axiom schemes, or 
reliance in any way on formulas with bounded quantifiers.  
 
As we expected, these subtle issues were put aside by the 
community, and the much more manageable version of RM using 
RCA0 was pursued using the standard coding apparatus used 
for many years in recursion theory.  
 
In particular, the normal presentation of RCA0 is simply the 
axioms for RCA that we gave in [Fr74], with the Induction 
Axiom Scheme replaced by the weaker Σ01 Induction Axiom 
Scheme. E.g., see [Si99,09], Definition II.1.5. We 
preferred the equivalent formulation of ETF.  
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Our deep interest in coding free RM was, in retrospect, 
premature. Any reasonably stated equivalent form of RCA0 was 
adequate to drive the subsequent development of RM.  
 
Recently, we have come back to the development of coding 
free RM under the banner of SRM = Strict Reverse 
Mathematics. Our initial publication on SRM has appeared in 
[Fr09]. Also see the abstract [Fr09a].   
 
This initial development of SRM is focused on arithmetic 
(integers and finite sets and finite sequences of 
integers), and provides strictly mathematical assertions 
that generate the bounded induction scheme. Integer 
exponentiation is also investigated in this context, both 
as an additional principle, and as a derived construction 
(geometric progressions).  
 
Thus SRM can suitably operate with robustness at a level 
considerably lower than RCA0. This promises to refine the 
reverse mathematics idea to analyze the considerable range 
of interesting mathematics that is already provable in RCA0 
when suitably formalized.  
 
An intermediate approach is to weaken the base theory RCA0 
to RCA0*. Here we drop Σ01 induction in favor of the weaker 
Σ00 induction. See [Si99,09], p. 410-411.  
 
We believe that SRM (strict reverse mathematics), which 
aims to remove coding entirely, is the appropriate vehicle 
for greatly expanding the scope of RM.   
 
For the convenience of the reader, we now present the 
axioms of our now standard RM systems RCA0, WKL0, ACA0, ATR0, 
and Π1

1-CA0. Of course, these are entirely unsuitable for 
our new SRM. 
 
The language is two sorted, with variables over natural 
numbers and variables over subsets of N. We use 0,S,+,•,<,= 
on sort N, and ∈ between natural numbers and sets of 
natural numbers.  
 
A formula is Σ01 (Π0

1) if it begins with an existential 
(universal) numerical quantifier, and is followed by a 
formula with only bounded quantifiers (using <).  
 
A formula is Π1

1 if it begins with a universal set 
quantifier, followed by a formula with no set quantifiers.   



 65 

 
The axioms of RCA0 are  
 
i. Basics. ¬S(n) = 0, S(n) = S(m) → n = m, n + 0 = n, n + 
S(m) = S(n + m), n • 0 = 0, n • S(m) = (n • m) + n. n < m ↔ 
(∃r)(n + S(r) = m).  
ii. Σ01 induction. ϕ[n/0] ∧ (∀n)(ϕ → ϕ[n/S(n)]) → ϕ, where 
ϕ is Σ01. 
iii. Δ01 comprehension. (∀n)(ϕ ↔ ψ) → (∃A)(∀n)(n ∈ A ↔ 
ϕ), where ϕ is Σ01, ψ is Π0

1, and A is not free in ϕ. 
 
The axioms of WKL0 are RCA0 together with "every infinite 
tree of finite sequences of 0's and 1's has an infinite 
path" suitably coded in RCA0.  
 
The axioms of ACA0 are  
 
i. Basics. See RCA0. 
ii. Set induction. 0 ∈ A ∧ (∀n)(n ∈ A → S(n) ∈ A) → n ∈ 
A. 
iii. Arithmetic comprehension. (∃A)(∀n)(n ∈ A ↔ ϕ), where 
ϕ has no set quantifiers, and A is not in ϕ.  
 
The axioms of ATR0 are ACA0 together with "transfinite 
recursion can be performed along any well ordering using 
any arithmetic formula" suitably coded in ACA0. 
 
The axioms of Π1

1-CA0 are  
 
i. Basics. See RCA0. 
ii. Set induction. See ACA0. 
iii. Π1

1 comprehension. (∃A)(∀n)(n ∈ A ↔ ϕ), where ϕ is 
Π1

1, and A is not free in ϕ. 
 
0.5. Incompleteness in Exponential Function Arithmetic. 
 
Exponential Function Arithmetic, or EFA, is a fragment of 
Peano Arithmetic (PA) that we explicitly named, identified, 
and used, in [Fr78], p. 2, and continue to use in [Fr78], 
p. 23, [Fr79], p. 6, [Fr80a], p. 2, to this day.  
 
The language of PA consists of 0,S,+,•,=. The axioms of PA 
are  
 
1. ¬Sx = 0, Sx = Sy → x = y. 
2. x + 0 = x, x + Sy = S(x + y). 
3. x • 0 = 0, x • Sy = (x • y) + x. 
4. Induction for all formulas in the language of PA. 
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The language of EFA consists of 0,S,+,•,2^,≤,=. The axioms 
of EFA are  
 
1. The axioms of Q. (See section 0.1A). 
2. 2^0 = 1, 2^Sy = 2^y + 2^y. 
3. Induction for all bounded formulas in the language of 
EFA. 
 
In bounded formulas, all quantifiers must be bounded (≤) to 
terms not mentioning the variable being bounded.  
 
Technically speaking, EFA is not a fragment of PA since its 
language is not even a fragment of the language of PA. 
However, PA is a definitional extension of EFA whose 
symbols of PA are unmodified.  
 
We focused on EFA long ago because it is the most obvious 
natural weak fragment of PA for which finite sequence 
coding provably behaves as expected. 
 
EFA is called EA, or elementary arithmetic, in [Av03], 
where a major conjecture of mine is discussed in great 
detail. He writes  
 
"From the point of view of finitary number theory and 
combinatorics, EA turns out to be surprisingly robust. So 
much so that Harvey Friedman has made the following Grand 
conjecture: Every theorem published in the Annals of 
Mathematics whose statement involves only finitary 
mathematical objects (i.e., what logicians call an 
arithmetical statement) can be proved in elementary 
arithmetic." 
 
A special case of this conjecture is that Fermat's Last 
Theorem is provable in EFA. However, we are a long way from 
establishing this, although there is an attack on showing 
that FLT is provable in PA (see [Mac11]). However, [Mac11] 
explicitly denies confidence that FLT is provable in EFA. 
Also see [Mc10].  
 
EFA is essentially identical to what is now called IΣ0(exp) 
(see [HP93]). It is synonymous with IΣ0 + exp. EFA is more 
convenient than IΣ0 + exp, in the sense that in order to 
formulate the latter, we need a suitable formalization of 
exp in IΣ0 - which is cumbersome. 
 
EFA is known to be finitely axiomatizable. This is credited 
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to J. Paris (see [HP93], p. 366). 
 
We are unaware of any presentation of EFA earlier than our 
[Fr78]. The system IΣ0 = IΔ0 = bounded arithmetic (which we 
like to call PFA for polynomial function arithmetic), was 
introduced much earlier in [Pa71]. Here PFA is Q is 
extended with the Δ0 induction scheme. It is open whether 
PFA is finitely axiomatizable. This question has been seen 
to be related to issues in computational complexity theory 
(see [HP93]).   
 
Here is the key property of EFA that is behind the 
incompleteness from EFA that we discuss. 
 
We write 2[y](x) for 2^...^2^x, where there are y 2's. We 
take 2[0](x) = x.  
 
THEOREM 0.5.1. Suppose EFA proves a sentence of the form 
(∀x1,...,xn)(∃y1,...,ym)(ϕ), where ϕ is bounded. There exists 
r such that (∀x1,...,xn)(∃y1,...,ym < 
2[r](max(x1,...,xn)))(ϕ). Furthermore, there exists r such 
that EFA proves (∀x1,...,xn)(∃y1,...,ym < 
2[r](max(x1,...,xn)))(ϕ). 
 
This is an instance of what is known as Parikh's theorem. 
See [HP93], Theorem 1.4, p. 272. 
 
The best known example of a finite theorem that is not 
provable in EFA but is provable just beyond EFA, is the 
ordinary finite Ramsey theorem. We give two standard forms 
of this theorem.  
 
FINITE RAMSEY THEOREM 1. For all k,p,r ≥ 1 there exists n so 
large that the following holds. In any coloring of the 
unordered k tuples from {1,...,n} using p colors, there is 
an r element subset of {1,...,n} whose unordered k tuples 
have the same color.  
 
FINITE RAMSEY THEOREM 2. For all k,p,r ≥ 1 there exists n so 
large that the following holds. For all f:{1,...,n}k → 
{1,...,p}, there exists S ⊆ {1,...,n} of cardinality r, 
such that for any x,y ∈ Sk of the same order type, f(x) = 
f(y).  
 
These two formulations are easily proved to be equivalent 
in EFA.  
 
There has been considerable work on upper and lower bounds 
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for these statements. For our purposes, we need only the 
following.  
 
Let Rk(l) be the least n such that the following holds. In 
any coloring of the unordered k tuples from {1,...,n} using 
2 colors, there is an l element subset of {1,...,n} whose 
unordered k tuples have the same color.  
 
THEOREM 0.5.2. For all k ≥ 4, there is a constant ck, such 
that the following holds. For all l ≥ 1, Rk(l) ≥ 2[k-
2](ckl2)). 
 
For a proof of Theorem 0.5.2, see [GRS80], p. 91-93.  
 
There is ongoing work on sharper estimates of such higher 
Ramsey numbers of various kinds. For example, see [CFS10].  
 
By Theorems 0.5.1 and 0.5.2, we obtain 
 
COROLLARY 0.5.3. The Finite Ramsey Theorem, even for 2 
colors, is not provable in EFA.  
 
The status of the Finite Ramsey Theorem over EFA is 
completely known. It is given by a so called reversal (as 
in reverse mathematics).  
 
Consider the statement  
 

(∀n)(2[n] exists). 
 
This can be formalized in EFA as follows. For all n, there 
is a (coded) finite sequence with n terms, starting with 1, 
where each term is the base 2 exponential of the previous 
term. It is immediate from Theorem 0.5.1 that this sentence 
is not provable in EFA.  
 
We also consider the following obvious generalization. 
 

(∀n,m)(n[m] exists). 
 
THEOREM 0.5.4. EFA proves the equivalence of the following. 
i. Finite Ramsey Theorem. 
ii. Finite Ramsey Theorem for p = 2. 
iii. (∀n)(2[n] exists). 
iv. (∀n,m)(n[m] exists). 
 
n[m] is often referred to as the superexponential. 
Accordingly, we can define the system SEFA = 
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superexponential function arithmetic, as follows.  
 
The language of SEFA consists of 0,S,+,•,2^,2^^,≤. The 
axioms of SEFA are  
 
1. The axioms of EFA. 
2. 2^^0 = 1, 2^^Sy = 2^(2^^y). 
3. Induction for all bounded formulas in the language of 
SEFA.  
 
SEFA has the finite sequence coding of EFA. This can be 
used to treat the obvious generalization, n^^m.  
 
THEOREM 0.5.5. SEFA proves the Finite Ramsey Theorem. SEFA 
and EFA + (∀n)(2[n] exists) prove the same sentences from 
L(EFA). 
 
There is a very attractive weakening of the Finite Ramsey 
Theorem, which we call the Adjacent Ramsey Theorem.  
 
THEOREM 0.5.6. Adjacent Ramsey Theorem. For all k,p ≥ 1 
there exists t so large that the following holds. For all 
f:{1,...,t}k → {1,...,p}, there exist 1 ≤ x1 < ... < xk+1 ≤ t 
such that f(x1,...,xk) = f(x2,...,xk+1). 
 
We have shown that this behaves like the Finite Ramsey 
Theorem. We have also shown that for p = 2, we can set t = 
2k+1. [Fr08], [Fr10a]. 
 
THEOREM 0.5.7. EFA proves the equivalence of the following. 
i. Adjacent Ramsey Theorem. 
ii. (∀n)(2[n] exists). 
iii. (∀n,m)(n[m] exists). 
 
We became aware of work that is pretty close to the 
Adjacent Ramsey Theorem, again with iterated exponential 
lower bounds - that predates our work. See [DLR95].  
 
A sketch of our work appears in [Fr99b], [Fr10a]. A full 
self contained manuscript will appear elsewhere. 
 
0.6. Incompleteness in Primitive Recursive Arithmetic, 
Single Quantifier Arithmetic, RCA0, and WKL0. 
 
This level of incompleteness is unusually rich, and we 
organize the discussion as follows. 
 
0.6A. Preliminaries.  
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0.6B. Sequences of Vectors. 
0.6C. Walks in Nk. 
0.6D. Hilbert's Basis Theorem. 
0.6E. Sequences of Algebraic Sets. 
0.6F. Relatively Large Ramsey Theorem for Pairs. 
 
0.6A. Preliminaries.  
 
PRA (primitive recursive arithmetic), IΣ1 (single quantifier 
arithmetic), RCA0 (our base theory for Reverse Mathematics), 
and WKL0 (another of our theories for Reverse Mathematics), 
are well known systems that represent the same "level", in 
a sense made explicit below.  
 
PA = Peano arithmetic, is most commonly formulated in the 
language 0,S,+,•,=, with the following axioms. 
 
1. ¬Sx = 0. 
2. Sx = Sy → x = y. 
3. x+0 = x, x+Sy = S(x+y). 
4. x•0 = 0, x•Sy = x•y + x. 
5. Induction for all formulas in L(PA). 
 
The Σn (Πn) formulas are the formulas which begin with an 
existential (universal) quantifier, followed by at most n-1 
quantifiers, followed by a bounded formula.  
 
IΣn (IΠn) denotes the fragment of PA based on induction for 
Σn (IΠn) formulas.  
 
There is a fair amount of robustness here. For instance, we 
can allow blocks of like quantifiers in the definition of 
Σn,(Πn) and we get the same fragments of PA.  
 
It is well known that for n ≥ 1, IΣn and IΠn are equivalent. 
See [HP93], p. 63.   
 
By single quantifier arithmetic, we will mean IΣ1 ∪ IΠ1, 
which is equivalent to IΣ1.  
 
Another important system is PRA = primitive recursive 
arithmetic. The language of PRA includes 0,S, and symbols 
for every primitive recursive function (the primitive 
recursive function symbols). The axioms of PRA are as 
follows. 
 
1. ¬Sx = 0. 
2. Sx = Sy → x = y. 
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3. The primitive recursive defining equations. 
4. Induction for all quantifier free formulas of PRA. 
 
Some authors work with a quantifier free version of PRA. 
See, e.g., [Min73].  
 
The systems RCA0 and WKL0 are from Reverse Mathematics. See 
[Fr74], [Fr76], [Si99,09], and the end of section 0.4.  
 
We will use the following proof theoretic information about 
the systems PRA, IΣ1, RCA0, and WKL0.  
 
THEOREM 0.6A.1. PRA proves induction for all bounded 
formulas of PRA. WKL0 proves RCA0 proves IΣ1 proves PRA. The 
implications are strict. IΣ1, RCA0, WKL0 prove the same 
arithmetic sentences. IΣ1, PRA prove the same Π0

2 sentences. 
IΣ1 and RCA0 prove the same arithmetic sentences. RCA0 and 
WKL0 prove the same Π1

1 sentences. These results are 
provable in SEFA. If we remove the second "PRA", then these 
results are provable in EFA.  
 
For proofs, see [Si99,09], Corollary IX.1.11, Corollary 
IX.2.7, and Theorem IX.3.16. The proof of the fifth claim, 
involving IΣ1 and PRA, is model theoretic, not formalizable 
in weak fragments of arithmetic. However, it has been 
proved in SEFA. See the last paragraph before section 0.1.   
 
Recall that bounded quantifiers are allowed after the 
unbounded existential quantifier in Π0

2 formulas. In Π1
1 

sentences, we start with one universal set quantifier, 
followed by an arithmetic formula. 
 
We also need the following relationship between RCA0, WKL0, 
and the ordinal ωω. 
 
THEOREM 0.6A.2. Let T be a primitive recursively given 
finite sequence tree. If RCA0 proves that T is well founded, 
then there exists n ∈ N and a primitive recursive function 
h such that RCA0 proves that h is a map from vertices of T 
into notations < ωn, such that if v' extends v in T, then 
h(v') < h(v). The same holds for WKL0. These results are 
provable in SEFA. 
 
Proof: This can be established through the use of IΣ1(F), 
which is IΣ1 extended by a single unary function symbol F. 
The induction allows use of F. This system has a natural 
proof theoretic analysis. The last claim follows from the 
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fact that WKL0 and RCA0 prove the same Π1
1 sentences, due to 

L. Harrington. See [Si99,09], p. 372. QED 
 
We note that the h in Theorem 0.6A.2 can be chosen to be 
elementary recursive by an observation in [Ara98].  
 
We define the strict Π1

1 sentences to be sentences asserting 
the well foundedness of a particular primitive recursively 
given finite sequence tree.  
 
We obtain the following from Theorem 0.6A.2. 
 
THEOREM 0.6A.3. The following are provably equivalent in 
RCA0. 
i. Every strict Π1

1 sentence provable in RCA0 is true. 
ii. Every strict Π1

1 sentence provable in WKL0 is true. 
iii. ωω is well ordered. 
 
THEOREM 0.6A.4. Suppose PRA proves a sentence 
(∀x1,...,xn)(∃y1,...,ym)(ϕ), where ϕ is bounded. There is a 
primitive recursive function f such that 
(∀x1,...,xn)(∃y1,...,ym < f(x1,...,xn))(ϕ). Furthermore, 
there are primitive recursive function symbols F1,...,Fm 
such that PRA proves 
ϕ(x1,...,xn,F1(x1,...,xn),...,Fm(x1,...,xn)). The same is true 
of IΣ1, RCA0, and WKL0. These results are provable in SEFA. 
 
Proof: Since PRA has a universal axiomatization, we can 
obtain this using Herbrand's theorem (in a sharper form, 
with < replaced by =). Or we can apply Parikh's theorem to 
each finite fragment of PRA. See [HP93], Theorem 1.4, p. 
272, and [Sie91]. QED 
 
Note that Theorems 0.6A.1 and 0.6A.4 are closely related. 
They are used in the same way. Thus, if a Π0

2 sentence has 
an associated growth rate higher than all primitive 
recursive functions, then we know that it is not provable 
in PRA, or even WKL0, by Theorem 0.6A.4.  
 
0.6B. Sequences of Vectors. 
 
We now consider termination of lexicographic descent in the 
natural numbers.  
 
For k ≥ 1, x,y ∈ Nk, write x <lex y if and only if at the 
first coordinate at which x,y differ, x is less than y. 
 
THEOREM 0.6B.1. Every sequence from Nk that is decreasing in 
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the lex ordering terminates. 
 
Note that Theorem 0.6B.1 is a strict Π1

1 sentence. Its 
status is well known over the base theory, RCA0, of reverse 
mathematics.  
 
THEOREM 0.6B.2. For each fixed k, Theorem 0.6B.1 is 
provable in RCA0. The following are provably equivalent in 
RCA0. 
i. Theorem 0.6B.1. 
ii. ωω is well ordered. 
 
Theorem 0.6B.2 follows from the identification of each ωk 
with the lexicographic ordering on Nk. Use the 
straightforward provability in RCA0 of (∀k)(ωk is well 
ordered → ωk+1 is well ordered). 
 
There is an important sharper form of Theorem 0.6B.1. For 
x,y ∈ Nk, write x ≤c y if and only if for all i, xi ≤ yi. 
Here "c" means "coordinatewise". 
 
THEOREM 0.6B.3. Every infinite sequence from Nk has a finite 
initial segment such that every term is ≥c some term in that 
finite initial segment.  
 
The equivalence of Theorem 0.6B.3 with ωω is well ordered is 
more delicate.  
 
THEOREM 0.6B.4. For each fixed k, Theorems 0.6B.1 and 
0.6B.3 are provable in RCA0. The following are provably 
equivalent in RCA0. 
i. Theorem 0.6B.1. 
ii. Theorem 0.6B.3. 
iii. ωω is well ordered. 
The first claim is provable in SEFA. 
 
Proof: We have already seen that for each fixed k, Theorem 
0.6B.1 is provable in RCA0. It is obvious that Theorem 
0.6B.3 implies Theorem 0.6B.1 in RCA0.  
 
We first show that for each k, RCA0 proves that every 
infinite sequence from Nk has an infinite increasing (≤c) 
subsequence. This is proved by induction on k. The case k = 
1 asserts that every infinite sequence from N has an 
infinite increasing (≤) subsequence. If the sequence is 
bounded, then it has a constant infinite subsequence. 
Otherwise, use primitive recursion.  
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Suppose RCA0 proves this for k. Now let x1,x2,... ∈ Nk+1. 
Consider the infinite sequence of first terms, take an 
infinite increasing (≤) subsequence, and then chop the first 
terms off, forming y1,y2,... ∈ Nk. By the induction 
hypothesis, we can prove that the y's have an infinite 
increasing (≤c) subsequence, which immediately gives rise to 
an infinite increasing (≤c) subsequence of the x's.  
 
We claim that RCA0 + ωω is well ordered proves  
 

for all k, for every x1,x2,... from Nk,  
there exists i < j such that xi ≤c xj 

 
because for each fixed k, the above is strict Π1

1, and we 
can apply Theorem 0.6A.3. (The RCA0 proofs for each k are a 
primitive recursive function of k).   
 
Now the above proves Theorem 0.6B.3 by the following 
argument.  
Let x1,x2,... ∈ Nk be such that for all n there exists xm 
that is not ≥c any of x1,...,xn. By primitive recursion, 
build an infinite subsequence y1,y2,... of the x's such that 
no yi is ≥c any of y1,...,yi-1. Choose i < j such that yi ≤c 
yj. This is a contradiction.  
 
Hence iii → ii → i. We have already seen that i → iii. QED   
 
Theorem 0.6B.4 was first proved in [Si88] using 
combinatorial methods. Note that here we have avoiding the 
combinatorial argument in favor of proof theory.  
 
We now discuss finite forms of Theorems 0.6B.1 and (a weak 
form of) 0.6B.3. These are Π0

2 sentences, thus falling 
within the scope of PRA and IΣ1. 
 
THEOREM 0.6B.5. For all k ≥ 1 there is a longest sequence x1 
>lex x2 >lex ... >lex xn from Nk such that each max(xi) ≤ i. 
 
THEOREM 0.6B.6. For all k there exists n such that the 
following holds. For all x1,...,xn from Nk such that each 
max(xb) ≤ b, there exists 1 ≤ i < j ≤ n such that xi ≤c xj.  
 
It is also natural to add a parameter as follows. 
 
THEOREM 0.6B.7. For all k ≥ 1 and p ≥ 0, there is a longest 
sequence x1 >lex x2 >lex ... >lex xn from Nk such that each 
max(xi) ≤ i+p. 
 



 75 

THEOREM 0.6B.8. For all k ≥ 1 and p ≥ 0, there exists n such 
that the following holds. For all x1,...,xn from Nk such 
that each max(xb) ≤ b+p, there exists 1 ≤ i < j ≤ n such 
that xi ≤c xj.  
 
THEOREM 0.6B.10. EFA proves 0.6B.8 ↔ 0.6B.6 → 0.6B.7 ↔ 
0.6B.5. 
 
Proof: This is easily seen by raising the dimension. E.g., 
to derive Theorem 0.6B.8, apply Theorem 0.6B.6 in Nk+p to 
(0,...,0;1,...,0),(0,...,0;0,1,...,0),...,(0,...,0;0,...,1)
, 
(x1;0,...,0),(x2;0,...,0),...,(xn;0,...,0). QED 
 
We show below that → can be replaced by ↔. 
 
THEOREM 0.6B.11. For each fixed k ≥ 1, Theorem 0.6B.8 is 
provable in WKL0, and hence in PRA. For fixed k ≥ 1, Theorem 
0.6B.8 has a primitive recursive witness function (of p). 
This applies to Theorems 0.6B.5 - 0.6B.7. The first claim 
is provable in SEFA. 
 
Proof: We argue in WKL0. Fix k,p, and form the appropriate 
finitely branching tree. By Theorem 0.6B.3, there is no 
infinite path through this tree. Hence this tree is finite. 
QED 
 
To pin down the status of Theorems 0.6B.5 - 0.6B.8, we need 
the analog of Theorem 0.6A.3 for Π0

2 sentences. This is 
given through a formalization of the primitive recursive 
functions in EFA. 
 
Now EFA cannot treat an arbitrary primitive recursive 
function, because they grow too fast - see Theorem 0.5.1. 
So the primitive recursive functions are instead treated in 
EFA as partial recursive functions given by specific 
algorithms. 
 
We work in EFA. We assume that each primitive recursive 
function symbol comes with an associated primitive 
recursive derivation, using terms rather than projection 
functions and composition introduction.  
 
We let PRCT be the class of closed terms in this language. 
We define the all important reduction function RF:PRCT → 
PRCT as follows. Let t ∈ PRCT. Let s be the leftmost 
subterm of t which has exactly one occurrence of a 
primitive recursive function symbol F other than S. Replace 
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s by its expansion given by the derivation associated with 
F. If there is no such subterm of t, set RF(t) = t. 
 
Let F be a primitive recursive function symbol. We 
associate the following algorithm ALG(F). Given p1,...,pk ≥ 
0, apply RF successively starting at F(p1*,...,pk*). Stop 
when we arrive at a fixed point of RF, say q*. Output q.  
 
From the point of view of EFA, ALG(F) defines a k-ary 
partial recursive function, where the arity of F is k.  
 
We can now state the analog of Theorem 0.6A.3.  
 
THEOREM 0.6B.12. The following are provably equivalent in 
SEFA. 
i. 1-Con(PRA). 
ii. 1-Con(WKL0). 
iii. Every primitive recursive definition defines a total 
function (i.e., each ALG(F) computes a total function). 
 
Proof: Here i ↔ ii is by Theorem 0.6A.1. It is 
straightforward in EFA to construct, for each primitive 
recursive function symbol F, a proof in WKL0 that ALG(F) is 
total. It is easiest to make use of Σ01 induction in WKL0.  
Hence ii → iii. Using iii, first obtain super 
exponentiation, and hence cut elimination. Then use the 
primitive recursive semantics of cut free proofs in PRA to 
obtain i. QED  
 
THEOREM 0.6B.13. SEFA proves that for each fixed k, 
Theorems 0.6B.5 - 0.6B.8 are provable in PRA. The following 
are provably equivalent in SEFA. 
i. Any of Theorems 0.6B.5 - 0.6B.8. 
ii. Every primitive recursive definition defines a total 
function. 
iii. 1-Con(PRA). 
 
Proof: For the first claim, fix k. Prove Theorem 0.6B.8 by 
assuming that it is false, constructing an associated 
finitely branching tree, taking an infinite path, and 
applying Theorem 0.6A.7 to get a contradiction. This proves 
the first claim with PRA replaced by WKL0. Now apply Theorem 
0.6A.1. From the first claim, we obtain iii → i. For ii → 
iii, see Theorem 0.6B.12.  
 
For i → ii, we argue in EFA. We have to be careful to avoid 
use of Σ01 induction. Assume first that Theorem 0.6B.7 
holds.  
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We need to handle the reduction process RFCT:PRCT → PRCT in 
EFA.  
 
For any t ∈ PRCT, we can use a numerical measure #(t) 
computed as follows. Let r be the largest depth of the 
primitive recursive function symbols appearing in t, other 
than S. Form the length r sequence, where the i-th term, 1 ≤ 
i ≤ r, is the number of occurrences in t of primitive 
recursive function symbols whose derivation has depth r-
i+1.  
 
It is clear that if t is not a fixed point of RFCT, then 
#(t) >lex #(RF(t)). We can almost use Theorem 0.6B.7 to show 
that iteration of RFCT comes to a fixed point. However, the 
growth in the max's of the #'s is greater than 1. 
Nevertheless, the growth is at most a constant, for each 
ALG(F), that depends only on the derivation of F. Hence we 
can Theorem 0.6B.7, by raising the dimension, and using 
dummy variables.  
 
Also by raising the dimension, it is easily seen that 
Theorem 0.6B.6 implies Theorem 0.6B.7. Thus we obtain ii → 
i. QED  
 
0.6C. Walks in Nk. 
 
A walk in Nk is a finite or infinite sequence in Nk such 
that each successive vector is "close" to the preceding 
vector.  
 
There are several interesting notions of "close" that we 
can use. We restrict attention to only these four: 
 
1. The Euclidean distance |x-y|2 is at most 1.  
2. The Euclidean distance |x-y|2 is at most 1.5.  
3. The Euclidean distance |x-y|2 is at most 2.   
4. The sup norm distance |x-y|∞ is at most 1.  
 
These all have combinatorial equivalents that are easier to 
think about for our purposes. 
 
1. At most one coordinate is changed, and it is changed by 
1. 
2. At most two coordinates are changed, and they are 
changed by 1.  
3. Either no change, or one coordinate is changed by 1 or 
2, or two coordinates are each changed by 1.  
4. All coordinates are changed by at most 1.  
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Recall the definition of ≤c in Nk. We can think of x ≤c y as 
"x points outward to y".  
 
Let W1,W2,... be a walk in Nk. We look for i < j such that Wi 
≤c Wj.  
 
THEOREM 0.6C.1. For all x ∈ Nk, in every sufficiently long 
walk W in Nk starting with x, there exists i < j such that 
Wi ≤c Wj. Here we can use any of 1-4. If we use 1), then a 
walk of length |x|1 + k + 1 is sufficient. 
 
Proof: This is proved the same way that Theorem 0.6B.8 was 
proved using Theorem 0.6B.3. For the final claim, note that 
we cannot keep going down for that long. Hence there exists 
i < j such that the i-th and (i+1)-st terms are the same, 
or the former goes up to the latter, according to 1. QED  
 
Note that the weakest of 1-4, except for the trivial 1), is 
2). Hence we now focus on 2). 
 
We now develop lower bounds for the functions f1,f2,...:Z+ → 
Z+ given by  
 
fk(n) = the of terms in the longest walk (n,0,...,0) = 
x1,x2,...,xr ∈ Nk, such that for no i < j is x ≤c xj. (Here 
we take the length of a walk as the number of terms, r). 
 
This particular definition of fk(n) is used for convenience. 
Note that any longest such walk must have xr = (0,...,0).   
 
First consider the case k = 2. Clearly for all n ≥ 1, f2(n) 
≥ 2n, by looking at the walk 
 
(n,0) 
... 
(0,n) 
(0,n-1) 
... 
(0,0) 
 
We now develop a lower bound on fk+2(n) in terms of fk.  
fk+2(1) ≥ 2.  
 
Now consider the following walk in Nk+2, which is divided 
into n blocks. In the i-th block, fkfk...fk(1) appears, 
where there are i fk's.  
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(n,0,...,0) 
(n-1,1,1,...,0) 
... 
(n-1,fk(1),0,...,0) 
(n-2,fk(1),0...,1) 
... 
(n-2,0,...,0,fkfk(1)) 
(n-3,1,...,0,fkfk(1)) 
... 
(n-3,fkfkfk(1),0,...,0) 
... 
(0,...,0,fkfk...fk(1)), or (0,fkfk...fk(1),0,...,0) 
... 
(0,...,0) 
 
where there are n fk's in the second to last displayed 
tuple. 
 
The first block starts with (n-1,1,1,...,0). It walks from 
(1,0,...,0) to (0,...,0) in dimension k, for fk(1) steps, 
using coordinates 3 through k+2. Meanwhile, the first term 
stays unchanged at n-1, and the second term counts from 1 
to fk(1).   
 
We continue in this way, creating n blocks.  
 
In this walk, no xi is ≤c any later xj. Hence fk+2(n) ≥ 
fkfk...fk(1), where k,n ≥ 1, and there are n fk's.  
 
Note that  
 
f2(n) ≥ 2n, fk+2(1) ≥ 2, fk+2(n) ≥ fkfk...fk(1).  
 
It now follows immediately that f2k(n) ≥ Ak(n), k,n ≥ 1. See 
the definition of the Ak, k ≥ 1, just before Theorem 0.7.10. 
 
From these considerations, and from Theorem 06B.13, we 
obtain the following.  
 
THEOREM 0.6C.2. For each fixed k, Theorem 0.6C.1 is 
provable in PRA. EFA + 1-Con(PRA) proves Theorem 0.6C.1.   
 
THEOREM 0.6C.5. SEFA proves that for each fixed k, Theorem 
0.6C.2 is provable in PRA. The following are provably 
equivalent in SEFA. 
i. Theorem 0.6C.1. 
ii. Theorem 0.6C.2. 
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iii. Every primitive recursive definition defines a total 
function. 
iv. 1-Con(PRA). 
 
Here 1-Con(T) means T is  1-consistent; i.e., every Σ01 
sentence provable in T is true. 
 
0.6D. Hilbert's Basis Theorem. 
 
We now come to a discussion of concrete formulations of the 
Hilbert basis theorem for polynomial rings in several 
variables over fields.  
 
THEOREM 0.6D.1. HBT (Hilbert's Basis Theorem). Let P1,P2,... 
be an infinite sequence of polynomials from the polynomial 
ring in k variables over a countable field. There exists n 
such that each Pi is in the ideal generated by P1,P2,...,Pn. 
 
Here a countable field in RCA0 consists of operations 
0,1,+,-,•,-1 obeying the field axioms, on a domain which is 
a subset of ω. 
 
Let us review a proof of the above concrete strict Π1

1 form 
of HBT. 
 
Order the monomials in k variables lexicographically. First 
let Q1,Q2, ... enumerate all polynomials in the ideal 
generated by the P’s. For each i, look at the leading 
monomial Mi of Qi. 
 
Apply Theorem 0.6B.3 to the sequence M1,M2,..., obtaining n 
such that all M’s are multiples of at least one of M1,..., 
Mn. This gives us n such that the leading coefficient of 
every Qi is a multiple of the leading coefficient of at 
least one of Q1,...,Qn. Then every Qi is ideal generated by 
Q1,...,Qn, using iterated division with remainder. 
 
From this sketch, and by looking at monomial ideals, we see 
the following. 
 
LEMMA 0.6D.2. RCA0 proves 0.6B.3 → HBT → 0.6B.1. In fact, 
this implication works for HBT over the two element field. 
We write this special case as HBT(2).  
 
THEOREM 0.6D.3. HBT is provable in RCA0 for each fixed k. 
RCA0 proves the equivalence of  
i. HBT.  
ii. HBT(2). 
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ii. ωω is well ordered. 
 
This is obtained immediately from Theorem 0.6B.2 and Lemma 
0.6D.2.  
 
Theorem 0.6D.3 was proved in [Si88].  
 
We also have the following finite form of HBT.  
 
THEOREM 0.6D.4. FHBT (Finite Hilbert's Basis Theorem). For 
each k ≥ 1 there exists n so large that the following holds. 
Let F be a countable field. Let P1,P2,...Pn be polynomials 
in k variables with coefficients from F. Assume that the 
degree of each Pi is at most i. There exists 1 ≤ i ≤ n such 
that Pi is in the ideal generated by P1,...,Pi-1.  
 
The above result is stronger than expected, in that it has 
a strong uniformity - the integer n depends only on k, and 
not on the field. It is true for all fields F, but we want 
to stay within countable objects.   
 
We also have the form with an additional numerical 
parameter. 
 
THEOREM 0.6D.5. FHBT' (Finite Hilbert's Basis Theorem'). 
For each k ≥ 1 and p ≥ 0, there exists n so large that the 
following holds. Let F be a countable field. Let P1,P2,...Pn 
be polynomials in k variables with coefficients from F. 
Assume that the degree of each Pi is at most i+p. There 
exists 1 ≤ i ≤ n such that Pi is in the ideal generated by 
P1,...,Pi-1.  
 
We sketch a proof of FHBT' in WKL0 + HBT. Fix k,r,p, and 
assume FHBT' is false. Write down the countable field 
axioms, and the infinitely many axioms with infinitely many 
constants asserting that we have polynomials P1,P2,P3,... . 
The number of constants used for each Pi is dictated by the 
bound deg(Pi) ≤ i+p. For each i, assert that Pi is not in 
the ideal generated by P1,...,Pi-1 using infinitely many 
universal axioms. Call this theory T, and let T0 ⊆ T be 
finite. Using the counterexample F,P1,P2,..., we see that T0 
is consistent (with the help of cut elimination in WKL0). 
Hence T is consistent, and has a model. A model of T 
violates HBT.  
 
The statement of FHBT' is not in explicitly Π0

2 form. If F 
is a finite field or the field of rationals, then FHBT and 
FHBT' are in Π0

2 form.  
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THEOREM 0.6D.6. SEFA proves that for each k ≥ 1, FHBT and 
FHBT' for finite fields and the field of rationals is 
provable in PRA. The following are provably equivalent in 
SEFA. 
i. FHBT on any finite field or the rationals.  
ii. FHBT' on any finite field or the rationals. 
iii. Every primitive recursive definition defines a total 
function. 
 
We can put FHBT' in Π0

2 form using the uniform algorithm and 
bounds for ideal membership in polynomial rings over 
fields, from [He26]. For a modern treatment of ideal 
membership, see [As04].                                                                                          
 
Alternatively, note that for fixed k,p, the conclusion 
quantifying over countable fields F is equivalent, over 
WKL0, to a Σ01 sentence, using the formalized completeness 
theorem. This gives us a Π0

2 sentence which appropriately 
strengthens FHBT from the point of view of WKL0.  
 
Using either argument, and applying Theorem 0.6B.11, and 
using monomials, we obtain the following.  
 
THEOREM 0.6D.7. In FHBT', for each k ≥ 1, there is a 
primitive recursive upper bound on n as a function of p. 
There is no universal primitive recursive bound for FHBT or 
FHBT'. The following are provably equivalent in RCA0. 
i. FHBT. 
ii. FHBT'. 
iii. Every primitive recursive definition defines a total 
function. 
 
A proof of the first two claims of Theorem 0.6D.7 has 
appeared in [Soc92].  
 
0.6E. Sequences of Algebraic Sets. 
  
We now consider the following well known consequence of 
HBT: every decreasing chain of algebraic sets is eventually 
constant. We will formulate this directly in terms of 
polynomials.  
 
THEOREM 0.6E.1. Let P1,P2,... be an infinite sequence of 
polynomials from the polynomial ring in k variables over a 
countable field. There exists n such that every 
simultaneous zero of P1,...,Pn is a zero of all P’s. 
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It is somewhat tricky to show that Theorem 0.6E.1 implies ωω 
is well ordered. We cannot just use monomials. Also, this 
cannot be done if the P's represent irreducible algebraic 
sets, by Krull's theorem for chains of prime ideals. So we 
must consider reducible algebraic sets. 
 
Fix the dimension k and an infinite field F. Let T be a 
finite tree with at least one vertex, where every path 
has at most k vertices (excluding the root), and where the 
vertices other than the root are labeled with different 
elements of the field F. We call these k-good trees. 
 
The algebraic meaning of a vertex at the i-th level above 
the root with label c is the equation xi = c (the root is at 
the 0-th level). The algebraic meaning of a path is the 
conjunction of the algebraic meaning of the vertices along 
that path other than the root. The algebraic meaning of the 
tree T is the 
disjunction of the algebraic meanings of the paths of T. 
Take [T] to be this union of intersections. Rewrite this as 
an intersection of unions. Each union is the zero set of a 
polynomial obtained by multiplying the relevant xi-c. [T] 
becomes an algebraic subset of Fk, given by polynomials of 
degree ≤ #T = the number of terminal vertices of T. 
 
We need to have a sufficient criterion for [T] to properly 
contain [T’]. 
 
LEMMA 0.6E.2. Let T,T’ be k-good trees. Suppose T’ is 
obtained from T by adding one or more children to a 
terminal vertex. Or suppose T’ is obtained from T by 
deleting one of the children of a vertex that has at least 
two children (and of course all vertices above the one 
deleted). Then [T] properly contains [T’]. 
 
Now all we have to do is to deal with the combinatorics of 
these two tree operations. 
 
There is a nice way of assigning ordinals < ωk to k-good 
trees. For each terminal node x of height 1 ≤ i ≤ k, assign 
the ordinal ωi-1. Now take the sum of the ordinals assigned 
to the terminal nodes, in decreasing (≥) order. This is 
ord(T). 
 
The two tree operations lower ordinals. Also, ord(T) is 
onto 
the ordinals < ωk. Even more is true and useful. Given α < 
ord(T), there exists T’ obtained from T by successive 
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applications of the two tree operations in some 
combination, such that ord(T’) = α. 
 
We have just provided a way of assigning an algebraic set 
to ordinals < ωk so that if the algebraic set decreases then 
the ordinal lowers. We do require that that the field be 
infinite.  
 
THEOREM 0.6E.3. The following are provably equivalent in 
RCA0. 
i. HBT. 
ii. HBT(2). 
iii. Theorem 0.6E.1. 
iv. Theorem 0.6E.1 for the field of rationals. 
v. ωω is well ordered. 
 
We can also develop a finite form for Theorem 0.6E.1 that 
is analogous to the finite forms discussed above for HBT. 
 
THEOREM 0.6E.4. Let k ≥ 1 and F be a field. There is a bound 
on the length of chains of algebraic sets A1 ⊇ ... ⊇ An in 
Fk, where each Ai is of presentation degree ≤ i. 
Furthermore, the bound can be taken to depend on k only, 
and not on F. 
 
We can show that the witness function for Theorem 0.6E.4 is 
(roughly) at least the witness function for our finite form 
of lex descent using the above way of assigning algebraic 
sets to ordinals (see Theorems 0.6B.5, 0.6B.7). In fact, 
the analog of Theorem 0.6D.7 holds here. 
 
0.6F. Relatively Large Ramsey Theorem for Pairs. 
 
We discuss the Relatively Large Ramsey Theorem in section 
0.8C. [EM81] considers this theorem for pairs.  
 
THEOREM 0.6F.1. Relative Large Ramsey Theorem for Pairs. 
For all p,r there exists n so large that the following 
holds. In any coloring of the unordered pairs from 
{1,...,n} using p colors, there is a relatively large 
subset of {1,...,n} with at least r elements whose 
unordered pairs have the same color.  
 
The following is proved in [EM81]. 
 
THEOREM 0.6F.2. For each p, consider the function fp of r 
that outputs the least n that makes Theorem 0.6F.1 true. 
Then each fp is primitive recursive, and each primitive 
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recursive function is dominated by some fp. 
 
0.7. Incompleteness in Nested Multiply Recursive 
Arithmetic, and Two Quantifier Arithmetic. 
 
The material in this section is taken from [Fr01c], until 
the last four paragraphs. 
 
The well known proof theoretic analysis of IΣn, n ≥ 1, is 
based on the ordinal ω[n+1] = ω^...^ω, a tower of n+1 ω's. 
In particular, the proof theory of IΣ2 is based on the 
ordinal ωω^ω.  
 
Nested multiple recursion on the nonnegative integers is 
given by the scheme 
 

f(x1,...,xk,y1,...,ym) = t(f<x_1,...,x_k(y1,...,ym)) 
 
where 
 
i) f<x_1,...,x_k is the function given by 
 
f<x_1,...,x_k(z1,...,zk,y1,...,ym) = f(z1,...,zk,y1,...,ym) if 
(z1,...,zk) <lex (x1,...,xk); 0 otherwise; 
 
ii) t is any term involving f<x_1,...,x_k, variables 
x1,...,xk,y1,...,ym, the successor function, constants for 
integers, previously defined functions, and IF THEN ELSE 
based on <,=. 
 
The functions generated in this way are called the nested 
multiply recursive functions (on the integers). This is a 
rather robust collection of functions on the integers, 
whose 
definition does not involve ordinal notations. It coincides 
with the <ωω^ω recursive functions, and the <ωω nested 
recursive functions; see [Ros84], pages 93,94, going back 
to 
[Tai61]. For a general treatment of <λ recursive functions 
via descent recursion, see [FSh95]). 
 
Combining this with the proof theory of IΣ2 based on ωω^ω, 
gives the following. 
 
THEOREM 0.7.1. The provably recursive functions of IΣ2 are 
the <ωω^ω recursive functions (via descent recursion, 
[FSh95])), and the nested multiply recursive functions. 
Every Π0

2 sentence provable in IΣ2 has a nested multiply 



 86 

recursive witness function. The first result is provable in 
SEFA. 
 
NMRA (nested multiply recursive arithmetic) is the analog 
of PRA (primitive recursive arithmetic). It extends the 
usual axioms for successor by the defining equations for 
the nested multiply recursive functions, and the induction 
scheme for quantifier free formulas in its language.  
 
THEOREM 0.7.2. IΣ2 and NMRA prove the same Π0

2 sentences. 
The following are provably equivalent over SEFA. 
i. 1-Con(IΣ2). 
ii. 1-Con(NMRA). 
iii. Every primitive recursive (elementary recursive, 
polynomial time computable) sequence from ωω^ω stops 
descending.  
These are provable in IΣ3 but not in IΣ2.   
 
Let us start with the following simple problem. 
 
THEOREM 0.7.3. There is a longest finite sequence 
x1,x2,...,xn from {1,2} in which no consecutive block 
xi,...,x2i is a subsequence of any later consecutive block 
xj,...,x2j. 
 
Let us call this property of finite sequences property *. 
 
One can easily show that the maximal length of a sequence 
from {1,2} with property * is 11, and that the only 
examples are 12221111111 and 21112222222.  
 
THEOREM 0.7.4. There is a longest finite sequence from 
{1,2,3} with property *. 
 
Since the above is a Σ01 statement, it is provable in 
extremely weak fragments of arithmetic. However, such a 
proof is not of reasonable size. 
 
The simplest known proof of reasonable size is truly exotic 
compared with the statement; this proof is conducted in Π1

1-
CA0 (see section 0.4). With some considerable trouble, it 
can be replaced with a considerably less exotic proof, of 
reasonable size, that is formalizable in IΣ2. Of course, 
this is still rather exotic compared to the statement. 
 
We sketch the simplest known proof, which uses the Nash 
Williams minimal bad sequence argument, from [NW65], in 
this context. First we shift context to infinite sequences 
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of finite sequences. 
 
THEOREM 0.7.5. Let k ≥ 1 and x1,x2,... be an infinite 
sequence of finite sequences from {1,...,k}. There exists i 
< j such that xi is a subsequence of xj. 
 
Proof: Suppose this is false. Call an infinite sequence bad 
if it is a counterexample. Let x1 be of least length so that 
it starts an infinite bad sequence. Let x2 be of least 
length 
so that x1,x2 starts a bad sequence. Continue in this way, 
getting a “minimal” bad sequence x1,x2,... . There is an 
infinite subsequence xi_1,xi_2,..., all of which start with 
the 
same number. Note that xi_1',xi_2',... is bad, where the 
primes mean “chop off the first term” (no x can be empty). 
Hence x1,...,xi1 -1,xi_1',xi_2',... is also bad. But xi_1' is 
shorter than xi_1, contradicting the choice of xi_1. QED 
 
Proof of Theorem 0.7.4: Suppose there are arbitrarily long 
such. Build the finitely branching tree of such. Let 
x1,x2,... be an infinite branch, which therefore has 
property *. Consider the infinite sequence 
 
x1,x2 
x2,x3,x4 
x3,x4,x5,x6 
... 
 
By Theorem 0.7.5, one is a subsequence of a later one. This 
contradicts property *. QED 
 
Obviously we did not use that there are only three letters. 
 
THEOREM 0.7.6. The Block Subsequence Theorem. For all k ≥ 1, 
there is a longest finite sequence x1,....,xn in k letters 
in which no consecutive block xi,...,x2i is a subsequence of 
a later consecutive block xj,...,x2j. 
 
THEOREM 0.7.7. For each fixed k, the Block Subsequence 
Theorem is provable in IΣ2 and NMRA. This is provable in 
EFA.  
 
Proof: In order to tame the proof of The Block Subsequence 
Theorem, we need to tame Theorem 0.7.5. I.e., we need to 
replace the minimal bad sequence argument with something 
more concrete. 
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The sharpest way to do this is to effectively assign (names 
for) ordinals < ωω^k to finite bad sequences in the partial 
order of finite sequences from {1,...,k+1} under 
subsequence, where if one is extended to another, then the 
corresponding ordinal decreases. This is for each fixed k ≥ 
1. This construction appears in [Si88]. Also see [Has94]. 
 
For fixed k, we now build the tree T of bad finite 
sequences in the sense of the Block Subsequence Theorem for 
{1,...,k+1}. Each bad finite sequence here gives rise to a 
bad sequence in the partial order of finite sequences from 
{1,...,k+1}. Therefore we can assign ordinals < ωω^k to 
vertices in T according to the preceding paragraph.  
 
For each level n of the tree T, we have finitely many 
vertices of that level, whose assigned ordinals are 
α1,...,αp < ωω^k, where p ≥ 0. We define βn to be the ordinal 
ωα_1' + ... + ωα_p', where α1',...,αp' is α1,...,αp put in 
decreasing order.  
 
It is obvious that if βn > 0 then βn+1 < βn. Hence for some 
n, βn = 0. Therefore T is finite, and the Block Sequence 
Theorem is proved.  
 
Note that this proof is carried out in just EFA, together 
with the fact that there is no double exponential time 
computable infinite descending sequence through ωω^k. 
However, the latter is well known to be provable in IΣ2 and 
in NMRA. Or we can prove the latter in IΣ2 and appeal to 
Theorem 0.7.2. If we follow that route, we need SEFA and 
not just EFA. QED   
 
THEOREM 0.7.8. The Block Subsequence Theorem is provable in 
IΣ3. 
 
Proof: We argue in IΣ3. By Theorem 0.7.7, we see that for 
each k, The Block Subsequence Theorem for k is provable in 
IΣ2. Note that for each k, the Block Subsequence Theorem is 
a Σ01 sentence. It is well known that IΣ3 proves 1-Con(IΣ2). 
E.g., see [HP93], Corollary 4.34, p. 108. Hence we have The 
Block Subsequence Theorem. QED  
 
In [Fr01c], it is shown how to reverse this process in 
order to show how descent recursion through ωω^ω can be 
suitably handled in EFA + the block subsequence theorem. 
Hence from Theorems 0.7.1, 0.7.2, we obtain the following. 
 
THEOREM 0.7.9. The Block Subsequence Theorem is provable in 
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IΣ3 but not in NMRA and IΣ2. The witness function for The 
Block Subsequence Theorem dominates all multiply recursive 
functions. The following are provably equivalent in SEFA. 
i. The Block Subsequence Theorem. 
ii. 1-Con(IΣ2). 
iii. 1-Con(NMRA).  
 
To prove this, use Theorems 0.7.1, 0.7.8.  
  
We now return to the block subsequence theorem with 3 
letters. The exotic lower bounds are obtained in [Fr01c].  
 
The construction is rather intricate, and uses a seed that 
we constructed by hand. This seed is a particular sequence 
of length 216 with property *. This sequence α is displayed 
on p. 126 of [Fr01c]. (Actually, its blocks α[i],...,α[2i], 
1 ≤ i ≤ 108, are displayed). It is important that α has the 
following two additional properties from [Fr01c], p. 122. 
 
i. α is of the form u13108. 
ii. For all i ≤ 108, α[i],...,α[2i] has at least one 1.  
 
In [Fr01c], we use a convenient version of the Ackermann 
hierarchy of functions. We define functions A1,A2,... from 
Z+ into Z+ as follows. A1 is doubling. Ak+1(n) = Ak...Ak(1), 
where there are n Ak's.  
 
It is worth noting that Ak(1) = 2, Ak(2) = 4, and Ak(3) goes 
to ∞ as k goes to ∞.  
 
We take the Ackermann function to be given by A(k) = Ak(k). 
 
It is easy to see that all primitive recursive functions 
are eventually dominated by some Ak. In fact, all primitive 
recursive functions are dominated by some Ak at all 
arguments ≥ 3.  
 
In [Fr01c], this seed is extended to a sequence of length > 
A7(184), thus obtaining the following.  
 
THEOREM 0.7.10. The longest length of a sequence from 
{1,2,3} with * is > A7(184). 
 
Randall Dougherty wrote some software that looks for 
sequences from {1,2,3} with * obeying i,ii above, 108 
replaced by much higher even integers. He was able to find 
such a seed with length 187,196; i.e., 108 replaced by 
93,598. Using this seed, we obtain the following in 
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[Fr01c].  
 
THEOREM 0.7.11. The longest length of a sequence from 
{1,2,3} with * is > A7198(158,386). 
 
As for an upper bound, we haven’t worked this out, but are 
confident that A(A(5)) is a crude upper bound. 
 
If we consider 4 letters, then the numbers grow 
considerably more exotic. The maximal length is greater 
than AA...A(1), where there are A(5) A’s. 
 
Let J(k) be the maximal length of a sequence in k letters 
with property *. By Theorem 0.7.9, J grows faster than all 
multiply recursive functions. By comparison, the Ackermann 
function Ak(k) is a puny little doubly recursive function. 
 
The ordinal ωω^ω is also used in [Si88] in connection with 
the Robson basis theorem, involving polynomial rings based 
on noncommuting indeterminates (see [Robs78a], [Robs78b]). 
It is shown there that RBT is provably equivalent to "ωω^ω 
is well ordered" over RCA0. 
 
We close with a brief discussion of braids. The following 
is obtained from [CDW10].  
 
Artin’s braid groups are algebraic structures of 
substantial importance in core mathematics. There has 
emerged a standard ordering on braids, called the Dehornoy 
order.  
 
It is known that the restriction of this standard ordering 
to B+n, which consists of the Garside positive braids, is a 
well ordering of type ω^ωn−2. This allows for the 
development of combinatorial theorems based on this 
restricted ordering, that are provable in IΣ3 but not in 
IΣ2, and whose associated functions are just beyond being 
multiply recursive. This has been accomplished in [CDW10].  
 
0.8. Incompleteness in Peano Arithmetic and ACA0. 
 
This level of incompleteness is unusually rich. We will not 
try to be exhaustive.  
 
We will organize the discussion as follows.  
 
0.8A. Preliminaries. 
0.8B. Goodstein Sequences.  
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0.8C. Relatively Large Ramsey Theorem. 
0.8D. Regressive Ramsey Theorem. 
0.8E. Hercules Hydra Game and Worms. 
0.8F. Regressive Counting Theorems.  
0.8G. The Shift Inequality.  
0.8H. Tree Embedding Theorems. 
 
0.8A. Preliminaries. 
 
The earliest mathematical example of incompleteness in 
Peano Arithmetic (PA) appeared in [Goo44], although it 
wasn't known until [KP82] that the result was not provable 
in PA. The result is the termination of Goodstein 
sequences.  
 
This was followed by an entirely different example in 
[PH77], that is closely related to well known existing 
mathematical developments - i.e., Ramsey theory. This was 
the Paris-Harrington Ramsey theorem.  
 
0.8E is a direct spin-off of 0.8B. 0.8D is a direct spin-
off of 0.8C. 0.8F, 0.8G, and 0.8H break new ground, and 
represent the current state of the art with regard to 
incompleteness at the level of Peano Arithmetic.  
 
0.8H is particularly flexible, and is a specialization to 
the binary case of incompleteness results from far stronger 
systems than PA. These are discussed in sections 0.9 and 
0.10. 
 
The relevant proof theoretic information about PA, ACA0, 
ACA' is as follows. For the definition of ACA', see 
Definition 1.4.1. 
 
THEOREM 0.8A.1. ACA0 is a conservative extension of PA. The 
provably recursive functions of ACA0 and PA are the <∈0 
recursive functions. ACA0 proves WKL0. The following are 
provably equivalent in RCA0. 
i. Π1

1 reflection on ACA0. 
ii. ∈0 is well ordered.  
These are provable in ACA' but not in ACA0. 
The first claim is provable in SEFA.  
 
For a general treatment of <λ recursive functions via 
descent recursion, see [FSh95]). 
 
THEOREM 0.8A.2. The following are provably equivalent in 
SEFA. 
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i. 1-Con(ACA0). 
ii. 1-Con(PA). 
iii. Every primitive recursive (elementary recursive, 
polynomial time) sequence from ∈0 stops descending. 
 
0.8B. Goodstein Sequences. 
 
Let b ≥ 2. We can write any n ≥ 0 uniquely in base b, where 
we think of the exponents as nonnegative integers. Then we 
can write these exponents in base b, again creating perhaps 
more exponents. Of course, numbers < b do not get 
rewritten. This process must end, and we obtain a fully 
base b representation of n. It has the structure of a 
finite tree, and the only integers appearing are b's and 
numbers from [1,b).  
 
Let n ≥ 0. We define the Goodstein sequence starting at n as 
follows.  
 
Firstly, write n completely in base 2. 
Next raise the base to 3, evaluate the number, and subtract 
1. 
Secondly, write this completely in base 3.  
Next raise the base to 4, evaluate the number, and subtract 
1. 
Thirdly, write this completely in base 4. 
... 
 
This process is terminated once 0 is reached. E.g., the 
Goodstein sequence starting at 0 is of length 1. 
 
THEOREM 0.8B.1. Goodstein's Theorem. The Goodstein sequence 
starting at any n ≥ 0 eventually terminates.  
 
This was proved in [Goo44]. The idea is that if we change 
the base to the infinite ordinal ω in all of the complete 
representations that occur starting at n, then the ordinals 
so represented form a strictly decreasing sequence. Hence 
we must have termination.  
 
Let G(n) be the length of the Goodstein sequence starting 
at n. 
 
THEOREM 0.8B.2. Goodstein's Theorem can be proved in ACA' 
but not in PA. It is provably equivalent to 1-Con(PA) over 
EFA. The function G is ∈0 recursive but eventually dominates 
every <∈0 recursive function. 
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This was proved in [KP82]. Also see [Ci83] and [BW87].  
 
0.8C. Relatively Large Ramsey Theorem. 
 
Here is the original infinite Ramsey theorem.  
 
THEOREM 0.8C.1. Infinite Ramsey Theorem. In any coloring of 
the unordered k tuples from the positive integers using p 
colors, there is an infinite set of positive integers whose 
unordered k tuples have the same color.  
 
This is proved in [Ra30], and applied there to a 
fundamental decision problem in predicate calculus.  
 
A set of positive integers is said to be relatively large 
if and only if its cardinality is at least its minimum 
element.  
 
THEOREM 0.8C.2. Infinite Relatively Large Ramsey Theorem. 
In any coloring of the unordered k tuples from any infinite 
set of positive integers using p colors, there is a 
relatively large finite set of positive integers with at 
least r elements whose unordered k tuples have the same 
color.  
 
Proof: This is an immediate consequence of the Infinite 
Ramsey Theorem, as observed in [PH77]. QED 
 
THEOREM 0.8C.3. Relatively Large Ramsey Theorem. For all 
k,p,r there exists n so large that the following holds. In 
any coloring of the unordered k tuples from {1,...,n} using 
p colors, there is a relatively large subset of {1,...,n} 
with at least r elements whose unordered k tuples have the 
same color.  
 
Proof: This is proved in [PH77] from Theorem 0.8C.2, using 
a finitely branching infinite tree argument. QED 
 
This should be compared with the Finite Ramsey Theorem 1 of 
section 0.5.  
 
Let PH(k,p,r) be the least n in Theorem 0.8C.3.  
 
THEOREM 0.8C.4. The Relatively Large Ramsey Theorem can be 
proved in ACA' but not in PA. It is provably equivalent to 
1-Con(PA) over EFA. The function PH is ∈0 recursive, but the 
unary function PH(k,k,k) eventually dominates every <∈0 
recursive function. 
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Proof: See [PH77]. QED 
 
Theorem 0.8C.4 has been proved even if we fix p = 2 (i.e., 
for 2 colors). See [LN92], p. 824. 
 
0.8D. Regressive Ramsey Theorem. 
 
The Regressive Ramsey Theorem and its independence from PA 
can be gleaned from [PH77], as it was used as a kind of 
unadvertised intermediate step. The statement is also 
essentially present in [Sc74], but without any discussion 
or results, except to note that it follows from the usual 
infinite Ramsey theorem. However, The Regressive Ramsey 
Theorem was first focused on and perfected in [KM87].  
 
Let N be the set of all nonnegative integers. We write [A]k 
for the set of all unordered k element subsets of A ⊆ N. 
Also, write [n]k for the set of all unordered k element 
subsets of {0,...,n-1}. 
 
We say that f:[N]k → N is regressive if and only if for all 
x ∈ [N]k, if min(x) > 0 then f(x) < min(x).  
 
We say that f is min homogenous on A ⊆ N if and only if for 
all x,y ∈ [A]k, min(x) = min(y) → f(x) = f(y). 
 
THEOREM 0.8D.1. Infinite Regressive Ramsey Theorem. Any 
regressive f:[N]k → N is min homogenous on some infinite A 
⊆ N.  
 
It is well known that RCA0 proves the equivalence of the 
Infinite Ramsey Theorem and the Infinite Regressive Ramsey 
Theorem. They are both equivalent, over RCA0, to ACA'. See 
Definition 1.4.1.  
 
THEOREM 0.8D.2. Finite Regressive Ramsey Theorem. For all 
k,r there exists n so large that the following holds. Every 
regressive f:[n]k → [n] is min homogenous on some r element 
A ⊆ [n].  
 
This is obtained from the Infinite version by a finitely 
branching infinite tree argument, in [KM87]. Also, in 
[KM87], the equivalence of Theorems 0.8C.3 and 0.8D.2 is 
established. Thus we have the following result from [KM87]. 
 
Let KM(k,r) be the least n in Theorem 0.8D.2.  
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THEOREM 0.8D.3. The Finite Regressive Ramsey Theorem can be 
proved in ACA' but not in PA. It is provably equivalent to 
1-Con(PA) over EFA. The function KM is ∈0 recursive, but 
KM(k,k) eventually dominates every <∈0 recursive function. 
 
0.8E. Hercules Hydra Game and Worms. 
 
In [KP82], Goodstein's Theorem (Theorem 0.8B.1) is 
analyzed, and also the closely related Hercules Hydra games 
are introduced and analyzed. 
 
Let T be a hydra, which is simply a finite rooted tree. We 
draw trees with the root at the bottom, and v < v' means 
that v is a parent of v' (equivalently, v' is a child of 
v).  
 
Hercules goes to battle with T1 = T. Hercules first removes 
a leaf, and the hydra reacts by growing new vertices in the 
manner below, creating T2. Then Hercules removes a leaf from 
T2, and the hydra grows new vertices as below, thus creating 
T3. This continues as long as the tree has at least two 
vertices.  
 
Suppose Hercules removes the leaf, x, from Tn, creating the 
temporary tree Tn'. Since we are assuming that Tn has at 
least two vertices, let y be the parent of x. If y is the 
root of Tn', then set Tn+1 = Tn'. Otherwise, let z be the 
parent of y. Let Tn'|≥y be the subtree of T' with root y. 
The hydra grafts n copies of Tn'|≥y on top of z, so that the 
roots of these copies become children of z. This results in 
the tree Tn+1.  
 
By assigning ordinals to trees, [KP82] proves the 
following. 
 
THEOREM 0.8E.1. Every strategy for Hercules in the Hercules 
hydra game is a winning strategy. I.e., the hydra is 
eventually cut down to a single vertex.  
 
[KP82] also proves the following.  
 
THEOREM 0.8E.2. Theorem 0.8E.1 can be proved in ACA' but 
not in PA. It is provably equivalent to 1-Con(PA) over EFA.  
 
In [Bek06], a Worm Principle is introduced and 
investigated. It is a flattened and deterministic version 
of the Hercules Hydra game, and metamathematcal properties 
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corresponding to those of the Hercules Hydra game are 
established.   
 
0.8F. Regressive Counting Theorems. 
 
Our Counting Theorems appear in section 1 of [Fr98].  
 
THEOREM 0.8F.1. Let k,r,p > 0 and F:Nk → Nr obey the 
inequality max(F(x)) ≤ min(x). There exists E ⊆ N, |E| = p, 
such that |F[Ek]| ≤ (kk)p. 
 
We now turn this around so that it asserts a combinatorial 
property of any function F:Nk → Nr.  
 
Let A,B ⊆ Nk, and F: A → Nr. We say that y is a regressive 
value of F on B if and only if there exists x ∈ B such that 
F(x) = y and max(y) < min(x). 
 
THEOREM 0.8F.2. Let k,r,p > 0 and F:Nk → Nr. F has ≤ (kk)p 
regressive values on some Ek ⊆ Nk, |E| = p.  
 
We now state the obvious finite forms of Theorems 0.8F.1 
and 0.8F.2.  
 
THEOREM 0.8F.3. For all k,r,p > 0 there exists n so large 
that the following holds. Let F:{0,...,n-1}k → {0,...,n-1}r 
obey the inequality max(F(x)) ≤ min(x). There exists E ⊆ 
{0,...,n-1}, |E| = p, such that |F[Ek]| ≤ (kk)p.  
 
THEOREM 0.8F.4. For all k,r,p > 0 there exists n so large 
that the following holds. Let F:{0,...,n-1}k → {0,...,n-1}r. 
F has ≤ (kk)p regressive values on some Ek ⊆ {0,...,n-1}k, 
|E| = p.  
 
In [Fr98], equivalences are established between these 
Theorems and the Regressive Ramsey Theorems. We obtain the 
following. 
 
THEOREM 0.8F.5. Theorems 0.8F.1 and 0.8F.2 are provable in 
ACA' but not in ACA0. They are provably equivalent to "∈0 is 
well ordered" over RCA0. These results hold even if we fix r 
= 2 and merely state the existence of constants ck depending 
only on k. 
 
THEOREM 0.8F.6. Theorems 0.7.3 and 0.7.4 are provable in 
ACA' but not in PA. They are provably equivalent to 1-
Con(PA) over PRA. These results hold even if we fix r = 2 
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and merely state the existence of constants ck depending 
only on k. 
 
0.8G. The Shift Inequality. 
 
Recall that Adjacent Ramsey Theory studies the shift 
equation  
 

F(x1,...,xk) = F(x2,...,xk+1) 
 
over N. See the Adjacent Ramsey Theorem (Theorem 0.5.6). We 
saw that Adjacent Ramsey Theory corresponds to EFA in the 
same way that Finite Ramsey Theory does.  
 
We have intensively studied the inequality  
 

F(x1,...,xk) ≤ F(x2,...,xk+1) 
 
over the nonnegative integers, N. This is far more exotic 
than the Adjacent Ramsey Theory, in that it corresponds, 
not to EFA, but to PA. 
 
These results are from [Fr08], [Fr10a].     
 
For x,y ∈ Nk, we write x ≤c y if and only if for all 1 ≤ i ≤ 
k, xi ≤ yi. 
 
THEOREM 0.8G.1. For all k ≥ 1 and f:Nk → N2, there exist 
distinct x1,...,xk+1 such that f(x1,...,xk) ≤c f(x2,...,xk+1). 
 
THEOREM 0.8G.2. For all k ≥ 1 and f:Nk → N, there exist 
distinct x1,...,xk+3 such that f(x1,...,xk) ≤ f(x2,...,xk+1) ≤ 
f(x3,...,xk+2). 
 
THEOREM 0.8G.3. For all k ≥ 1 and f:Nk → N, there exist 
distinct x1,...,xk+1 such that f(x2,...,xk+1)-f(x1,...,xk) ∈ 
2N.  
 
THEOREM 0.8G.4. For all k,r ≥ 1 and f:Nk → Nr, there exist 
distinct x1,...,xk+1 such that f(x1,...,xk) ≤c f(x2,...,xk+1). 
 
THEOREM 0.8G.5. For all k,r,t ≥ 1 and f:Nk → Nr, there exist 
distinct x1,...,xk+t-1 such that f(x1,...,xk) ≤c ... ≤c 
f(xt,...,xt+k-1). 
 
THEOREM 0.8G.6. For all k,r,t ≥ 1 and f:Nk → Nr, there exist 
distinct x1,...,xk+1 such that f(x2,...,xk+1)-f(x1,...,xk) ∈ 
tNr. 
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THEOREM 0.8G.7. Theorems 0.8G.1 - 0.8G.6 are provable in 
ACA' but not in ACA0. They are provably equivalent to "∈0 is 
well ordered" over RCA0.  
 
We can weaken these Theorems by restricting to complexity 
classes. These restrictions are obviously arithmetic 
sentences.  
 
THEOREM 0.8G.8. Theorems 0.8G.1 - 0.8G.6 hold for recursive 
f. These are explicitly Π0

3 sentences. 
 
THEOREM 0.8G.9. Theorems 0.8G.1 - 0.8G.6 hold for primitive 
recursive (elementary recursive, polynomial time in base 2 
representations) f. These are explicitly Π0

2 sentences. 
 
For p ≥ 0, we define p-Con(T) to be the sentence "every Σ0p 
sentence provable in T is true".  
 
THEOREM 0.8G.10. Theorem 0.8G.8 (all forms) is provably 
equivalent to 2-Con(PA) over EFA. Theorem 0.8G.9 (all 
forms) is provably equivalent to 1-Con(PA) over EFA.  
 
We say that f:Nk → Nr is limited if and only if for all x ∈ 
Nk, max(f(x)) ≤ max(x).  
 
THEOREM 0.8G.11. Theorems 0.8G.1 - 0.8G.6 hold for limited 
functions.  
 
THEOREM 0.8G.12. Theorem 0.8G.9 (all forms) is provably 
equivalent to 1-Con(PA) over RCA0. 
 
THEOREM 0.8G.13. Theorems 0.8G.1 - 0.8G.6 hold for limited 
functions defined on some [0,n]k, n depending on the given 
numerical parameters.  
 
Note that Theorem 0.8G.13 (all forms) is explicitly Π0

2.  
 
THEOREM 0.8G.14. Theorem 0.8G.13 (all forms) is provably 
equivalent to 1-Con(PA) over EFA. The associated witness 
function (all forms) is ∈0 recursive but eventually 
dominates all <∈0 recursive functions.  
 
We have applied the shift inequality to polynomials with 
integer coefficients, and to the tangent function. 
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Let n1,...,nk ∈ Z. The translates of (n1,...,nk) in 
coordinate 1 ≤ i ≤ k are the vectors obtained by adding an 
integer to the i-th coordinate.  
 
THEOREM 0.8G.15. The Polynomial Shift Translation Theorem. 
For all polynomials P:Zk → Zk, there exist distinct positive 
integers n1,...,nk+1 such that, in each coordinate, the 
number of translates of (n1,...,nk) which are values of P is 
at most the number of translates of (n2,...,nk+1) which are 
values of P. 
 
THEOREM 0.8G.16. Theorem 0.8G.15 is provable in ACA' but 
not in Peano Arithmetic. It implies 2-Con(PA) over EFA. 
 
A *block* is a subsequence that does not skip over terms. A 
k-block is a block of length k. 
 
Tangent here means the trigonometric tan function. We 
exploit the periodic and surjective properties of tan. 
There have been earlier results of ours and others 
concerning sine. See [Bo07]. 
 
THEOREM 0.8G.17. Let k ≥ 1. Every infinite sequence of 
integers contains an infinite subsequence, where the 
tangents of the products of its k-blocks lie within 1 of 
each other, or go to +-∞.  
 
We make Theorem 0.8G.17 successively more concrete as 
follows. 
 
THEOREM 0.8G.18. Let k,n ≥ 1. Every infinite sequence of 
integers contains a subsequence of length n, where the 
tangents of the products of its k-blocks lie within 1 of 
each other, or are strictly increasing and positive, or are 
strictly decreasing and negative. 
 
THEOREM 0.8G.19. Let k ≥ 1. Every infinite sequence of 
integers contains a subsequence of length k+2, where the 
tangents of the products of its k-blocks lie within 1 of 
each other, or are strictly increasing and positive, or are 
strictly decreasing and negative. 
 
THEOREM 0.8G.20. For k ≥ 1 there exists n such that the 
following holds. Every finite sequence of integers of 
length n obeying |x[i]| ≤ i, i ≥ 1, contains a subsequence 
of length k+2, where the tangents of the products of its k-
blocks lie within 1 of each other, or are strictly 
increasing and positive, or are strictly decreasing and 
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negative. 
 
THEOREM 0.8G.21. Theorems 0.8G.17 - 0.8G.20 are provable in 
ACA' but not in ACA0. Theorems 0.8G.17 - 0.8G.19 are 
provably equivalent to "∈0 is well ordered" over RCA0. 
Theorem 0.8G.20 is provably equivalent to 1-Con(PA) over 
EFA. The witness function associated with Theorem 0.8G.20 
is ∈0 recursive but grows faster than all <∈0 recursive 
functions. 
 
0.8H. Tree Embedding Theorems.  
 
We will postpone a full discussion of Kruskal's Tree 
Theorem until section 0.9B. We refer the reader to section 
0.9B for definitions not given here.  
 
We will consider three immediate consequences of Kruskal's 
Theorem here. We know that these are equivalent. Various 
natural variants can also be seen to be equivalent.  
 
EBTE. Exactly Binary Tree Embedding Theorem.  
TE. Tree Embedding Theorem. 
STE. Structured Tree Embedding Theorem. 
 
These are presented below. STE → TE → EBTE is immediate.  
 
Kruskal's Theorem involves inf preserving embeddings. Here 
we will use only embeddings. Here is the reason behind 
this. 
 
THEOREM 0.8H.1. The following is provable in EFA. If there 
is an embedding from a finite binary tree S into a finite 
binary tree T, then there is an inf preserving embedding 
from S into T. If there is a structure preserving embedding 
from a finite structured binary tree S into a finite 
structured binary tree T, then there is a structure and inf 
preserving embedding from S into T. 
 
Proof: This is well known. Use induction on the sum of the 
number of vertices in S and T. QED  
 
An exactly binary tree is a tree all of whose vertices have 
valence 0 or 2.  
 
In reading the next theorem (and later), note that 
according to the definitions in section 0.9, embeddings 
between finite structured trees are required to preserve 
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structure. However, inf preservation must be explicitly 
stated. 
 
THEOREM 0.8H.2. i. Exactly Binary Tree Embedding Theorem 
(EBTE). In any infinite sequence of exactly binary trees, 
some tree is embeddable into a later tree.  
ii. Tree Embedding Theorem (TE). In any infinite sequence 
of finite trees, some tree is embeddable into a later tree.  
iii. Structured Tree Embedding Theorem (STE). In any 
infinite sequence of finite structured trees, some tree is 
embeddable into a later tree. 
 
Proof: These are very special cases of Kruskal's Theorem 
[Kr60]. EBTE is also a very special case of Higman's Wqo 
Theorem from [Hig52]. QED 
 
THEOREM 0.8H.3. The following are provably equivalent in 
RCA0. 
i. EBTE. 
ii. TE. 
iii. STE.  
iv. ∈0 is well ordered.  
i-iv are provable in ACA' but not in ACA0. 
 
Proof: i → iv is due to [VV05] and A. Weiermann (advisor), 
and will appear in [FWa], together with a different proof 
of ours. These proofs yield very effective ordinal 
assignments f to binary trees onto ∈0, where if S is 
embeddable into T then f(S) ≤ f(T).   
 
That iv) implies structured EBTE is in [Fr84]. 
Specifically, In [Fr84], calculations are made of the 
ordinals of the trees of bad sequences for various 
restricted forms of Kruskal's Theorem, including structured 
EBTE. In general, these calculations used a theory of 
ordinals - i.e., ATR0. However, in this case, the proof 
shows that for each starting exactly binary structured 
tree, ACA0 proves that there are no infinite bad sequences 
extending it. Hence structured EBTE can be proved using Π1

1 
reflection on ACA0. Now apply Theorem 0.8A.1. 
 
We have recently proved that structured EBTE implies STE as 
follows. We inductively define a very effective map h from 
finite structured trees into finite exactly binary 
structured trees, so that if h(S) is structure preserving 
embeddable into h(T) then S is structure preserving 
embeddable into T. This will appear in [FWa]. This 
establishes that structured EBTE implies STE.  
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By combining the last two paragraphs, we have iv → iii. 
Note that iii → ii → i is trivial. QED 
 
The following two Theorems are immediate consequences of 
EBTE, TE, STE, respectively. 
 
THEOREM 0.8H.4. Subrecursive EBTE, TE, STE. In any infinite 
primitive recursive (elementary recursive, polynomial time 
computable) sequence of finite exactly binary trees (trees, 
structured trees), one tree is embeddable in a later tree.  
 
THEOREM 0.8H.5. Recursive EBTE, TE, STE. In any infinite 
recursive sequence of finite exactly binary trees (trees, 
structured trees), one tree is embeddable in a later tree.  
 
THEOREM 0.8H.6. Finite EBTE, TE, STE. For all c ≥ 0 there 
exists n such that the following holds. Let T1,...,Tn be 
exactly binary trees (trees, structured trees), where each 
Ti has at most i+c vertices. There exist i < j such that Ti 
is embeddable in Tj.  
 
Proof: The argument is in [Fr81a]. Also see [Si85]. Let c ≥ 
0 be given and assume this is false. Build a finitely 
branching tree of counterexamples. By STE, the tree has no 
infinite paths, and therefore is finite. QED 
 
The following Theorem provides the required link between 
these effective and finite forms of EBTE, TE, STE, and 
proof theory. 
 
THEOREM 0.8H.7. The following are provably equivalent in 
EFA. 
i. Every primitive recursive sequence from ∈0 stops 
descending. 
ii. Every elementary recursive sequence from ∈0 stops 
descending. 
iii. Every polynomial time computable sequence from ∈0 stops 
descending. 
iv. 1-Con(PA). 
 
Proof: This is well known from standard proof theory - 
except for iii. Here we follow the usual practice in 
computational complexity theory, where the base 2 
representation is used for nonnegative integers - not only 
for representing the indexation of the infinite sequences, 
but also for the coefficients in notations below ∈0. It is 
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straightforward to check that the required manipulations 
can be done in polynomial time. QED 
 
An interesting question is how small a subclass of poly 
time can be used for iii above. At very low computational 
levels, we expect that some interesting detailed issues 
should naturally arise. 
 
THEOREM 0.8H.8. The following are provably equivalent in 
EFA. 
i. Every recursive sequence from ∈0 stops descending. 
ii. 2-Con(PA). 
 
Proof: Assume ii. Fix k ≥ 1. Let M be a TM set up to compute 
a partial recursive function from N into ω[k]. Obviously PA 
proves  
 
if M computes a total recursive function from N into ω[k], 
then that function is not everywhere descending. 
 
The above sentence is obviously Σ02. Hence we have  
 
for all k ≥ 1, if M is a TM set up to compute a partial 
recursive function from N into ω[k], and if M computes a 
total recursive function from N into ω[k], then that 
function is not everywhere descending. 
 
for all k ≥ 1, every recursive function from N into ω[k] 
stops descending. 
 
every recursive function from N into ∈0 stops descending. 
 
This establishes ii → i.  
 
For i → ii, we argue in EFA. Assume i. In particular, every 
polynomial time computable computable sequence from ∈0 stops 
descending. Hence by Theorem 0.8H.7, we have 1-Con(PA). 
Therefore we have access to all of the < ∈0 recursive 
functions.  
 
We now use the standard Schütte infinitary proof theory for 
PA. See [Sch77] and [Bu91].  
 
We start with a proof in PA of a Σ02 sentence. We use 
primitive recursive function symbols, and so the Σ02 
sentence ϕ takes the form (∃n)(∀m)(F(n,m) = 0). 
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By effective infinitary cut elimination, we obtain an 
infinitary cut free proof, tagged with ordinals < ∈0, that 
is < ∈0 recursive. We now examine this infinitary proof.  
 
We go up the proof tree (backwards in the proof), starting 
at the root, through vertices of valence 1 only. By 1-
Con(PA), we see that this process must stop. It is clear 
that it must stop at a vertex of valence > 1. This must be 
a vertex which is the result of ∀ introduction. But then we 
must have introduced F(t(n),0) = 0, F(t(n),1) = 0, and so 
on. Here t(n) is a term which may or may not mention the 
variable n. By 1-Con(PA), these equations can only be 
introduced here if they are true. Hence we obtain 
(∀m)(F(t(n),m) = 0). Therefore (∃n)(∀m)(F(n,m) = 0). QED 
 
THEOREM 0.8H.9. The following are provably equivalent in 
EFA. 
i. Subrecursive EBTE. 
ii. Subrecursive TE. 
iii. Subrecursive STE. 
iv. 1-Con(PA).  
 
Proof: Assume i. Using the very effective surjective 
assignment of ordinals < ∈0 to exactly binary trees referred 
to in the proof of Theorem 0.8H.3, we obtain i in Theorem 
0.8H.7. Hence 1-Con(PA).  
 
Assume 1-Con(PA). Fix a primitive recursive sequence f of 
finite exactly binary structured trees. Let T be the first 
tree in the sequence. The proof from [Fr84] discussed in 
the proof of Theorem 0.8H.3, shows how to prove in PA that 
for some i < j, f(i) ≤ f(j). Hence i holds, for exactly 
binary structured trees.  
 
We then have iii by applying the very effective map from 
finite structured trees to finite exactly binary structured 
trees, referred to in the proof of Theorem 0.8H.3. 
 
Thus we have shown i → iv → iii. Obviously iii → ii → i. 
QED 
 
THEOREM 0.8H.10. The following are provably equivalent in 
EFA. 
i. Recursive EBTE. 
ii. Recursive TE. 
iii. Recursive STE. 
iv. 2-Con(PA).  
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Proof: Assume i. Using the very effective surjective 
assignment of ordinals < ∈0 to exactly binary trees referred 
to in the proof of Theorem 0.8H.3, we obtain i) in Theorem 
0.8H.8. Hence 2-Con(PA).  
 
Assume 2-Con(PA). We argue similarly to the proof of ii → i 
in Theorem 0.8H.8. Fix a finite exactly binary structured 
tree T. Let TM be set up to compute a partial recursive 
function from N into finite exact binary trees. From 
[Fr84], as discussed in the proof of Theorem 0.8H.3, PA 
proves  
 
if TM computes a total recursive function f from N into 
finite exactly binary trees, starting with T, then there 
exist i < j such that f(i) ≤ f(j).  
 
The above sentence is obviously Σ02. Hence we have  
 
for all finite exactly binary structured T, if a TM is set 
up to compute a partial recursive function from N into 
finite exactly binary structured trees, starting with T, 
and if that TM computes a total recursive function from N 
into finite exactly binary structured trees, then there 
exist i < j such that f(i) ≤ f(j).  
 
for all finite exactly binary structured trees T, for every 
recursive function f from N into finite exactly binary 
structured trees, starting with T, there exist i < j such 
that f(i) ≤ f(j).  
 
for all recursive functions f from N into finite exactly 
binary structured trees, there exist i < j such that f(i) ≤ 
f(j).   
 
This establishes iv → i for exactly binary structured 
trees.  
 
We then have iii by applying the very effective map from 
finite structured trees to finite exactly binary structured 
trees, referred to in the proof of Theorem 0.8H.3. 
 
Thus we have shown i → iv → iii. Obviously iii → ii → i.  
QED 
 
THEOREM 0.8H.11. The following are provably equivalent in 
EFA. 
i. Finite EBTE. 
ii. Finite TE. 
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iii. Finite STE. 
iv. 1-Con(PA).  
 
Proof: Assume i. Using the very effective surjective 
assignment of ordinals < ∈0 referred to in the proof of 
Theorem 0.8H.3, we obtain the "slow well foundedness of ∈0" 
or CWF = "combinatorial well foundedness of ∈0", in the 
sense of [Fr81a] and [Fr01c], p. 71. This is bootstrapped 
up (as in [Fr81a] and [Fr01c]) to obtain the elementary 
recursive or even primitive recursive well foundedness of 
∈0. By the proof theory of PA, 1-Con(PA) follows.  
 
Assume 1-Con(PA). Fix c ≥ 0. We can obtain a proof in PA of 
i for finite exactly binary structured trees, for this 
fixed c, very effectively in c, as follows. Assume that i 
for this fixed c is false, using structured binary trees. 
Now form  the tree T of appropriately bad sequences, and 
hypothesize in PA that T is infinite. Then there is an 
arithmetically defined infinite bad sequence. Now there are 
only finitely many first terms that this infinite bad 
sequence can have. For each of these terms, we argue from 
[Fr84] as in the proof of Theorem 0.8H.3, to obtain a 
contradiction. Therefore T is finite. 
 
Since the statement of i with structure, for fixed c is Σ01, 
we see that the statement must be true for any c, by 1-
Con(PA). This establishes iv → i for exactly binary 
structured trees. We can obviously use, say, a double 
exponential growth rate in the formulation of i for exactly 
binary structured trees, and the same argument will apply. 
I.e., we will obtain that also from 1-Con(PA). But this 
modification of i for exactly binary structured trees 
obviously implies iii using the very effective map from 
finite structured trees into finite exactly binary 
structured trees, referred to in the proof of Theorem 
0.8H.3. This establishes iv → iii. Note that iii → ii → i 
is immediate. QED 
 
In section 0.10, my Extended Kruskal Theorem is discussed, 
in which we impose a gap condition on the inf preserving 
embeddings. It is provable in Π1

1-CA but not in Π1
1-CA0 (see 

Theorems 0.10A.4 and 0.10A.5).  
 
In [SS85], the Extended Kruskal Theorem is specialized to 
valence 1, which is just for finite sequences. The 
resulting statement is much weaker, and is shown to 
correspond to ∈0.  
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In [Gor89], the Extended Kruskal Theorem for valence 1 is 
generalized allowing ordinal labels (with a suitable 
natural weakening of the gap condition), still at valence 
1. The logical strength for α corresponds roughly to the 
Turing jump hierarchy on α.  
 
0.9. Incompleteness in Predicative Analysis and ATR0. 
 
0.9A. Predicative analysis, Γ0, and ATR0. 
0.9B. Kruskal's Theorem. 
0.9C. Comparability. 
 
0.9A. Predicative analysis, Γ0, and ATR0. 
 
The philosophy of mathematics known as predicativity 
focuses on the legitimacy of forming a subset of N via the 
construction {n: ϕ(n)}.  
 
H. Poincaré, in [Po06], argued that this is not legitimate 
if the condition ϕ refers to all subsets of N. He argued 
that ϕ must only refer to subsets of N that have already 
been constructed, thus implicitly introducing a notion of 
abstract time. Note that this criterion is easily met if ϕ 
is arithmetical, even if it has parameters for subsets of 
N. Poincare referred to this as the Vicious Circle 
Principle.  
 
His ideas were taken up by Weyl, in [Wey18,87], and others. 
Russell articulated the basic idea earlier than Poincaré, 
but in the context of the paradoxes. Russell in effect 
abandoned the Vicious Circle Principle through his adoption 
of his highly impredicative Theory of Types, [Ru08,67].   
 
S. Feferman and K. Schütte, independently sought to analyze 
predicative analysis formally. The initial analyses 
appeared in [Fe64] and [Sch65]. Subsequently, Feferman 
refined his analysis in many papers, culminating with 
[Fe05].  
 
What is constant throughout all of these formal analyses is 
that  
 
i. The provably recursive functions of predicative analysis 
consists of the < Γ0 recursive functions. 
 
ii. The finite sequence trees, presented arithmetically, 
that are provably well founded within predicative analysis, 
have ordinals up to, but not including, Γ0. 
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iii. The subsets of N present in the first Γ0 levels of the 
hyperarithmetical hierarchy form (the subset of N part of) 
a model of predicative analysis.  
 
For a general treatment of <λ recursive functions via 
descent recursion, see [FSh95]). 
 
These analyses have been generally accepted as reasonably 
representing predicative analysis according to its 
historical informal descriptions. The degree of acceptance 
is not nearly as great as it is for Turing's analysis of 
algorithms. It is an open question whether it is possible 
to attain such a high level of acceptance. Nevertheless, 
there is no competing analysis of predicative analysis with 
anything like the same level of acceptance.  
 
This usual analysis of predicativity takes the form of what 
amounts to the formal system ATR(<Γ0) of arithmetic, based 
on ACA0 and arithmetic transfinite recursion up to any 
ordinal (notation) < Γ0. Its minimum ω model consists of the 
hyperarithmetic sets of level < Γ0.  
 
Competing analyses of predicativity generally differ only 
in the choice of ordinal, but do take the form of a system 
ATR(<λ), for some effectively given ordinal λ.   
 
Recall our system ATR0, which plays a prominent role in 
Reverse Mathematics. We proved a striking matchup between 
ATR0 and the standard formalization of predicative analysis. 
 
THEOREM 0.9A.1. ATR0 is a conservative extension of ATR(<Γ0) 
for Π1

1 sentences.  The provably recursive functions of ATR0 
and ATR(<Γ0) are the <Γ0 recursive functions. The following 
are provably equivalent in RCA0. 
i. Π1

1 reflection on ATR0. 
ii. Γ0 is well ordered. 
These are provable in ATR but not in ATR0. For ATR, use Γ∈_0. 
throughout instead of Γ0. The first claim is provable in 
SEFA. 
 
Proof: For these results of ours about ATR0, see our 
announcement [Fr76], our proof in [FMS82], section 4, and 
[Si02]. For ATR, see [Ja80]. QED 
 
Let (N,R) be a primitive recursively given well ordering of 
N. The system ATI(<R) is in L(PA), and extends PA by the 
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scheme of arithmetic transfinite induction on any proper 
initial segment of R determined by any given point.   
 
Below, ATI(<Γ0) refers to ATI(<R), where R is a standard 
notation system for Γ0. All such standard R lead to 
equivalent systems ATI(<R). 
 
THEROEM 0.9A.2. ATR0 is a conservative extension of 
ATI(<Γ0). The following are provably equivalent in SEFA.  
i. 1-Con(ATR0). 
ii. 1-Con(ATR(<Γ0). 
iii. 1-Con(ATI(<Γ0)). 
iv. Every primitive recursive (elementary recursive, 
polynomial time computable) sequence from Γ0 stops 
descending. 
These are provable in ATR but not in ATR0. For ATR, use Γ∈_0. 
throughout instead of Γ0. 
 
Proof: For these results of ours about ATR0, see [FMS82], 
section 4, and [Si02]. For ATR, see [Ja80]. QED 
 
However, ATR0 cannot be considered part of predicative 
analysis because of the following.  
 
THEOREM 0.9A.3. Every ω-model of ATR0 properly includes all 
hyperarithmetic subsets of N.   
 
Proof: See [Si99,09], p. 346, notes for section VIII.4. QED 
 
Theorem 0.9A.3 is especially powerful for establishing that 
a Π1

2 sentence cannot be proved predicatively. By showing 
that the Π1

2 sentence implies ATR0 over RCA0 (or even ACA0), 
it is clear that the Π1

2 sentence cannot hold in any subset 
of the hyperarithmetic sets, and therefore cannot be proved 
in any system ATR(<λ), where λ is effectively given.   
 
Let TI be the subsystem of second order arithmetic 
consisting of ACA0 plus the scheme of transfinite induction 
on all countable well orderings. Often this is referred to 
as BI = bar induction, but we prefer to call this TI = 
transfinite induction.  
 
For n ≥ 1, we define Π1

n-TI0 and Σ1n-TI0 as ACA0 together with 
transfinite induction on all countable well orderings, with 
respect to Π1

n and Σ1n formulas, respectively. Here Π1
n (Σ1n) 

formulas start with a universal (existential) set 
quantifier, followed by at most n-1 set quantifiers, 
followed by an arithmetical formula. If we use ACA instead 
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of ACA0 (which is ACA0 with full induction), then we write 
Π1

n-TI and Σ1n-TI. 
Also, ATR is ATR0 with full induction. 
 
THEOREM 0.9A.4. ATR and Σ11-TI are equivalent. ATR0 and Σ11-TI 
have the same ω-models. ATR0 + Σ11 induction and Σ11-TI0 are 
equivalent.  
 
Proof: See [Si82]. QED 
 
The next two theorems are proved in [RW93]. Here <θΩω refers 
to a standard notation system for the proof theoretic 
ordinal θΩω, as defined in [RW93]. 
 
THEOREM 0.9A.5. Π1

2-TI0 is a conservative extension of 
ATR(<θΩω) for Π1

1 sentences. The provably recursive 
functions of Π1

2-TI0 and ATR(<θΩω) are the <θΩω recursive 
functions. The following are provably equivalent in RCA0. 
i. Π1

1 reflection on Π1
2-TI0. 

ii. θΩω is well ordered. 
These are provable in Π1

2-TI but not in Π1
2-TI0.  

 
THEROEM 0.9A.6. Π1

2-TI0 is a conservative extension of 
ATI(<θΩω). The following are provably equivalent in SEFA.  
i. 1-Con(Π1

2-TI0). 
ii. 1-Con(ATR(<θΩω)). 
iii. 1-Con(ATI(<θΩω)). 
iv. Every primitive recursive (elementary recursive, 
polynomial time computable) sequence from θΩω stops 
descending. 
These are provable in Π1

2-TI but not in Π1
2-TI0.  

 
0.9B. Kruskal's Theorem. 
 
A poset is a pair (D,≤) where D is a nonempty set and ≤ is a 
reflexive transitive relation obeying  
 

(x ≤ y ∧ y ≤ x) → x = y. 
 
A tree is a poset T = (V,≤) where there is a minimum element 
called the root, and where for each x ∈ V, {y: y ≤ x} is 
linearly ordered by ≤.  
 
The elements of V = V(T) are called the vertices of T. A 
tree is said to be finite if it has finitely many vertices. 
 
If x < y then we call x a predecessor of y and y a 
successor of x.  
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If x < y and there is no z such that x < z < y then we call 
y an immediate successor of x and y the immediate 
predecessor of y.  
 
We say that x,y are comparable if and only if x = y ∨ x < y 
∨ y < x. Otherwise, we say that x,y are incomparable.  
 
For finite trees, we have the crucial inf operation on V, 
where x inf y is the greatest z such that z ≤ x ∧ z ≤ y.  
 
The valence of a vertex is the number of its immediate 
successors. The valence of a tree is the maximum of the 
valences of its vertices (for finite trees).  
 
The vertices of valence 0 are called the terminal vertices. 
The remaining vertices are called the internal vertices.  
 
For definiteness, we will require that the domain of any 
finite tree is {1,...,n}, where n is the number of its 
vertices. Thus the set of all finite trees exists. Note 
that many pairs of distinct finite trees are isomorphic.  
 
We will also consider what we call structured trees. These 
are finite trees with a left/right structure. I.e., where 
for any vertex i, there is a strict linear ordering 
(left/right) of the immediate successors of i. This induces 
the following relation on vertices: x is to the left of y 
if and only if x,y are incomparable and the immediate 
successor of x inf y comparable with x is to the left of 
the immediate successor of x inf y comparable with y. This 
relation is irreflexive and transitive.  
 
A quasi order is a pair (D,≤) where D is a nonempty set and 
≤ is a reflexive and transitive relation on D. 
 
A well quasi order (wqo) is a quasi order (D,≤), where for 
any x1,x2,... from D, there exists i < j such that xi ≤ xj.  
 
Let (D,≤) be a quasi order. A (D,≤) labeled (structured) 
tree is a (structured) tree with a labeling function from 
its vertices into D. We write l(x) for the label of x. 
Although we consider only finite (D,≤) labeled (structured) 
trees, the D itself may be infinite.  
 
We introduce the following notation for certain important 
tree classes. Here Q is a quasi order. 
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TR(n). The finite trees of valence ≤ n. 
TR(<∞). The finite trees. 
TR(n;Q). The finite Q labeled trees of valence ≤ n. 
TR(<∞;Q). The finite Q labeled trees. 
STR(n). The finite structured trees of valence ≤ n. 
STR(<∞). The finite structured trees. 
STR(n;Q). The finite Q labeled structured trees of valence ≤ 
n. 
STR(<∞;Q). The finite Q labeled trees. 
 
If we write an integer r ≥ 2 instead of Q, then we mean the 
quasi order Q = {1,...,r} under =. If we write ω instead of 
Q, then we mean the quasi order of ω under ≤ (which is the 
usual linear ordering). 
 
All of these tree classes come with their own notion of 
embedding.  
 
TR(n), TR(<∞). We say that h is an embedding from S into T 
if and only if h:V(S) → V(T), where for all x,y ∈ V(S), x 
≤S y ↔ hx ≤T hy. 
 
STR(n), STR(<∞). We say that h is an embedding from S into 
T if and only if h:V(S) → V(T), where for all x,y ∈ V(S)  
i. x ≤S y ↔ hx ≤T hy. 
ii. x is to the left of y in S if and only if hx is to the 
left of hy in T. 
 
TR(n;Q), TR(<∞;Q). We say that h is an embedding from S 
into T if and only if h:V(S) → V(T), where for all x,y ∈ 
V(S), 
i. x ≤S y ↔ hx ≤T hy. 
iii. l(x) ≤Q l(hx). 
 
STR(n;Q), STR(<∞;Q). We say that h is an embedding from S 
into T if and only if h:V(S) → V(T), where for all x,y ∈ 
V(S), 
i. x ≤S y ↔ hx ≤T hy. 
ii. x is to the left of y in S if and only if hx is to the 
left of hy in T. 
iii. l(x) ≤Q l(hx). 
 
Additional conditions are often placed on embeddings.  
 
Inf Preservation. h:V(S) → V(T) is said to be inf 
preserving if and only if for all x,y ∈ V(S), h(x inf y) = 
hx inf hy. 
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Valence Preservation. h:V(S) → V(T) is said to be valence 
preserving if and only if for all x in V(S), the valence of 
x is the same as the valence of hx.   
 
In this section, we will always use inf preservation. 
 
THEOREM 0.9B.1. Kruskal's Tree Theorem. If Q is a wqo then 
STR(<∞;Q) is a wqo under inf preserving embeddability.  
 
Proof: This was proved in [Kr60]. The simplest proof is in 
[NW65]. The proof is not any easier for TR(<∞,Q). QED 
 
THEOREM 0.9B.2. Higman's Wqo Theorem. If Q is a wqo then 
STR(n;Q) is a wqo under inf and valence preserving 
embeddability.  
 
Proof: See [Hig52]. This is weaker than Kruskal's Theorem 
(except for the valence preserving), but predates it. It is 
easy to encode the valence in the labels, so that this is 
easily obtained from Kruskal's Tree Theorem. The original 
language in [Hig52] is couched in algebraic terms, and our 
present reformulation is in terms of trees. QED  
 
THEOREM 0.9B.3. Theorems 0.9B.1 and 0.9B.2 are provable in 
Π1

2-TI. For each fixed n ≥ 1, Theorem 0.9B.2 is provable in 
Π1

2-TI0. 
 
Proof: This is proved in [Fr84]. Provability in TI is in 
[Fr81a]. QED 
 
THEOREM 0.9B.4. The following are provably equivalent in 
RCA0. 
i. TR(<∞) is a wqo under inf preserving embeddability.  
ii. For all n, TR(n) is a wqo under inf preserving 
embeddability. 
iii. For all n,r, TR(n;r) is a wqo under inf and valence 
preserving embeddability. 
iv. For all n, TR(n;ω) is a wqo under inf and valence 
preserving embeddability. 
v. STR(<∞) is a wqo under inf preserving embeddability. 
vi. For all n, STR(n) is a wqo under inf preserving 
embeddability. 
vii. For all n,r, STR(n;r) is a wqo under inf and valence 
preserving embeddability.  
viii. For all n, STR(n;ω) is a wqo under inf and valence 
preserving embeddability. 
ix. θΩω is well ordered. 
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In particular, i-ix are provable in Π1
2-TI, but not in Π1

2-
TI0.  
 
THEOREM 0.9B.4. The following are provably equivalent in 
RCA0. 
i. STR(<∞) is a wqo under inf preserving embeddability.  
ii. For all n, TR(n) is a wqo under inf preserving 
embeddability. 
iii. For all n, STR(n;ω) is a wqo under inf and valence 
preserving embeddability. 
iv. θΩω is well ordered. 
In particular, i-iii are provable in Π1

2-TI, but not in Π1
2-

TI0.  
 
Proof: The equivalence of i,iii,iv is in [Fr84], using 
Theorem 0.9A.6. The implication iii → iv is by assigning 
ordinals to trees. The implication iv →  iii uses the 
provability in Π1

2-TI0 of iii for each fixed n.  
 
For unstructured trees, ii → Γ0 is well ordered was shown 
in [Fr81a], and appeared in [Si85]. ii → iv appears in 
[RW93], p. 53, extending the construction (it was 
attributed to us in [Si85]). Hence i-iii are equivalent to 
iv. QED 
 
THEOREM 0.9B.5. The following are provable in Π1

2-TI. 
i. If Q is a countable wqo then STR(<∞;Q) is a wqo under 
inf preserving embeddability.  
ii. If Q is a countable wqo and n < ω, then STR(n;Q) is a 
wqo under inf and valence preserving embeddability. 
For each fixed n, ii) is provable in Π1

2-TI0.  
 
Proof: This is proved in [Fr84]. QED 
 
We now come to effective and finite forms of Kruskal's 
Theorem.  
 
THEOREM 0.9B.6. Subrecursive Kruskal Theorem. In any 
infinite primitive recursive (elementary recursive, 
polynomial time computable) sequence of finite trees, one 
tree is embeddable in a later tree.  
 
THEOREM 0.9B.7. Recursive Kruskal Theorem. In any infinite 
recursive sequence of finite trees, one tree is inf 
preserving embeddable in a later tree.  
 
THEOREM 0.9B.8. Finite Kruskal Theorem. For all c ≥ 0 there 
exists n such that the following holds. Let T1,...,Tn be 
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finite trees, where each Ti has at most i+c vertices. There 
exist i < j such that Ti is inf preserving embeddable in Tj. 
 
The finite Kruskal theorem has been refined in an 
interesting way in [LM87]. 
 
For f:N → N, let FKTf assert the following. 
 
For all c ≥ 0 there exists n such that the following holds. 
Let T1,...,Tn be finite trees, where each Ti has at most 
f(i)+c vertices. There exist i < j such that Ti is inf 
preserving embeddable in Tj. 
 
The following is proved in [LM87]. 
 
Let fr(i) be r(log2(i)). If r ≤ 0.5 then PA does prove 
FKTf_r. 
If r ≥ 4 then PA does not prove FKTf_r. 
 
Note the gap between .5 and 4. In [We03] there is an exact 
calculation of the transition point from PA provability to 
PA unprovability, using analytic combinatorics.  
 
This result led to further systematic investigations on 
critical phenomena related to independence results. For 
example, the phase transition corresponding to the 
relatively large Ramsey theorem is classified in [We04]. 
Also see [We09]. 
 
There is also a phase transition analysis of the regressive 
Ramsey theorems (see section 0.8D and [KM87]). See [CLW11].  
 
We now proceed from Theorem 0.9B.4 exactly as we proceeded 
from Theorem 0.8H.3 in section 0.8H.  
 
THEOREM 0.9B.9. The following are provably equivalent in 
SEFA. 
i. Subrecursive Kruskal Theorem. 
ii. Finite Kruskal Theorem. 
iii. Every primitive recursive sequence from θΩω stops 
descending. 
iii. 1-Con(ATI(<θΩω)). 
iv. 1-Con(Π1

2-TI0). 
 
THEOREM 0.9B.10. The following are provably equivalent in 
SEFA. 
i. Recursive Kruskal Theorem. 
ii. Every recursive sequence from θΩω stops descending. 
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iii. 2-Con(ATI(<θΩω)). 
iv. 2-Con(Π1

2-TI0). 
 
We now focus on Γ0 and ATR0.  
 
THEOREM 0.9B.11. The following are provably equivalent in 
RCA0. 
i. TR(2;2) is a wqo under inf preserving embeddability.  
ii. STR(2;2) is a wqo under inf preserving embeddability. 
iii. Γ0 is well ordered.  
In particular, i-iii are provable in ATR but not in ATR0.  
 
Proof: ii ↔ iii is in [Fr84]. i → ii is a result of A. 
Weiermann that will appear in [FWa]. QED 
 
Again, proceeding as before, we obtain the following. 
 
THEOREM 0.9B.12. The following are provably equivalent in 
SEFA. 
i. Subrecursive Kruskal Theorem for TR(2;2). 
ii.  Finite Kruskal Theorem for STR(2;2). 
iii. Every primitive recursive sequence from Γ0 stops 
descending. 
iv. 1-Con(ATI(<Γ0)). 
v. 1-Con(ATR0). 
 
An old unpublished result of ours from the 1980's also 
concerns binary trees. See [FMW∞] for planned publication. 
Here is the result in its most primitive form. 
 
THEOREM 0.9B.13. RCA0 + "If Q is a countable wqo, then 
TR(2;Q) is a wqo under inf preserving embeddability", 
proves ATR0. 
 
Here is a more refined form. Let TR*(2;Q) be the set of 
finite trees of valence ≤ 2, where vertices of valence 2 are 
unlabeled, and vertices of valence 0 or 1 are labeled from 
Q. Embeddings are required to be label increasing (≥) on the 
labeled vertices. Both forms will appear in [FWb].  
 
THEOREM 0.9B.14. The following are provably equivalent in 
RCA0. 
i. If Q is a countable wqo, then TR*(2;Q) is wqo under inf 
preserving embeddability.  
ii. If X is a well ordering then θX0 is a well ordering. 
iii. ATR0. 
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In [Fr02] the innovation was to use internal tree 
embeddings in favor of sequences of trees.  
 
We use the following important subclass of TR(k;n). We 
define FUTR(n;m) as the set of all T ∈ TR(k;n) such that  
 
i. All vertices of valence 0 have the same height. 
ii. All vertices are of valence 0 or k.  
 
Here FU means "full".   
 
The height of a vertex in a finite tree is the number of 
its predecessors. Thus the height of the root is 0. The 
height of a finite tree is the maximum of the heights of 
its vertices.  
 
Let T ∈ FUTR(k;n). The truncations of T are obtained by 
restricting T to all vertices whose height is at most a 
given nonnegative integer. Thus the number of truncations 
of T is exactly one more than the height of T.  
 
THEOREM 0.9B.15. Internal Finite Tree Embedding Theorem. 
Let k,n ≥ 1 and T ∈ FUTR(k;n) be sufficiently tall. There 
is an inf and valence preserving embedding from some 
truncation of T into some truncation of T of greater 
height.  
 
Proof: This appears as Theorem 1.3 in [Fr02]. Fix k,n ≥ 1, 
and suppose this is false. Then we obtain a finitely 
branching tree of counterexamples, growing in height as we 
go up the tree. Therefore there is an infinite path, which 
forms an infinite full n-labeled tree S of valence k. Now 
look at its sequence of finite truncations, S0,S1,... . As a 
consequence of iii in Theorem 0.9B.4, there exists i < j 
such that Si is inf and valence preserving embeddable into 
Sj. This contradicts the construction of the tree of 
counterexamples. QED 
 
THEOREM 0.9B.16. The following are provably equivalent in 
SEFA. 
i. Internal Finite Tree Embedding Theorem. 
ii. Version of i) for structured trees.  
iii. Every primitive recursive descending sequence through 
θΩω stops descending. 
iv. 1-Con(ATI(<θΩω)). 
v. 1-Con(Π1

2-TI0). 
For valence 2, SEFA proves that i) implies 1-Con(ATI(<Γ0)), 
and, equivalently, 1-Con(ATR0).  
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Proof: See [Fr02]. For valence 2, Γ0 here can be raised to 
ordinals considerably higher than, say, Γ∈_0, thereby going 
past ATR. QED 
 
0.9C. Comparability. 
 
A number of Comparability Theorems are known to be 
equivalent to ATR0 over RCA0. They are naturally in Π1

2 form. 
By Theorem 0.9A.3 and the comments after its proof, they 
are not predicatively provable in a strong sense.  
 
The original Comparability Theorem equivalent to ATR0, was 
the comparability of well orderings. See i) in the next 
theorem.  
 
THEOREM 0.9C.1 The following are provably equivalent in 
RCA0.  
i. For any two countable well orderings, there is an order 
preserving map from one onto an initial segment of the 
other.  
ii. For any two countable well orderings, there is an order 
preserving map from one into the other.  
iii. ATR0. 
 
Proof: i ↔ iii is a result of ours that appears in 
[Si99,09], section V.6. (The derivation of ATR0 (ATR) from 
i) in [St76], that was cited in [Si99,09] as an "early" 
version, uses a technical strengthening of Δ11-CA for the 
base theory.) For ii ↔ iii, see [FH90]. QED  
 
THEOREM 0.9C.2. The following are provably equivalent in 
RCA0. 
i. For any two countable metric spaces, there is a 
pointwise continuous one-one map from one into the other. 
ii. For any two sets of rationals, there is a pointwise 
continuous one-one map from one into the other. 
iii. For any two compact well ordered sets of rationals, 
there is a pointwise continuous one-one map from one into 
the other. 
iv. For any two closed sets of reals, there is a pointwise 
continuous one-one map from one into the other.  
v. ATR0. 
 
Proof: See [Fr05a]], Theorem 4.5. We were the first to 
prove i,ii even in ZFC. Comparability for closed sets of 
reals was known much earlier - although we don't know of a 
reference.  
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We now verify v → iv. If A is uncountable, then A has a 
perfect subset (uses ATR0). Hence B will continuously embed 
in A, unless B has interior (this requires at most ACA0). 
But if B has interior, then A continuously embeds in B 
(this is obviously in RCA0). This establishes comparability 
if at least one of the two sets is uncountable. If both are 
countable, then we are in a special case of i). QED 
 
There is a natural descriptive set theoretic consequence 
one can draw immediately from the fact that a Π1

2 sentence 
implies ATR0 over RCA0. Actually we can use ACA. 
 
THEOREM 0.9C.3. Let ϕ be a Π1

2 sentence, and suppose that 
ACA proves ϕ → ATR0. Then ϕ has no Borel choice function.  
 
Proof: Suppose ϕ is (∀x)(∃y)(A(x,y)), where A is 
arithmetical, and ACA proves ϕ → ATR0. Suppose 
(∀x)(A(x,fx)), where f is Borel. Choose a countable set K ⊆ 
℘(ω) such that K is f closed and arithmetically closed. 
Then K forms an ω model of ACA + ϕ, where K is contained in 
the hyperarithmetic sets. Hence K forms an ω model of ATR0, 
contradicting Theorem 0.9A.3. QED  
 
0.10. Incompleteness in Iterated Inductive Definitions and 
Π1

1-CA0. 
 
0.10A. Preliminaries.  
0.10B. Extended Kruskal and Graph Minors.  
0.10C. Extended Hercules Hydra Game. 
0.10D. Equivalences with Π1

1-CA0. 
 
0.10A. Preliminaries. 
 
We discuss three kinds of Concrete Mathematical 
Incompleteness in this section.  
 
The first is our extension of the work on finite trees 
discussed in section 0.9B. The second is an extension of 
the work on the Hercules Hydra Game discussed in section 
0.8E. The third is equivalences with Π1

1-CA0.  
 
Here is the basic proof theoretic information on Π1

1-CA0. 
The theories of iterated inductive definitions, IDn, do not 
have any quantifiers over sets, but instead introduce 
predicate symbols for inductively defined sets. The 
predicates introduced in ID1 correspond to Π1

1 sets, 
whereas, the predicates introduced in IDn, n ≥ 2, correspond 
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to sets Π1
1 in the (n-1)-st hyperjump of 0. ID<ω is the union 

of the IDn, n ≥ 1. See [BFPS81]. 
 
The following reduction of Π1

1-CA0 to ID<ω prepared the way 
for a proof theoretic analysis of Π1

1-CA0 via a proof 
theoretic analysis of the IDn. 
 
THEOREM 0.10A.1. Π1

1-CA0 proves Con(TI). In fact, Π1
1-CA0 

proves the existence of a β-model of TI. Π1
1-CA0 is a 

conservative extension of ID<ω for arithmetical sentences. 
In fact, it is a conservative extension of ID<ω for 
sentences of the form "n lies in Kleene's O".  
 
Proof: For the first two claims, see [Fr69]. For the last 
two claims, see [Fr70]. These papers appeared before my 
focus on systems with only set induction, such as RCA0, 
ACA0, WKL0, ATR0, and Π1

1-CA0, in connection with our 
introduction of the Reverse Mathematics program. These 
systems were introduced in [Fr76] (the systems RCA. WKL, 
ATR in [Fr75], with ACA, Π1

1-CA having been previously 
formulated by others, including S. Feferman and G. 
Kreisel). The proof in [Fr69] is carried out in Π1

1-CA0. In 
[Fr70], the considerably more involved result that Π1

1-CA 
(even Σ12-AC) is a conservative extension ID<∈_0 is 
established. After we introduced the naught systems, it was 
evident that a specialization and simplification of the 
proof establishes the last two claims (even for Σ12-AC0). QED 
 
Here is the basic proof theory for Π1

1-CA0. See [BFPS81], 
[Tak75], and [Sch77] for proofs.  
 
THEOREM 0.10A.2. Π1

1-CA0 is a conservative extension of 
ATR(<θΩω) for Π

1
1 sentences. The provably recursive 

functions of Π1
1-CA0 and ATR(<θΩω) are the <θΩω recursive 

functions. The following are provably equivalent in RCA0. 
i. Π1

1 reflection on Π1
1-CA0. 

ii. θΩω is well ordered. 
These are provable in Π1

1-CA but not in Π1
1-CA0.  

 
For a general treatment of <λ recursive functions via 
descent recursion, see [FSh95]). 
 
THEROEM 0.10A.3. Π1

1-CA0 is a conservative extension of 
ATI(<θΩω). The following are provably equivalent in SEFA.  
i. 1-Con(Π1

1-CA0). 
ii. 1-Con(ATR(<θΩω)). 
iii. 1-Con(ATI(<θΩω)). 
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iv. Every primitive recursive (elementary recursive, 
polynomial time computable) sequence from θΩω stops 
descending. 
These are provable in Π1

1-CA but not in Π1
1-CA0.  

 
0.10B. Extended Kruskal and Graph Minors.  
 
In [Fr82], we sought to strengthen Kruskal's theorem in a 
way that would make it independent of yet stronger systems 
such as Π1

1-CA0. We succeeded with this through our 
introduction of the gap embedding condition. This turned 
out to have profound connections with ongoing work at the 
time by Robertson and Seymour on their Graph Minor Theorem. 
In fact, it completely encapsulates the only logically high 
level part of their proof, at least in the case of bounded 
tree width.  
 
The gap condition concerns the tree classes TR(k;n) and 
STR(k;n) from section 0.9B. Let S,T ∈ TR(k;n) (or 
STR(k;n)). We say that h is a gap embedding from S into T 
if and only if h is an embedding from S into T such that 
for all x,y ∈ V(S), if y is an immediate successor of x, 
then for all z in the gap (hx,hy), l(z) ≥ l(hy).  
 
THEROEM 0.10B.1. The Extended Kruskal Theorem. For k,n ≥ 1, 
TR(k;n) (STR(k;n)) is wqo under inf preserving gap 
embeddability.  
 
Proof: See [Fr82], [Si85]. QED   
 
THEOREM 0.10B.2. The following are provably equivalent in 
RCA0. 
i. Extended Kruskal Theorem (structured and unstructured).  
ii. Extended Kruskal Theorem for full binary trees 
(structured and unstructured). 
iii. θΩω is well ordered.  
These are provable in Π1

1-CA but not in Π1
1-CA0. 

 
Proof: See [Fr82] for i → iii (unstructured), and a proof 
of i) (structured) for each k,n, in Π1

1-CA0. Applying 
0.10A.2, we have i ↔ iii. For ii → i (unstructured), see 
[FRS87]. Also see [Si85] and [Fr02]. QED 
 
Let G,H be finite graphs. We say that G is minor included 
in H if and only if G can be obtained from H (up to 
isomorphism) by successive applications of the following 
operations.  
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i. Deleting a vertex (and all edges involving that vertex). 
ii. Deleting an edge. 
iii. Contracting an edge. I.e., if v,w is an edge, v ≠ w, 
remove w and replace all edges involving w that are not 
loops by replacing w with v.  
 
The Graph Minor Theorem asserts that in any infinite 
sequence of finite graphs, one graph is minor included in a 
later one. The Graph Minor Theorem is proved in a series of 
papers culminating with [RS04].  
 
The entire proof consists of very detailed structure 
theory, with a brief logically strong part, involving 
minimal bad sequence constructions. We communicated our 
earlier Extended Kruskal Theorem to Robertson and Seymour. 
Robertson and Seymour adapted and extended these ideas to 
their later proof of the Graph Minor Theorem.   
 
The Bounded Graph Minor Theorem is the Graph Minor Theorem 
specialized to trees of bounded tree width (see [FRS87]). 
 
Our work on the Extended Kruksal Theorem was applied in a 
striking way to the Graph Minor Theorem in [FRS87]. 
 
THEOREM 0.10B.3. The following are provably equivalent in 
RCA0. 
i. Extended Kruskal Theorem (structured and unstructured). 
ii. Bounded Graph Minor Theorem. 
iii. θΩω is well ordered. 
These are provable in Π1

1-CA but not in Π1
1-CA0. 

 
Proof: See [FRS87]. QED 
 
As before, we obtain subrecursive, recursive, and finite 
forms.  
 
THEOREM 0.10B.4. The following are provably equivalent in 
SEFA.  
i. Extended Kruskal Theorem for primitive recursive 
(elementary recursive, polynomial time computable) 
sequences of finite trees (all four forms above). 
ii. Bounded Graph Minor Theorem for primitive recursive 
(elementary recursive, polynomial time computable) 
sequences of finite graphs. 
iii. 1-Con(Π1

1-CA0). 
iv. 1-Con(ATI(<θΩω)). 
These are provable in Π1

1-CA but not in Π1
1-CA0.  
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Proof: The ordinal assignments involved are very effective, 
and i,ii are Π0

2 statements. Use that for a fixed number of 
labels, or fixed tree width, the statements are provable in 
Π1

1-CA0. QED 
 
THEOREM 0.10B.5. The following are provably equivalent in 
SEFA.  
i. Extended Kruskal Theorem for recursive sequences of 
finite trees (all four forms above). 
ii. Bounded Graph Minor Theorem for recursive sequences of 
finite graphs. 
iii. Every recursive sequence from θΩω

 stops descending. 
iii. 2-Con(Π1

1-CA0). 
iv. 2-Con(ATI(<θΩω)). 
These are provable in Π1

1-CA but not in Π1
1-CA0.  

 
Proof: See the proof of Theorem 0.8H.10. QED 
 
We can proceed with the finite forms. For the Extended 
Kruskal Theorems, there are no surprises. We can use my 
usual finite sequences where the i-th term has at most i+c 
vertices, where the parameter c is universally quantified.   
 
THEOREM 0.10B.6. The following are provably equivalent in 
SEFA.  
i. The Finite Extended Kruskal Theorem (all four forms 
above). 
ii. 1-Con(Π1

1-CA0). 
iii. 1-Con(ATI(<θΩω)). 
These are provable in Π1

1-CA but not in Π1
1-CA0.  

 
In [Fr02], the following Internal Embedding Theorem is 
treated. 
 
THEOREM 0.10B.7. The Internal Finite Tree Gap Embedding 
Theorem. Let k,n ≥ 1 and T ∈ FUTR(k;n) be sufficiently 
tall. There is an inf and valence preserving gap embedding 
from some truncation of T into some truncation of T of 
greater height.  
 
Proof: This appears as Theorem 7.7 in [Fr02]. QED 
 
THEOREM 0.10B.8. The following are provably equivalent in 
SEFA. 
i. Internal Finite Tree Gap Embedding Theorem. 
ii. Variants of i) with structure and/or with valence 2.  
iii. Every primitive recursive sequence from θΩω stops 
descending. 
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iii. 1-Con(ATI(<θΩω)). 
iv. 1-Con(Π1

2-TI0). 
For valence 2, EFA proves that i) implies 1-Con(ATI(<Γ0)), 
and, equivalently, 1-Con(ATR0).  
 
Proof: See [Fr02]. QED 
 
The following Finite Bounded Graph Minor Theorem is treated 
in [FRS87]. 
 
THEOREM 0.10B.9. Finite Bounded Graph Minor Theorem. For 
all p,c ≥ 1 there exists n such that the following holds. 
Let G1,...,Gn be finite graphs of tree-width ≤ p, where each 
|Gi| ≥ i+c. There exist i < j such that Gi ≤m Gj. 
 
Here |G| denotes the sum of the number of vertices and 
edges in G, and ≤m denotes graph minor inclusion. 
 
THEOREM 0.10B.10. The following are provably equivalent in 
SEFA.  
i. The Finite Bounded Graph Minor Theorem.  
ii. Every primitive recursive sequence from θΩω stops 
descending. 
iii. 1-Con(ATI(<θΩω)). 
iv. 1-Con(Π1

1-CA0). 
 
Proof: See [FRS87]. QED 
 
It remains unclear just what is required to prove the full 
Graph Minor Theorem. Its proof has not been subject to a 
logical analysis sufficient to determine a reasonable upper 
bound.  
 
0.10C. Extended Hercules Hydra Game. 
 
The following treatment is taken directly from [Bu87]. 
 
A (Buchholz) hydra is a finite rooted planar labeled tree H 
which has the following properties: 
 
i. The root has label +. 
ii. Any other node of A is labeled by some ordinal α ≤ ω, 
iii. All nodes immediately above the root of H have label 
0. 
 
If Hercules chops off a head (i.e. a top node) s of a given 
hydra, the hydra will choose an arbitrary number n and 
transform itself into a new hydra H(s,n) as follows. Let t 
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be the node of H which is immediately below s, and let H- 
denote the part of H which remains after s has been chopped 
off. The definition of H(s,n) depends on the label of s. 
 
case 1. label(s) = 0. If t is the root of H, we set H(s,n) 
= H-. Otherwise H(s,n) results from H- by sprouting n 
replicas of Ht^-, from the node immediately below t. Here 
Ht^- denotes the subtree of H- determined by t. 
 
case 2. label(s) = u+1. Let e be the first node below s 
with a label v ≤ u. Let T be that tree which results from 
the subtree He by changing the label of e to u and the label 
of s to 0. H(s,n) is obtained from H by replacing s by T. 
In this case H(s,n) does not depend on n. 
 
Case 3: label(s) = ω. H(s,n) is obtained from H simply by 
changing the label of s (which is ω) to n+1. 
 
Let H(n) be H(s,n) where s is the rightmost head. Let (+) 
be the hydra which consists of one node, namely its root. 
Let Hn be the hydra consisting of a chain of n+2 nodes where 
the root has label +, the successor of the root has label 0 
and where all other nodes have label ω. 
 
THEOREM. Let H be a fixed hydra. Π1

1-CA + BI proves that for 
all number theoretic functions F there exists k such that 
H(F(1))(F(2))...(F(k)) = (+). 
 
THEOREM. Π1

1-CA + BI does not prove that for all n there 
exists a k such that Hn(1)(2)...(k) = (+). 
 
0.10D. Equivalences with Π1

1-CA0. 
 
There are a number of interesting equivalences with Π1

1-CA0.  
 
THEOREM 0.10D.1. The following are provably equivalent in 
RCA0. 
i. Every tree of finite sequences of natural numbers with 
an infinite path, has a leftmost infinite path. 
ii. Every tree of finite sequences of natural numbers 
(bits) has a perfect subtree which contains all perfect 
subtrees. 
iii. If a quasi order on N is not a wqo then it has a 
minimal bad sequence.  
iv. Every countable Abelian group G has a divisible 
subgroup which contains all divisible subgroups of G. 
v. Π1

1-CA0. 
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Proof: Clearly v) → i). Assume i). Let T1,T2,... be any 
infinite sequence of finite sequence trees from N. We will 
derive the existence of {i: Ti has an infinite path}. This 
is a well known equivalent of Π1

1-CA0 over RCA0 (see 
[Si99,09], Lemma VI.1.1).  
 
Let S be the tree of sequences x[1],...,x[n], n ≥ 0, from N, 
with the following properties. 
 
a. If p ≤ n is not a power of a prime, then x[p] = 1.  
b. Let p ≤ n be a prime, and r ≥ 1 be largest such that pr ≤ 
n. Then  

b.1. x[p],x[p2],...,x[pr] = 1; or  
b.2. x[p] = 0, and x[p2],...,x[pr] forms a path of 

length r-1 through Ti, starting at an immediate successor of 
the root (a length 1 sequence), where p is the i-th prime, 
and we view each term as coding a finite sequence from N.  
 
S will have the infinite path 1,1,... . Let x[1],x[2],... 
be a (the) leftmost infinite path P through S. Let p be the 
i-th prime. If x[p] = 0 then there is a path through Ti. 
Suppose x[p] = 1 and there is a path Q through Ti. Then we 
can retain the first p-1 terms, lower the p-th term to 0, 
and use Q so that we have another infinite path through S 
which is to the left of P. This is a contradiction. Hence 
x[p] = 0 if and only if there is an infinite path through 
Ti. Therefore {i: Ti has an infinite path} exists. 
 
For ii ↔ v, see [Si99,09], Theorem VI.1.3.  
 
For iii ↔ v, see [Mar96], Theorem 6.5. 
 
In Π1

1-CA0, we can construct the union of all divisible 
subgroups, and so obviously v → iv. Now suppose iv.  
 
In [FSS87] it is shown that "every countable Abelian group 
is a direct sum of a divisible group and a reduced group" 
is equivalent to Π1

1-CA0 over RCA0 (see [Si99,09], Theorem 
VI.4.1). 
 
With a little bit of care, the derivation of Π1

1-CA0 there 
can be accomplished with just iv). QED 
 
Here is a somewhat different kind of example. 
 
THEOREM 0.10D.2. The following are provably equivalent in 
RCA0. 
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i. Every countable algebra with an infinitely generated 
subalgebra has a maximal infinitely generated subalgebra. 
ii. Proposition i) for a single binary function. 
iii. Proposition i) for two unary functions. 
iv. Π1

1-CA0. 
 
Proof: See [Fr05b]. QED 
 
The Borel Ramsey theorem, also known as the Galvin/Prikry 
theorem, asserts the following. Let S ⊆ ℘(N) be Borel. 
There exists an infinite A ⊆ N such that all infinite 
subsets of A lie in S, or all infinite subsets of A lie 
outside S. 
 
With its use of Borel measurable sets of arbitrary high 
countable rank, the Borel Ramsey theorem is an example just 
beyond Concrete Mathematics.  
 
We rely on the standard treatment of Borel sets in ℘(N) in 
order to formulate the Borel Ramsey theorem in the language 
of RCA0. This is achieved through the use of Borel codes, 
and is discussed in some detail in section 0.11.  
 
Π1

1-TR0 consists of ACA0 together with Π1
1 transfinite 

recursion. This is the same as arithmetic transfinite 
recursion - as in ATR0 - except that the formula to which 
transfinite recursion is being applied is allowed to be Π1

1. 
This is equivalent to the existence of the hyperjump 
hierarchy on every countable well ordering, starting with 
any subset of ω.  
 
Borel sets in and functions between complete separable 
metric spaces lie just beyond what we regard as Concrete 
Mathematics. We take finitely Borel to be at the outer 
limits of Concrete Mathematics.  
 
Everything in sections 0.11, 0.12, and much of section 
0.13, will be focused at this borderline between Concrete 
and Abstract Mathematics.   
 
Some care is needed to properly formalize Borel sets and 
functions in RCA0. A standard way of doing this has emerged. 
This will be discussed in section 0.11.   
 
The Borel Ramsey Theorem sits in the context of ℘(N) as a 
complete separable metric space, under d(A,B) = 2-n, where n 
= min(A Δ B) if A ≠ B; 0 otherwise. It asserts that for any 
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Borel S ⊆ ℘(N), there exists infinite A ⊆ N such that ℘(A) 
⊆ S or ℘(A) ∩ S = ∅.   
 
THEOREM 0.10D.3. The following are provably equivalent in 
RCA0. 
i. The Borel Ramsey Theorem (or Galvin/Prikry Theorem). 
ii. Π1

1-TR0. 
 
Proof: See [Tan89]. QED  
 
THEOREM 0.10D.4. The following are provably equivalent in 
RCA0. 
i. The Borel Ramsey Theorem (or Galvin/Prikry Theorem) for 
finitely Borel subsets of ℘(N). 
ii. (∀x ⊆ N)(∀n)(the n-th hyperjump of x exists).  
In particular, i implies Π1

1-CA0, and follows from Π1
1-CA 

(Π1
1-CA0 with full induction). 

 
L. Gordeev and I. Kriz have proved some transfinite 
extensions of my Extended Kruskal Theorem (Theorem 0.10B.1) 
using much stronger principles than Π1

1-CA0. See [Gor89], 
[Gor90], [Gor93], [Kri89a], [Kri89b], [Kri95]. The proof of 
the main theorem of [Kri89b] given there (which was a 
conjecture of mine) requires Π-

2-CA0. However, this was 
later sharply reduced to Π1

1-TR0 by [Gor90], [Gor93], with a 
reversal to a level corresponding to Π1

1-TR0.  
 
There are a number of interesting mathematical statements 
which have been proved using systems significantly stronger 
than Π1

1-CA0 - but it remains unknown whether that is 
necessary. We have already mentioned the Graph Minor 
Theorem. 
 
Nash-Williams proved that infinite trees are wqo under inf 
preserving embeddability. See [NW65], [NW68], where his 
notions of better quasi orders and minimal bad arrays were 
introduced. He uses much stronger principles than Π1

1-CA0. 
It is not known whether this is required. [Si85a] 
simplifies the notion of better quasi order. Also see 
[EMS87]. 
 
R. Laver proved in [La71] that the linear orderings on N 
form a wqo under embeddability. This is known as Fraïssé's 
conjecture. In [Sho93] this theorem is shown to imply ATR0 
over RCA0. However, it is not known if ATR0 is sufficient, 
or even whether Π1

1-CA0 and much stronger systems are 
sufficient. Π1

2-CA0 certainly suffices. [Si85a] simplifies 
the proof of Fraïssé's conjecture. 
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0.11. Incompleteness in Second Order Arithmetic and ZFC\P. 
 
0.11A. Preliminaries. 
0.11B. Borel Determinacy in Z2. 
0.11C. Borel Diagonalization.  
0.11D. Borel Inclusion for ℜ∞ → ℜ), ℜ∞ → ℜ∞, GRP → GRP. 
0.11E. Borel Subalgebra Theorems.  
0.11F. Borel Squaring Theorem and Function Agreement. 
 
0.11A. Preliminaries. 
 
The system Z2 of "(full) second order arithmetic", and the 
closely related ZFC\P, ZF\P, have been discussed in section 
0.4.  
 
It will be useful to have a system stronger than Z2, which 
suffices to prove the various statements presented in this 
section, that are not provable in Z2.  
 
For this purpose, it is convenient to use a weak fragment 
of Z3 = "(full) third order arithmetic". Here Z3 has three 
sorts: N, PN, PPN. We use 0,S,+,•,∈, where 0,S,+,• live in 
N, and ∈ connects N to PN, and PN to PPN. We will have 
equality only for sort N.  
 
Recall the axioms of Z2: 
 
1. Sx ≠ 0, Sx = Sy → x = y, x+0 = x, x+Sy = S(x+y), x•0 = 
0, x•Sy = (x•y)+x.  
2. 0 ∈ A ∧ (∀x)(x ∈ A → Sx ∈ A) → x ∈ A. 
3. (∃A)(∀x)(x ∈ A ↔ ϕ), where ϕ is any formula in L(Z2) in 
which A is not free.  
 
The axioms of Z3 are very similar. The terms of sort N are 
the same as for Z2. The atomic formulas are the equations 
between terms of sort N, and t ∈ x, x ∈ A, where x is a 
variable of sort PN and A is a variable of sort PPN. 
Formulas are built up as usual using the connectives and 
sorted quantifiers.  
 
1. Sx ≠ 0, Sx = Sy → x = y, x+0 = x, x+Sy = S(x+y), x•0 = 
0, x•Sy = (x•y)+x.  
2. 0 ∈ A ∧ (∀x)(x ∈ A → Sx ∈ A) → x ∈ A. 
3. (∃A)(∀x)(x ∈ A ↔ ϕ), where ϕ is any formula in L(Z3) in 
which A is not free.  
4. (∃α)(∀A)(A ∈ α ↔ ϕ), where ϕ is any formula in L(Z3) in 
which α is not free.  
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The axioms of WZ3 are very convenient (W for "weak"). The 
only change is that in axiom 4, we require that there be no 
quantifiers over PPN. WZ3 is enough to extend the projective 
hierarchy along ω1. Z3 proves the existence of a beta model 
of WZ3, and much more.  
 
In this section 0.11, we will focus entirely on the outer 
limits of Concrete Mathematical Incompleteness, in that we 
will be using  
 

Borel measurable sets in and functions between  
complete separable metric spaces 

 
throughout. We take finitely Borel to lie within Concrete 
mathematics, and arbitrary Borel to lie just outside.  
 
In each case in this section, the incompleteness from Z2 
will emerge already using only Borel objects of finite rank 
in the Borel hierarchy (i.e., finitely Borel). In section 
0.12, when we use Zermelo set theory, the incompleteness 
will emerge at Borel rank ω.  
 
Our position that the finite levels of the Borel hierarchy 
for complete separable metric spaces lies at the outer 
limit of the Mathematically Concrete was discussed in 
section 0.3, with Theorem 0.3.1 used as some justification 
- particularly item ii there. 
 
Let X be a complete separable metric space. We define the 
classes Σα and Πα of subsets of X, α < ω1, as follows.  
 
Σ0 consists of the sets of the form {y: d(x,y) < q}, for x ∈ 
X and positive rationals q. Π0 consists of the sets of the 
form {y: d(x,y) ≥ q}, for x ∈ X and positive rationals q.  
 
For 0 < α < ω1, Σα consists of unions of sequences of sets 
from the Πβ, β < α, and Πα consists of intersections of 
sequences of sets from the Σβ, β < α.  
 
The Borel subsets of X are the sets that are in Σα, for some 
α < ω1. It is easily seen that the Borel sets form the least 
σ algebra of subsets of X containing all elements of Σ0.  
 
It is also clear that each Πα is the set of complements of 
the elements of Σα. Also, for 0 ≤ α ≤ β < ω1, Σα ⊆ Σβ and Πα 
⊆ Πβ.  
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If X is uncountable, then for all β < ω1, Σβ ≠ Σβ+1, and Πβ ≠ 
Πβ+1.  
 
This is equivalent to the definition of the Borel hierarchy 
given in [Ke95], 11.B, p. 68, where these claims are 
proved.  
  
We focus on the functions f:X → Y, where X,Y are complete 
separable metric spaces. We say that f is Borel (Borel 
measurable) if and only if the inverse image of every open 
subset of Y is a Borel subset of X.   
 
We also define the following important hierarchy of 
functions. 
 
Baire class 0 consists of the f:X → Y which are pointwise 
limits of continuous f:X → Y.  
 
For 0 < α < ω1, Baire class α consists of the f:X → Y that 
are the pointwise limit of a sequence of g:X → Y that 
pointwise converges, where for each g there exists β < α 
such that g is in Baire class β.  
 
We say that f:X → Y is Baire if and only if f is in Baire 
class α, for some α < ω1.  
 
It is a standard theorem of descriptive set theory that the 
Baire functions are exactly the Borel functions (in the 
context of f:X  → Y, where X,Y are complete separable 
metric spaces). See [Ke95], Theorem 24.3, p. 190,  
 
Some authors define the Baire classes a little differently, 
where they start at Baire class 1, and define f:X → Y to be 
of Baire class 1 if and only if the inverse image of every 
open subset of Y is a Σ2 subset of X.  
 
According to [Ke95], Theorem 24.10, this definition agrees 
with our definition above (pointwise limits of continuous 
functions) in the case Y = ℜ.  
 
We must formalize these notions appropriately in L(RCA0). 
Some care is required. We adopt the approach of [Si99,09].  
 
Firstly, complete separable metric spaces are defined in 
L(RCA0) by means of codes. We henceforth refer to these 
spaces as Polish spaces.  
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As in [Si99,09], Definition II.5.1, a code for a Polish 
space T is a nonempty set A ⊆ N together with a function 
d:A2 → ℜ obeying the usual metric conditions. Points in T 
are then defined as infinite sequences from A that form a 
Cauchy sequence (using the estimates 2-i). We don't factor 
out by the obvious equivalence relation. Similarly, when 
developing ℜ as Cauchy sequences, we also don't factor out.  
 
The metric d extends naturally to T, A becomes dense in T, 
and Cauchy completeness holds for the elements of T.  
 
Open subsets of X are coded by sequences of pairs (a,q), 
where a ∈ A and q > 0 is rational. Membership of x ∈ T in 
the open set means that d(a,x) < q. Closed subsets of X are 
viewed as complements of open sets. 
 
Continuous functions from X into Y are coded in L(RCA0) by 
means of systems of neighborhood conditions. In [Si99,09], 
Definition II.6.1, they are sets of quintuples from N x A x 
Q+ x B X Q+, where A,B ⊆ N are attached to the Polish spaces 
X,Y.   
 
For Borel subsets of X, the usual vehicle for formalization 
in the language of RCA0 is through Borel codes. These are 
well founded trees of finite sequences from N where at the 
terminal vertices, there is a label (a,q), where a ∈ A and 
q > 0 is rational. The idea is that x ∈ X is accepted at a 
terminal vertex with label (a,q) if and only if d(a,x) < q, 
and accepted at an internal vertex v if and only if  
 
case 1. v is of odd length (as a finite sequence from N). x 
is accepted at some immediate successor of v. 
 
case 2. v is of even length. x is not accepted at any 
immediate successor of v.  
 
Finally, x is considered to be in the Borel set with the 
given Borel code, if and only if x is accepted at the root 
of the tree.  
 
A similar Borel coding scheme can be introduced for Borel 
functions f:X → Y that corresponds to the Baire classes.  
 
This whole coding apparatus is very delicate for weak 
systems, particularly for RCA0, since in order to get 
accepted, a certain transfinite recursion must be realized. 
In weak systems, we can only provably realize very special 
transfinite recursions. To a much lesser extent, issues 
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arise in weak systems with regard to the codings of open 
and closed sets, and continuous functions.  
 
We have no need to confront these issues in this section 
0.11. The statements being reversed here derive ATR0 over 
RCA0, using very little of this coding. We are then free to 
use ATR0 as a base theory when dealing with Borel sets in 
and functions between Polish spaces.  
 
0.11B. Borel Determinacy in Z2. 
 
Determinacy concerns (two person zero sum) infinite games, 
where players I,II alternately play nonnegative integers, 
starting with player I. The outcome of the game is the 
element of N∞ that results from the play of the game.  
 
Specifically, for any A ⊆ NN, we consider the game G[A], 
where player I is considered the winner if the outcome of 
the game is an element of A. Otherwise, player II is 
considered to be the winner.  
 
We say that G[A] is determined if and only if one of the 
two players has a winning strategy. It is well known that 
there exists A ⊆ NN for which G[A] has no winning strategy. 
See [GS53], [Ka94], chapter 6.  
 
However, the proof of the existence of non determined G[A] 
does not produce an A that is definable in set theory. 
There has been much work concerning the determinacy of 
G[A], where A is explicitly definable in various senses. 
These investigations are tied up with large cardinal 
hypotheses. We refer the reader to [Mart69], [MSt89], 
[Ke95], [Lar04], [St09], [Ne∞], [KW∞].  
 
Let K be a class of subsets of NN. K determinacy asserts 
that for all A ∈ K, the game G[A] is determined. 
Henceforth, we will be focused on K contained in the class 
of all Borel subsets of NN.  
 
The original "proof" of Borel determinacy was not conducted 
in ZFC. 
 
THEOREM 0.11B.1. Assume that a measurable cardinal exists. 
Then Borel determinacy holds. I.e., all Borel subsets of NN 
are determined. In fact, the weaker large cardinal 
hypothesis (∀α < ω1)(∃κ)(κ → α) suffices.   
 
Proof: See [Mart69], [Ke95], section 20. QED 



 134 

 
Later, we showed that any proof of Borel determinacy in ZFC 
is not going to be "normal". 
 
THEOREM 0.11B.2. There is no proof of Borel determinacy in 
Zermelo set theory with the axiom of choice (ZC). In fact, 
no countable transfinite iteration of the power set 
operation suffices.  
 
Proof: See [Fr71]. We will discuss what exactly we mean by 
the second claim, in section 0.12. QED 
 
A few years later, the gap between Theorems 0.11B.1 and 
0.11B.2 was filled. 
 
THEOREM 0.11B.3. Borel determinacy can be proved in ZFC. In 
fact, it suffices to use all countably transfinite 
iterations of the power set operation.  
 
Proof: See [Mart75], [Ke95]. QED 
 
Note that Theorems 0.11B.2 and 0.11B.3 properly lie in the 
domain of section 0.12.  
 
There has been considerable work on determining just where 
in the Borel hierarchy determinacy is provable in full 
second order arithmetic, Z2. This investigation has 
culminated in [MS∞], providing a complete answer. 
 
Note that determinacy for the classes Borel, Σ0n, Π0

n, and 
Δ0n, are Π1

3 statements. So we can use ZFC\P or ZF\P, as all 
three of these systems prove the same Π1

3 sentences. In 
fact, they prove the same Σ14 sentences, as is shown in 
[MS∞], Proposition 1.4 (although this is certainly not due 
to them, but it is not clear who first proved this). Here 
\P indicates "without the power set axiom". 
 
Here is the historical record of Borel determinacy in Z2. 
 
Borel determinacy. Not provable in Zermelo set theory with 
the axiom of choice. Not provable using only countably many 
transfinite iterations of the power set operation, [Fr71]. 
See section 0.12 for precise formulations. 
 
Σ05 determinacy. Not provable in Z2. [Fr71]. 
 
Borel determinacy. Proved in ZFC\P + "the cumulatively 
hierarchy on any well ordering of ω exists". [Mart75]. 
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Σ04 determinacy. Not provable in Z2. [Mart74].  
 
Σ01 determinacy. Equivalent to ATR over RCA. [St76]. Refined 
in [Si99,09] to equivalence with ATR0 over RCA0. 
 
Σ01 ∧ Π0

1 determinacy. Equivalent to Π1
1-CA0 over RCA0. 

[Tan90]. 
 
Δ02 determinacy. Equivalent to Π1

1-TR0 over RCA0. [Tan90].  
 
Σ02 determinacy. Provable in Π1

2-CA0, but not in Π1
1-TR0. 

[Tan91].  
 
Δ03 determinacy. Provable in Δ13-CA, but not in Δ13-CA0. 
[MT08]. 
 
Σ03 determinacy. Provable in Π1

3-CA0. [Wel09]. 
 
Boolean combinations of Σ03 determinacy. Not provable in Z2.  
For n-fold combinations, fixed n < ω, provable in Z2, 
[MS∞].  
 
0.11C. Borel diagonalization on ℜ. 
 
We discovered Borel diagonalization on ℜ by reflecting on 
Cantor's proof that ℜ is uncountable. Put in very basic 
terms, Cantor proved by diagonalization that  
 

*) in any infinite sequence of real numbers,  
some real number is missing. 

 
It occurred to me to consider witness functions for *). Let 
us say that F:ℜ∞ → ℜ is a diagonalizer if and only if (∀x 
∈ ℜ∞)(∀n ∈ Z+)(F(x) ≠ xn).  
 
For any topological space X, X∞ is the infinite product 
space defined in the usual way. It is well known that if X 
is (can be made into) a complete separable metric space, 
then X∞ is (can be made into) a complete separable metric 
space.  
 
Cantor's diagonalization argument easily establishes the 
existence of a diagonalizer F:ℜ∞ → ℜ.  
 
LEMMA 0.11C.1. There is no continuous diagonalizer F:ℜ∞ → 
ℜ. There is no continuous diagonalizer F:I∞ → I. 
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Proof: Let F:ℜ∞ → ℜ be a continuous diagonalizer. Let α ∈ 
ℜ∞ be an enumeration of the rationals. Consider F(x,α) as a 
function of x ∈ ℜ.  
 
case 1. F is constant. Let c be the constant. Then F(c,α) = 
c, which is impossible. 
 
case 2. F is not constant. Let F(x,α) ≠ F(y,α), x < y. By 
the intermediate value theorem there exists x < z < y such 
that F(z,α) ∈ Q. This is also impossible.  
 
We can easily repeat the argument with ℜ replaced by I. QED 
 
We now construct a diagonalizer F:I∞ → I in Baire class 1.  
 
Let x ∈ I∞. First write the coordinates of x in base 2, 
always using infinitely many 0's. Then diagonalize in the 
usual way to construct u ∈ {0,1}∞ which differs from these 
base 2 expansions. I.e., ui = 1 - xi', where xi' is this 
expansion of xi in base 2.  Take F(x) to be the evaluation 
of u in I.  
 
For w ∈ {0,1}k, k ≥ 1, write w* ∈ I for the evaluation of w 
in base 2.  
 
LEMMA 0.11C.2. Let w ∈ {0,1}k, k ≥ 1. A = {x ∈ I∞: F(x) ∈ 
[w*,w*+2-k)} is Δ02 in I∞.  
 
Proof: Let w be given. Let x ∈ I∞. Note that x ∈ A if and 
only if  
 
F(x) has base 2 expansion starting with w. 
 
(∃v1,...,vk ∈ {0,1}k)(∀i ∈ {1,...,k})(vi is the first k 
terms of the base 2 expansion of xi, and the standard 
diagonal construction produces w from v1,...,vk).  
 
(∃v1,...,vk ∈ {0,1}k)(∀i ∈ {1,...,k})(xi ∈ [vi,vi+2-k) and 
the standard diagonal construction produces w from 
v1,...,vk).  
 
QED 
 
LEMMA 0.11C.3. Let V ⊆ I be open. Then F-1(V) is Σ02 in I∞.  
 
Proof: Since every open subset of I is the countable union 
of intervals of the form [w*,w*+2-k), w ∈ {0,1}k, k ≥ 1, 
this is immediate from Lemma 0.11C.2. QED  
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LEMMA 0.11C.4. Let F:I∞ → I, and suppose that the inverse 
image of any open set in I under F is Σ02 in I∞. Then F is 
in Baire class 1. 
 
Proof: By Theorem 24.3 in [Ke95], p. 190, credited to 
Lebesgue, Hausdorff, and Banach. QED 
 
THEOREM 0.11C.5. There is a diagonalizer F:I∞ → I in Baire 
class 1, but none that is continuous. There is a 
diagonalizer G:ℜ∞ → ℜ in Baire class 1, but none that is 
continuous. There is a continuous diagonalizer H:X∞ → X, 
where X is {0,1} or X = N.   
 
Proof: The first claim is immediate from Lemmas 0.11C.1, 
0.11C.3, and 0.11C.4. For the second claim, take G(x) = 
f(x'), where each x'i = 0 if xi ≤ 0; 1 if xi ≥ 1; x 
otherwise. Note that G:ℜ∞ → ℜ is a diagonalizer, and x' 
defines a continuous function of x. Hence G is in Baire 
class 1. The last claim is essentially due to Cantor, with 
his diagonal argument. QED 
 
We realized that in the constructions of diagonalizers F:ℜ∞ 
→ ℜ, the values F(x1,x2,...) seem to depend critically on 
the order in which the x's appear.  
 
So we were led to the question: is there a diagonalizer 
F:ℜ∞ → ℜ which is suitably invariant? I.e., where for all 
x,y ∈ ℜ∞, if x is "similar" to y, then F(x) = F(y)? 
 
The weakest notion of "similar" that we consider in this 
section is "having the same coordinates" or "having the 
same image". I.e., rng(x) = rng(y), for x,y ∈ ℜ∞. Here 
rng(x) is the set of all coordinates of x.  
 
Thus we say that f:ℜ∞ → ℜ is image invariant if and only if 
for all x,y ∈ ℜ∞, rng(x) = rng(y) → F(x) = F(y). 
 
Of course, this definition applies to f:X∞ → X, where X is 
any set whatsoever.  
 
THEOREM 0.11C.6. There is an image invariant diagonalizer 
f:ℜ∞ → ℜ. In fact, there is an image invariant diagonalizer 
f:X∞ → X if and only if X is uncountable.  
 
Proof: By the axiom of choice. QED 
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Note that the proof of Theorem 0.11C.6 does not produce a 
definable example - even for the first claim. A related 
observation is that it proves the claim in ZFC, but not 
even the first claim is proved in ZF.  
 
We will take this matter up in section 0.13, where we show 
that there is no definition that ZFC proves is an example 
for the first claim, and that ZF does not suffice to prove 
the existence of an example for the first claim.  
 
We now come to a Concrete Mathematical Incompleteness 
result.  
 
THEOREM 0.11C.7. Borel Diagonalization Theorem. There is no 
image invariant Borel diagonalizer f:ℜ∞ → ℜ. This is 
provable in WZ3 but not in Z2. 
 
Proof: See [Fr81]. The unprovability from Z2 was proved 
there by first considering pZ2, which is Z2 formulated 
without parameters. We established the equiconsistency of 
pZ2 and Z2, and other relationships, and then showed how the 
Borel Diagonalization Theorem gives rise to an ω model of 
pZ2, and hence of Z2. We relied on our earlier experience 
with ZF formulated without parameters, from our Ph.D. 
thesis. See [Fr67] and [Fr71a]. QED  
 
0.11D. Borel Inclusion for ℜ∞ → ℜ, ℜ∞ → ℜ∞, GRP → GRP. 
 
We now consider these three notions of similarity. 
 
1. y is a permutation of x. 
2. y is a permutation of x that moves only finitely many 
positions. Such permutations are called finitary 
permutations.  
3. x,y have the same image. 
 
The associated conditions on F:ℜ∞ → ℜ are respectively 
called permutation invariant, finitary permutation 
invariant, and image invariant. 
 
We also consider shift invariance. We say that F:ℜ∞ → ℜ is 
shift invariant if and only if for all x ∈ ℜ∞, F(sx) = 
F(x). Here sx = shift of x, is the result of removing the 
first term of x.  
 
We also find it convenient to switch to positive 
phraseology. We define an inclusion point of F:ℜ∞ → ℜ as an 
x ∈ ℜ∞ such that F(x) is a coordinate of x.  
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THEOREM 0.11D.1. Borel Inclusion Point Theorem for ℜ∞,ℜ. 
Every permutation (finitary permutation, image, shift) 
invariant Borel F:ℜ∞ → ℜ has an inclusion point. All four 
forms are provable in WZ3, but none are provable in Z2. 
 
Proof: These results are proved by straightforward 
adaptations of the methods in [Fr81]. QED  
 
We now consider F:ℜ∞ → ℜ∞. Here we say that x is an 
inclusion point for F if and only if F(x) is a subsequence 
of x.  
 
There are many natural notions of invariance here.  
 
a. Permutation commuting. This means that for all x ∈ ℜ∞ 
and permutations π, f(πx) = πf(x). 
 
b. Finitary permutation commuting. This means that for all 
x ∈ ℜ∞ and finite permutations π, f(πx) = πf(x).  
 
c. Permutation invariant. This means that for all x,y ∈ ℜ∞, 
if y is a permutation of x then F(x) = F(y).  
 
d. Finitary permutation invariant. This means that for all 
x,y ∈ ℜ∞, if y is a finite permutation of x then F(x) = 
F(y).  
 
e. Permutation preserving. This means that for all x,y ∈ 
ℜ∞, if y is a permutation of x then F(y) is a permutation 
of F(x). 
 
f. Finitary permutation preserving. This means that for all 
x,y ∈ ℜ∞, if y is a finitary permutation of x then F(y) is 
a finitary permutation of F(x). 
 
g. Image invariant. This means that for all x,y ∈ ℜ∞, 
rng(x) = rng(y) → F(x) = F(y).  
 
h. Image preserving. This means that for all x,y ∈ ℜ∞, 
rng(x) = rng(y) → rng(F(x)) = rng(F(y)).  
 
i. Shift invariant. This means that for all x ∈ ℜ∞, F(sx) = 
F(x). 
 
j. Shift commuting. This means that for all x ∈ ℜ∞, F(sx) = 
s(F(x)).  
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k. Tail invariant. This means that for all x,y ∈ ℜ∞, if x,y 
have a common tail, then F(x) = F(y). 
 
l. Tail preserving. This means that for all x,y ∈ ℜ∞, if 
x,y have a common tail, then F(x),F(y) have a common tail.  
 
THEOREM 0.11D.2. Borel Inclusion Theorem for ℜ∞,ℜ∞. Every 
Borel F:ℜ∞ → ℜ∞ with any of a-l has an inclusion point. All 
twelve forms are provable in WZ3, but none are provable in 
Z2.  
 
Proof: These results are proved by straightforward 
adaptations of the methods in [Fr81]. QED  
 
Let GRP be the space of groups whose domain is N or a 
finite subset of N. Then GRP is a low level Borel subspace 
of a natural Baire space.  
 
Let F:GRP → GRP. An inclusion point for F is some G ∈ GRP 
such that F(G) is embeddable into G.   
 
We say that F:GRP → GRP is isomorphic preserving if and 
only if for all G,H ∈ GRP, G ≈ H → F(G) ≈ F(H).  
 
We write FGG for the subspace of finitely generated 
elements of GRP. 
 
LEMMA 0.11D.3. Any two elements of FGG that agree on their 
intersection have a common extension in FGG.  
 
Proof: This is by the free product construction. QED 
 
Let FGG be the subspace consisting of the finitely 
generated G ∈ GRP. 
 
THEOREM 0.11D.4. Every isomorphic preserving Borel function 
F:GRP → GRP has an inclusion point. This is provable in WZ3 
but not in Z2. In fact, Z2 does not even prove this for 
F:GRP → FGG. The same results hold for finitely Borel 
functions.  
 
Proof: Let F be as given with Borel code u. Let M be a 
countable transitive model of a weak fragment of ZFC + V = 
L containing u. Then F will remain isomorphic preserving in 
M. Build a generic tower of finitely generated groups of 
length ω, using finite length towers of finitely generated 
groups as the forcing conditions (this will collapse ω1 to 
ω). Let G be the union of the tower. Then F(G) is 



 141 

embeddable into G using Lemma 0.11D.3, and that the FGG of 
the generic extension is the same as the FGG of the ground 
model. The proof can be adapted to be formalized in WZ3. For 
the final claim, let G ∈ GRP. Look at the union V of all 
Turing degrees associated with the finitely generated 
subgroups of G, and get a Turing degree that's missing, 
assuming that V is not a model of parameterless Z2. Then 
output the H ∈ FGG associated with this Turing degree, as 
in [Fr07a]. The reduction of Z2 to parameterless Z2 is 
presented and used in [Fr81]. QED  
 
THEOREM 0.11D.5. Let X be a Borel set of relational 
structures in a finite relational type with domain N or a 
finite subset of N. Suppose any two finitely generated 
substructures of any two respective elements of X that 
agree on their intersection have a common extension in X. 
Then every isomorphic preserving Borel function F:X → X has 
an inclusion point.   
 
Proof: We have just isolated the essential feature needed 
to carry out the proof of Theorem 0.11D.4, which is Lemma 
0.11D.3. QED 
 
THEOREM 0.11D.6. Theorem 0.11D.5 is provable in WZ3 but not 
in Z2. The same holds for finitely Borel sets and functions. 
 
Proof: By Theorem 0.11D.4 and the proof of Theorem 0.11D.5. 
QED 
 
0.11E. Borel Squaring Theorem and Function Agreement.  
 
We seek a one dimensional form of the results on ℜ∞. Let K 
be the Cantor space {0,1}∞, indexed from 1. For x ∈ K, the 
"square" of x, written x(2), is given by  
 

x(2) = (x1,x4,x9,x16,...). 
 
THEOREM 0.11E.1. Borel Squaring Theorem. Every shift 
invariant Borel F:K → K maps some argument into its 
"square". I.e., there exists x ∈ K such that F(x) = x(2). 
This is provable in WZ3 but not in Z2. The same results hold 
for finitely Borel F.  
 
Proof: See [Fr83]. QED 
 
In [Fr83], we went on to try to prove such a one 
dimensional theorem for the circle group S, where 2x on S 
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replaces s(x) on K. Thus we say that F:S → S is doubling 
invariant if and only if for all x ∈ S, F(2x) = F(x). 
 
But we were not able to find a nice function on S like 
"squaring" on K. However, we were able to find a continuous 
function on S that works. 
 
THEOREM 0.11E.2. There is a continuous F:S → S which agrees 
somewhere with every doubling invariant Borel G:S → S. This 
is provable in WZ3 but not in Z2. The same results holds for 
finite Borel G.  
 
Proof: See [Fr83]. QED 
 
This opens up two closely related research topics: 
 
Find a simple function that agrees somewhere with every 
function satisfying a given condition.  
 
Find a function obeying a first given condition that agrees 
somewhere with every function satisfying a second given 
condition.  
 
The results of section 0.11D can be put into the same form 
illustrated by Theorems 0.11E.1 and 0.11E.2, as follows.   
 
THEOREM 0.11E.3. The first coordinate function from ℜ∞ into 
ℜ agrees somewhere with every invariant Borel F:ℜ∞ → ℜ, in 
the various senses discussed in section 0.11D.  
 
Proof: By [Fr81], [Fr83], and sometimes straightforward 
adaptation of the methods there. QED.  
 
0.12. Incompleteness in Russell Type Theory and Zermelo Set 
Theory. 
 
0.12A. Preliminaries. 
0.12B. Borel Determinacy and Symmetric Borel Sets.  
0.12C. Borel Selection.  
0.12D. Borel Inclusion with Equivalence Relations. 
0.12E. Borel Functions on Linear Orderings and Graphs. 
0.12F. Borel Functions on Borel Quasi Orders. 
0.12G. Countable Borel Equivalence Relations and Quasi 
Orders.  
0.12H. Borel Sets and Functions in Groups. 
 
0.12A. Preliminaries. 
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By Russell's Type Theory, we will mean his impredicative 
theory (obtained from his predicative theory using his 
axiom of reducibility), with the ground type corresponding 
to N. This modern form, which we call RTT, uses infinitely 
many sorts N,PN,PPN,..., with 0,S,+,• operating at type N, 
and ∈ connecting each sort with the next. We use equality 
only at sort N. The axioms are as follows. 
 
1. Sx ≠ 0, Sx = Sy → x = y, x+0 = 0, x+Sy = S(x+y), x•0 = 
0, x•Sy = x•y + x, where x,y have type N. 
2. 0 ∈ A ∧ (∀x)(x ∈ A → Sx ∈ A) → x ∈ A, where x has type 
N and A has type PN.  
3. (∃A)(∀B)(B ∈ A ↔ ϕ), where ϕ is a formula of L(RTT), 
and A has type one higher than B.  
 
The fragment involving only variables of the first n types, 
including N, is called Zn, or n-th order arithmetic.  
 
It proved quite awkward to formalize mathematics in RTT, 
even in its modern form. So it was supplanted by the single 
sorted system Z (Zermelo set theory), and later with 
Fraenkel's addition of Replacement, forming ZF. Still 
later, the axiom of choice became fully accepted, forming 
ZFC.  
 
Z is a one sorted system with one binary relation symbol ∈, 
in first order predicate calculus with equality. The axioms 
of Z are as follows. 
 
EXTENSIONALITY. (∀x)(x ∈ y ↔ x ∈ z) → y = z. 
PAIRING. (∃x)(y ∈ x ∧ z ∈ x). 
UNION. (∃x)(∀y)(∀z)(y ∈ z ∧ z ∈ w → y ∈ x). 
SEPARATION. (∃x)(∀y)(y ∈ x ↔ y ∈ z ∧ ϕ), where x is not 
free in ϕ. 
POWER SET. (∃x)(∀y)((∀z)(z ∈ y → z ∈ w) → y ∈ x). 
INFINITY. (∃x)(∅ ∈ x ∧ (∀y,z)(y ∈ x ∧ z ∈ x → y ∪ {z} ∈ 
x)). 
 
This modern version of Z differs from what Zermelo wrote in 
[Ze08]. There he included the Axiom of Choice, and also 
used this form of Infinity:  
 

(∃x)(∅ ∈ x ∧ (∀y)(y ∈ x → {y} ∈ x)). 
 
In the case of ZF, this, and other reasonable formulations 
of Infinity such as the most common  
 

(∃x)(∅ ∈ x ∧ (∀y)(y ∈ x → y ∪ {y} ∈ x)) 
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are provably equivalent from the remaining axioms. This is 
not the case for Z - see [Math01], Concluding Remarks. 
However, it is known that the variants of Z determined by 
reasonable formulations of Infinity are mutually 
interpretable.  
 
Note that this version of Z can prove (∀n < ω)(V(ω+n) 
exists), but cannot prove the existence of V(ω+ω). The 
former is enough to prove the consistency of RTT (see 
below).  
 
We write ZC for Z together with the axiom of choice: 
 
CHOICE. If x is a set of pairwise disjoint nonempty sets, 
there is a set which has exactly one element in common with 
each of the elements of x.   
 
It is natural to weaken Separation in Z, where only Δ0 
formulas are allowed. We refer to this as WZ, where W 
indicates "weak". This is also sometimes called MacLane set 
theory. We also consider WZC = WZ + AxC.  
 
We also use WZ(Ω), which is WZ + "every well ordering of ω 
is isomorphic to an ordinal" + "for all countable ordinals 
α, V(α) exists".  
 
The notions of ω model and β model are used for theories 
whose language extends that of Z2, or the language of set 
theory. An ω model is a model where the internal natural 
numbers are standard. A β model is an ω model where if an 
internal binary relation on the internal natural numbers 
is, internally, a well ordering, then it is a well 
ordering.  
 
THEOREM 0.12A.1. Z proves the existence of a countable β 
model of RTT and WZC. WZ is a conservative extension of 
RTT, in the sense that any theorem of WZ that is suitably 
typed, is also a theorem of RTT. 
 
Proof: For the first claim, Z can develop truth for bounded 
formulas, construct the proper class of constructible 
elements of the proper class V(ω+ω), and pass to the 
internally definable elements. This forms the required β 
model. The conservative extension result is most easily 
proved model theoretically, expanding any model of RTT to a 
model of WZ. QED 
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In this section, we prove a number of equivalences over 
ATR0. Four main principles arise in this connection. 
 
We make the following definition in ATR0. Let (A,R) be a 
well ordering, A ⊆ N. A countable R model is a triple 
(B,S,rk), where  
 
i. B ⊆ N, S ⊆ B2, and rk:B → A is surjective. 
ii. rk(x) ≤ u ↔ (∀y)(S(y,x) → rk(y) < u). 
iii. If E ⊆ B is definable in (B,S) and u ∈ A, then there 
is a unique x ∈ B whose S predecessors are exactly the 
elements of E of rank < u.  
 
Assume (A,R) has length > ω, and let (B,S,rk) be a 
countable R model. There is an obvious mapping from every n 
∈ ω to a point n* in (B,S,rk) with rk(n*) = n. We say that 
(B,S,rk) encodes x ⊆ ω if and only if there exists u ∈ B 
such that x = {n: S(n*,u)}.  
 
FRA (finite rank axiom). For each n < ω and x ⊆ ω, there is 
a countable ω+n model that encodes x.  
 
BFRA (beta finite rank axiom). For each n < ω and x ⊆ ω, 
there is a countable ω+n model that encodes x, which is a β 
model. 
 
CRA (countable rank axiom). For each well ordering (A,R), A 
⊆ N, with a limit point, and x ⊆ ω, there is a countable R 
model that encodes x. 
 
BCRA (beta countable rank axiom). For each well ordering 
(A,R), A ⊆ N, with a limit point, and x ⊆ ω, there is a 
countable R model that encodes x, which is a β model.  
 
THEOREM 0.12A.2. BFRA is provable in Z. FRA is not provable 
in WZC. BCRA is provable in WZ(Ω). CRA is not provable in 
ZC. The following is provable in ATR0. FRA is equivalent to 
(∀n)(∀x ⊆ ω)(Zn has an ω model encoding x). BFRA is 
equivalent to (∀n)(∀x ⊆ ω)(Zn has a β model encoding x). If 
CRA then ZC has a countable ω model encoding any given x ⊆ 
ω. If BCRA then ZC has a countable β model encoding any 
given x ⊆ ω.  
 
Proof: For the first claim, fix n < ω and x ⊆ ω. Use a 
countable elementary substructure of the V(ω+n) of the 
constructible universe relative to x.   
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For the second claim, suppose that FRA is provable in WZC. 
By a model theoretic argument, FRA is provable in the 
fragment of WZC obtained by replacing the power set axiom 
with the existence of V(ω+n), for some fixed n. However, 
the consistency of that fragment is provable in FRA, 
violating Gödel's second incompleteness theorem.  
 
For the third claim, let (A,R) and x be given, and use a 
countable elementary substructure of the V(α) of the 
constructible universe relative to x, where (A,R) has type 
α.  
 
For the fourth claim, suppose CRA is provable in ZC. Apply 
CRA to a specific well ordering of type ω+ω. Then CRA 
proves the consistency of ZC, which contradicts second 
incompleteness.  
 
For the fifth claim, countable ω models of Zn encoding x 
correspond to countable ω+n models encoding x.  
 
For the sixth claim, countable β models of Zn encoding x 
correspond to countable ω+n models encoding x that are β 
models.  
 
For the seventh and eighth claims, use (A,R) of type ω+ω. 
QED 
 
Let ϕ be a sentence in the language of set theory. We want 
to define what we mean by "ϕ cannot be proved using a 
definite countable iteration of the power set operation". 
This issue was addressed in [Fr81], [Fr05], [Fr07a].  
 
We define the system DCIPS (definite countable iterations 
of the power set) as follows. The language has only ∈ in 
logic with equality. The axioms of DCIPS are given as 
follows. 
 
i. Every axiom of ZFC\P is an axiom of DCIPS. 
ii. Suppose ϕ(x) is a Σ1 formula of set theory with only the 
free variable shown, where ZFC\P proves (∃x)(ϕ(x) ∧ x is an 
ordinal). Then (∃x)(ϕ(x) ∧ V(x) exists) is an axiom of 
DCIPS.  
 
We say that a sentence can be proved using a definite 
countable iteration of the power set operation if and only 
if it can be proved in DCIPS.  
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THEOREM 0.12A.3. ATR0 + CRA proves the existence of an ω 
model of DCIPS. CRA is not provable in DCIPS. 
 
Proof: It is clear that the second claim follows from the 
first. We work in ATR0 + CRA. 
 
By applying CRA to, say, ω+ω, we obtain a countable β model 
M of ZFC + V = L. Let S be the set of all sentences 
(∃x)(ϕ(x) ∧ x is an ordinal), with only the free variable x, 
where ϕ is Σ1, that are provable in ZFC\P. Clearly all 
sentences in S hold in M. 
 
Let λ be the height of M. Apply CRA to a well ordering of 
type λ+ω, obtaining a suitable (B,R), B of type λ+ω. Within 
(B,R), cut back to the inner model of constructible sets in 
the sense of (B,R). Thus M will correspond to the first λ 
levels of (B,R). Then for each sentence (∃x)(ϕ(x) ∧ x is an 
ordinal) in S, the corresponding sentence (∃x)(ϕ(x) ∧ V(x) 
exists) holds in (B,R), since the x can be taken to be an 
ordinal < λ. 
 
(B,R) is not quite an ω model of DCIPS. We have only to 
extend (B,R) using the constructible hierarchy internally 
defined in (B,R). QED 
 
So in particular, if a sentence in L(Z2) implies CRA over 
ATR0, then that sentence "cannot be proved using a definite 
countable iteration of the power set operation". 
 
0.12B. Borel Determinacy and Symmetric Borel Sets.  
 
In [Fr71], we proved that Borel Determinacy is not provable 
in Z (or ZC). As was well known at the time, this can be 
strengthened to any "definite" countably transfinite 
iteration of the power set axiom. In [Fr71], we focused on 
the critical case of Z.  
 
We also formulated the conjecture that Borel Determinacy 
could be proved in (a weak variant of) WZ + (∀α < ω1)(V(α) 
exists). Also, we recognized a problem with coming up with 
an appropriate proof theoretic formulation of "cannot be 
proved using any definite countable transfinite iteration". 
See the definition of DCIPS and Theorem 0.12A.3.  
 
With the benefit of hindsight, we can place Borel 
Determinacy nicely in the realm of Reverse Mathematics.  
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THEOREM 0.12B.1. The following are provably equivalent in 
RCA0.  
i. Finitely Borel Determinacy. 
ii. BFRA. 
In particular, i) is provable in Z but not in WZC.  
 
Proof: Assume i). First use Borel Determinacy for open sets 
to obtain ACA0 and then ATR0, as in [Si99,09]. Then argue as 
in [Fr71] for any given level n < ω of the Borel hierarchy. 
Build the ramified hierarchy of level n+5 as far as it 
goes, starting with x, using well orderings on ω, and use 
Σ0n determinacy with parameter x to show that the hierarchy 
must stop.  
 
Assume ii). From the formulation using Tarski's 
satisfaction relation, ACA0 is immediate. Now Π1

1-CA0 is 
immediate. By [Mart75], for each n, we have a proof that Σ0n 
sets are determined from Zn+c, for some universal constant 
c. Let A be in Σ0n with code u ⊆ ω, and let M be a β model 
of Zn+c containing u. Then M satisfies that the Σ0n set with 
code u is determined. Since M is a β model, A is determined. 
QED 
 
THEOREM 0.12B.2. The following are provably equivalent in 
RCA0. 
i. Borel Determinacy. 
ii. BCRA. 
In particular, i) is provable in WZ(Ω) but not provable in 
DCIPS. 
 
Proof: A straightforward adaptation of the proof of Theorem 
0.12B.1. Also uses Theorem 0.12A.3. QED 
 
We now come to our method of converting Borel determinacy 
to a statement in classical analysis. In [Fr71], we 
presented the following asymmetric form: 
 

For every Borel Y ⊆ K×K,  
either Y contains the graph of a  

continuous function on K,  
or the converse of Y is disjoint from  

the graph of a continuous function on K.  
 
In [Fr71], we claimed that the independence proofs work 
equally well for the above. The proof from Borel 
Determinacy is utterly straightforward, the winning 
strategy giving us the continuous function F.  
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Later we discovered that we can work with only symmetric 
Borel Y ⊆ K×K, and still have the same independence 
results. Here a set of ordered pairs E is said to be 
symmetric if and only if for all (x,y) ∈ E, we have (y,x) ∈ 
E.  
 
THEOREM 0.12B.3. The following are provably equivalent in 
ATR0 (all forms). 
i. Every symmetric finitely Borel set in K×K (NN×NN) 
contains or is disjoint from the graph of a continuous 
(finitely Borel, Borel) function on K (NN). 
ii. Every symmetric finitely Borel set in ℜ×ℜ (I×I) 
contains or is disjoint from the graph of a left continuous 
(right continuous, finitely Borel, Borel) selection on ℜ 
(I).  
iii. Finitely Borel Determinacy. 
iv. BFRA.  
In particular, i-iv are provable in Z but not in WZC. 
 
THEOREM 0.12B.4. The following are provably equivalent in 
ATR0 (all forms). 
i. Every symmetric Borel set in K×K (NN×NN) contains or is 
disjoint from the graph of a continuous (Borel) function on 
K (NN). 
ii. Every symmetric Borel set in ℜ×ℜ (I×I) contains or is 
disjoint from the graph of a left continuous (right 
continuous, finitely Borel, Borel) selection on ℜ (I).  
iii. Borel Determinacy. 
iv. BCRA.  
In particular, i-iv are provable in WZ(Ω) but not in ZC. 
 
We need to explain the choices allowed in Theorems 0.12B.3 
and 0.12B.4. Note that in each of the two Theorems, we have 
the following items for making a choice: 
 

K×K (NN×NN) 
continuous (finitely Borel, Borel) 

K (NN) 
 

ℜ×ℜ (I×I) 
left continuous (right continuous, finitely Borel, Borel) 

ℜ (I) 
 
Here is the list of choices that can be made: 
 

K×K; any of continuous, finitely Borel, Borel; K 
NNxNN; any of continuous, finitely Borel, Borel; NN  
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ℜxℜ; any of left continuous, right continuous, finitely 
Borel, Borel; either of ℜ, I 

 
Proof: The above two theorems are essentially proved in 
[Fr81]. QED 
 
0.12C. Borel Selection. 
 
The work in this section appears in [Fr05], and was 
inspired by [DS96], [DS99], [DS01], [DS04], and [DS07].  
 
Let S be a set of ordered pairs and A be a set. Then f is a 
selection for S on A if and only if dom(f) = A and for all 
x ∈ A, (x,f(x)) ∈ S.  
 
The following statement is well known to be refutable from 
ZFC + V = L, and relatively consistent with ZFC by a 
forcing argument. 
 
DOM. (∀f ∈ NN)(∃g ∈ NN)(∀h ∈ NN ∩ L[f])(g eventually 
strictly dominates h).  
 
All of the statements considered here are local/global in 
the sense that if we have a continuous or Borel selection 
on every compact subset of E, then we have a continuous or 
Borel section on all of E. 
 
We consider the following two Templates.  
 
TEMPLATE A. Let S ⊆ NN × NN be Borel (finitely Borel). If 
there is a constant (continuous, finitely Borel, Borel) 
selection for S on every compact subset of N∞, then there is 
a constant (continuous, finitely Borel, Borel) selection 
for S on NN. 
 
TEMPLATE B. Let S ⊆ NN×NN and E ⊆ NN be Borel (finitely 
Borel). If there is a constant (continuous, finitely Borel, 
Borel) selection for S on every compact subset of E, then 
there is a constant (continuous, finitely Borel, Borel) 
selection for S on E. 
 
Note that Template A is just Template B for E = NN. 
 
The choices in these Templates are independent of each 
other. In other words, each Template has 32 instances - 
with two first options, four second options, and four third 
options.  
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THEOREM 0.12C.1. The following fourteen instances of 
Templates A,B are refutable in RCA0: 
 
i. Borel or finitely Borel, constant, constant. 
ii. Borel or finitely Borel, continuous, constant. 
iii. Borel or finitely Borel, finitely Borel, constant. 
iv. Borel or finitely Borel, finitely Borel, continuous. 
v. Borel or finitely Borel, Borel, constant. 
vi. Borel or finitely Borel, Borel, continuous. 
vii. Borel or finitely Borel, Borel, finitely Borel. 
 
Proof: To refute i-iii,v, set S(x,y) ↔ y everywhere 
dominates x. To refute iv,vi, let S be the graph of some 
f:NN → NN that is finitely Borel but not continuous. To 
refute vii), let S be the graph of some f:NN → NN that is 
Borel but not finitely Borel. QED 
 
THEOREM 0.12C.2. The following eight instances below of 
Templates A,B are provable in Z but not in WZC.  
 
finitely Borel, constant, continuous.  
finitely Borel, constant, finitely Borel. 
finitely Borel, constant, Borel.  
finitely Borel, continuous, continuous.  
finitely Borel, continuous, finitely Borel. 
finitely Borel, continuous, Borel.  
finitely Borel, finitely Borel, finitely Borel. 
finitely Borel, finitely Borel, Borel.  
 
Proof: In each case, the provability is implicit in [DS04], 
and reproved in [Fr05]. The unprovability is from [Fr05]. 
QED 
 
THEOREM 0.12C.3. The following eight instances below of 
Templates A,B are provable in WZ(Ω), but are unprovable in 
DCIPS.  
 
Borel, constant, continuous.  
Borel, constant, finitely Borel. 
Borel, constant, Borel.  
Borel, continuous, continuous.  
Borel, continuous, finitely Borel. 
Borel, continuous, Borel.  
Borel, finitely Borel, finitely Borel. 
Borel, finitely Borel, Borel.  
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Proof: In each case, the provability is implicit in [DS04], 
and reproved in [Fr05]. The unprovability is from [Fr05]. 
QED 
 
THEOREM 0.12C.4. The following two instances below of 
Templates A,B are provably equivalent, over ZFC, to DOM.  
 
finitely Borel, Borel, Borel. 
Borel, Borel, Borel. 
 
Proof: The provability in ZFC + DOM for Templates A,B, is 
due to [DS07]. We prove DOM from these instances, for 
Templates A,B, over ZFC, in [Fr05]. We also give a proof of 
these instances from ZFC + DOM for Template A only, in 
[Fr05]. QED 
 
We can use ℜ instead of the Baire space NN as follows.  
 
TEMPLATE A'. Let S ⊆ ℜ × ℜ be Borel (finitely Borel). If 
there is a constant (continuous, finitely Borel, Borel) 
selection for S on every compact set of irrationals, then 
there is a constant (continuous, finitely Borel, Borel) 
selection for S on the irrationals. 
 
TEMPLATE B'. Let S ⊆ ℜ × ℜ and E be a Borel (finitely 
Borel) set of irrationals. If there is a constant 
(continuous, finitely Borel, Borel) selection for S on 
every compact subset of E, then there is a constant 
(continuous, finitely Borel, Borel) selection for S on the 
irrationals in E. 
 
As in Templates A,B, the choices in these Templates are 
independent of each other. Thus each Template has 32 
instances - with two first options, four second options, 
and four third options.  
 
THEOREM 0.12C.1. The 32 instances of Template A and the 
corresponding instances of Template A' are respectively 
provably equivalent in ATR0. The 32 instances of Template B 
and the corresponding instances of Template B' are 
respectively provably equivalent in ATR0.  
 
Proof: See [Fr05]. QED  
 
The reason that we have run into independence from ZFC here 
is that in the  
 

(finitely) Borel, Borel, Borel 
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instance of the Templates, the second Borel uses 
arbitrarily high levels of the Borel hierarchy. We regard 
this as just beyond the scope of Concrete Mathematical 
Incompleteness. 
 
We also point out that these instances that are independent 
of ZFC, are Π1

4, and since they are provably equivalent to 
DOM, they are refutable in ZFC + V = L. (V = L is Gödel's 
axiom of constructibility [Go38], [Je76,06]).  
 
In sections 13 and 14, we will encounter Concrete 
Mathematical Incompleteness from ZFC. In section 13, the 
use of finitely Borel leads to independence from ZFC. 
 
For all of our examples of Concrete Mathematical 
Incompleteness from ZFC, we have independence from ZFC + V 
= L. For all of our examples of Concrete Mathematical 
Incompleteness from fragments T of ZFC, we have 
independence from T + V = L, where V = L is the standard 
analog of the axiom of constructability adapted to T.  
 
0.12D. Borel Inclusion with Equivalence Relations. 
 
Let E ⊆ ℜ2 be a Borel equivalence relation with field ℜ. 
There has been considerable work in descriptive set theory 
concerning the classification of Borel equivalence 
relations under the Borel reducibility notion that was 
introduced in [FSt89]. See, e.g., [Ke95], [BK96], [HK96], 
[HK97], [HKL98], [HK01].  
 
We say that x,y are E equivalent if and only if E(x,y). We 
write E* for the equivalence relation on ℜ∞ given by  
 

E*(x,y) ↔ every coordinate of x is E equivalent  
to a coordinate of y, and vice versa. 

 
We give two forms of Borel Inclusion for E. 
 
i. Let F:ℜ∞ → ℜ be Borel, where E* equivalent arguments are 
sent to E equivalent values. There exists x ∈ ℜ∞ such that 
F(x) is E equivalent to a coordinate of x. 
ii. Let F:ℜ∞ → ℜ∞ be Borel, where E* equivalent arguments 
are sent to E* equivalent values. There exists x ∈ ℜ∞ such 
that every coordinate of F(x) is E equivalent to a 
coordinate of x. 
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THEOREM 0.12D.1. Both forms of Borel Inclusion for Borel 
equivalence relations hold.  
 
Proof: The first claim is proved in [Fr81], p. 235. For the 
second claim, let F:ℜ∞ → ℜ∞ be Borel, where E* equivalent 
arguments are sent to E* equivalent values. Let G:(ℜ∞)∞ → 
ℜ∞ be defined for all x ∈ (ℜ∞)∞ by 
 

G(x) = F(x11,x12,x21,x13,x22,x31,...). 
 
We use E** for the Borel equivalence relation on (ℜ∞)∞. 
given by  
 

E**(x,y) ↔ every coordinate of x is E* equivalent  
to a coordinate of y, and vice versa. 

 
We claim that G maps E** equivalent arguments to E* 
equivalent values. To see this, let x,y ∈ (ℜ∞)∞ be E** 
equivalent. Then  
 

(x11,x12,x21,x13,x22,x31,...) 
(y11,y12,y21,y13,y22,y31,...) 

 
are E* equivalent, and so their values under F are E* 
equivalent.  
 
By the first claim, let G(x) be E* equivalent to xi. 
 
F(x11,x12,x21,x13,x22,x31,...) is E* equivalent to 
(xi1,xi2,xi3,...).  
 
QED  
 
THEOREM 0.12D.2. The following are provably equivalent in 
ATR0.  
i. Both forms of (finitely) Borel Inclusion for finitely 
Borel Equivalence Relations. 
ii. FRA. 
In particular, i) is provable in Z but not in WZC.  
 
Proof: See [Fr81]. QED 
 
THEOREM 0.12D.3. The following are provably equivalent in 
ATR0.  
i. Both forms of Borel Inclusion for Borel Equivalence 
Relations. 
ii. CRA. 
In particular, i) is provable in WZ(Ω) but not in DCIPS.  
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Proof: See [Fr81]. QED 
 
In [Fr81], we go on to deal with Borel Inclusion for NN 
under conjugation. I.e., f ≈ g ↔ (∃h)(g = hgh-1). This is a 
complete analytic equivalence relation. We again obtain 
Theorems 0.12D.2,  0.12D.3 for this equivalence relation. 
Subsequently, we improved this to analytic equivalence 
relations.  
 
THEOREM 0.12D.4. The following are provably equivalent in 
ATR0.  
i. Both forms of Borel Inclusion for Analytic Equivalence 
Relations, NN under conjugation, graphs on N under 
isomorphism (a total of 6 forms). 
ii. CRA. 
In particular, each of the 6 forms of i) can be proved in 
WZ(Ω) but not in DCIPS. 
 
Proof: For our proof of Borel Inclusion for Analytic 
Equivalence Relations, see [Sta85], p. 23. The second form 
is obtained from the first form as in the proof of Theorem 
0.12D.1. QED 
 
0.12E. Borel Functions on Linear orderings and Graphs. 
 
The formulations in this section avoid infinite sequences, 
and attain the same level of strength as the statements in 
section 0.12D.  
 
It is particularly convenient to think of countable linear 
orderings, up to isomorphism, as subsets of Q up to order 
isomorphism. Thus we have the nice Cantor space ℘Q of 
subsets of Q. We say that A,B ∈ ℘Q are isomorphic if and 
only if they are isomorphic as linearly ordered sets, in 
the induced order. 
 
We say that F:℘Q → ℘Q is isomorphic preserving if and only 
if isomorphic arguments are assigned isomorphic values.   
 
Let A1,A2,... ∈ ℘Q. A dense mix is obtained by starting 
with Q, and replacing each point with some Ai, in such a way 
that for all i,j, strictly between any two copies of Ai, 
there is a copy of Aj. (We regard the A's as distinct for 
this purpose). Note that all dense mixes of A1,A2,... are 
isomorphic.  
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THEOREM 0.12E.1. Every isomorphic preserving Borel F:℘Q → 
℘Q sends some A to an isomorphic copy of an interval in A 
with endpoints in A.  
 
Proof: See [Sta85], where the result is derived from Borel 
Inclusion for Analytic Equivalence Relations. The idea is 
as follows. Given F, define G:(℘Q)∞ → ℘Q by G(A1,A2,...) = 
F(B), where B ∈ ℘Q is a canonically constructed dense mix 
of A1',A2',..., where each Ai' is the result of adding a 
left and right endpoint to Ai. 
 
Now apply Borel inclusion for Analytic Equivalence 
Relations to G, and take the dense mix of the coordinates 
of the infinite sequence from ℘Q, after adding endpoints to 
these coordinates. QED 
 
Let GPH be the space of all graphs whose vertex set is N or 
a finite subset of N. Here graphs are viewed as irreflexive 
symmetric relations on their vertex set.  
 
We say that F:GPH → GPH is isomorphic preserving if and 
only if isomorphic arguments have isomorphic values (via 
ordinary graph isomorphism).  
 
Let CGPH be the subspace of all connected graphs.  
 
THEOREM 0.12E.2. Every isomorphic preserving Borel F:GPH → 
CGPH maps some G to an isomorphic copy of a connected 
component of G.  
 
Proof: Let F be as given, and define H:CGPH∞ → CGPH by 
H(G1,G2,...) = F(G*), where G* is the disjoint union of the 
G's. Apply Borel inclusion for Analytic Equivalence 
Relations to H, and take the disjoint union of the infinite 
sequence from GPH. Thus we have G' such that F(G') is 
isomorphic to one of the terms in the disjoint union 
representation of G'. I.e., F(G') is isomorphic to a 
connected component of G'. QED 
 
THEOREM 0.12E.3. The following are provably equivalent in 
ATR0. 
i. Every isomorphic preserving Borel F:℘Q → ℘Q maps some A 
to an isomorphic copy of an interval in A (with endpoints 
in A).  
ii. Every isomorphic preserving Borel F:GPH → CGPH maps 
some G to an isomorphic copy of a connected component of G.  
iii. CRA. 
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In particular, i),ii) can be proved in WZ(Ω) but not in 
DCIPS. 
 
Proof: For iii → i,ii, use Theorem 0.12D.3, and the proofs 
of Theorems 0.12E.1, and 0.12E.2. For i → ii, see [Sta85], 
p. 31. For ii → iii, use a similar coding mechanism that 
associates hereditarily countable sets of a given countable 
rank or less, to connected graphs. QED 
 
0.12F. Borel Functions on Borel Quasi Orders. 
 
We say that (ℜ,≤) is a quasi order if and only if ≤ is 
transitive and reflexive. We write a ≅ b if and only if (a ≤ 
b ∧ b ≤ a), a < b if and only if a ≤ b ∧ ¬b ≤ a.  
 
We say that (ℜ,≤) is ω-closed if every strictly increasing 
sequence from X has a (unique up to ≅) least upper bound, 
and ω-complete if and only if every countable set has a 
least upper bound.  
 
We say that F:ℜ → ℜ is invariant if and only if a ≅ b → 
F(a) ≅ F(b). A fixed point for F is an x such that F(x) ≅ x.  
 
The following three Theorems are proved in [Fr81] using 
Borel determinacy. 
 
THEOREM 0.12F.1. Let (ℜ,≤) be an ω-closed (ω-complete) 
Borel quasi order. Let F:ℜ → ℜ be an invariant Borel 
function such that for all x, F(x) ≥ x. Then F has a fixed 
point.  
 
THEOREM 0.12F.2. Let (ℜ,≤) be an ω-closed (ω-complete) 
Borel quasi order. Then there is no invariant Borel 
function such that for all x, F(x) > x.  
 
THEOREM 0.12F.3. Let (ℜ,≤) be an ω-complete Borel quasi 
order. Let F:ℜ → ℜ be an invariant Borel function. Then 
for some x, F(x) ≤ x.  
 
THEOREM 0.12F.4. The following is provable in ATR0. BCRA → 
Theorems 0.12F.1 - 0.12F.3 → CRA. In particular, Theorems 
0.12F.1 - 0.12F.3 are provable in WZ(Ω) but not in DCIPS. 
 
Proof: This is proved in [Fr81]. QED 
 
Note that the definitions of ω-closed and ω-complete are 
Π1

3. In [Fr81], we strengthen these two notions to 
explicitly ω-closed and explicitly ω-complete, by requiring 
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that there be a Borel witness function giving a least upper 
bound.  
 
THEOREM 0.12F.5. The following are provably equivalent in 
ATR0. 
i. Theorems 0.12F.1 - 0.12F.3 with explicitly ω-closed and 
ω-complete.  
ii. CRA. 
In particular, i) is provable in WZ(Ω) but not in DCIPS.  
 
Proof: This is proved in [Fr81]. QED  
 
0.12G. Countable Borel Equivalence Relations and Quasi 
Orders.  
 
In this section, we consider Borel equivalence relations E 
on ℜn. We say that A ⊆ ℜn is E invariant if and only if 
E(x,y) → (x ∈ A ↔ y ∈ A). We say that f:ℜn → ℜ is E 
invariant if and only if E(x,y) → f(x) = f(y).   
 
Let x1,x2,... be a sequence of real numbers that converges 
absolutely. We write SUM(x1,x2,...) for the set of all sums 
of one or more of the x's, without repetition of 
subscripts. We make this definition only if the x's 
converge absolutely. 
 
We say that a Borel equivalence relation E on ℜ has the 
(finitely) Borel translation property if and only if every 
E invariant (finitely) Borel set contains or is disjoint 
from some translate of SUM(4-1,4-2,...).  
 
We now present a stronger property. 
 
We say that a Borel equivalence relation E on ℜ has the 
strong (finitely) Borel translation property if and only if 
every E invariant (finitely) Borel F:ℜ → ℜ is constant on 
some translate of SUM(4-1,4-2,...).  
 
THEOREM 0.12G.1. {(x,y): x,y ∈ ℜ ∧ x = y} does not satisfy 
the finitely Borel translation property. 
 
Proof: In [Fr07a], Lemma 2.2, we showed how to construct 
elements of each SUM(4-1,4-2,...)+x from which we can 
reconstruct x. Let A be the set of all reals so 
constructed. Then obviously A meets every translate of 
SUM(4-1,4-2,...). Also every y ∈ A lies in exactly one SUM(4-
1,4-2,...)+x.  
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Suppose A contains SUM(4-1,4-2,...)+x. Then Let s,t be 
distinct elements of SUM(4-1,4-2,...). Then s+x,t+x ∈ A. 
Hence s+(x+t-s) ∈ A. Therefore s+x lies in SUM(4-1,4-2,...)+x 
and SUM(4-1,4-2,...)+x+t-s. Thus some element of A lies in 
more than one translate of SUM(4-1,4-2,...). This is a 
contradiction.  
 
Clearly A neither contains nor is disjoint from some 
translate of SUM(4-1,4-2,...). It is easily seen that A is 
finitely Borel by its construction. QED 
 
THEOREM 0.12G.2. There is a countable finitely Borel 
equivalence relation on ℜ with the strong Borel translation 
property. Turing equivalence has the strong Borel summation 
property.  
 
Proof: This is proved in [Fr07a], Theorem 2.6. QED 
 
THEOREM 0.12G.3. The following are equivalent over ATR0. 
i. There is a countable (finitely) Borel equivalence relation 
on ℜ with the finitely Borel translation property. 
ii. There is a countable (finitely) Borel equivalence 
relation on ℜ with the strong finitely Borel translation 
property. 
iii. BFRA. 
In particular, i,ii are provable in Z but not in WZC. 
 
Proof: This is proved in [Fr07a], Theorems 2.9, 2.11. QED 
 
THEOREM 0.12G.4. The following are equivalent over ATR0. 
i. There is a countable (finitely) Borel equivalence relation 
on ℜ with the Borel translation property. 
ii. There is a countable (finitely) Borel equivalence 
relation on ℜ with the strong Borel translation property. 
iii. BCRA. 
In particular, i) is provable in WZ(Ω) but not in DCIPS.   
 
Proof: This is proved in [Fr07a], Theorems 2.9, 2.11. QED 
 
It is clear that if a countable Borel equivalence relation on 
ℜ has the Borel translation property, then any more inclusive 
countable Borel equivalence relation on ℜ also has the Borel 
translation property. In fact, in [Fr07a], we assert that all 
sufficiently inclusive countable Borel equivalence relations 
on ℜ have the (strong) Borel translation property. 
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So there remains the unanswered question of how to describe 
the threshold, whereby the (strong) Borel translation 
property kicks in. 
 
What about Lebesgue or Baire measurable functions? Then the 
(finitely) Borel translation property is impossible. 
 
THEOREM 0.12G.5. There is no countable Borel equivalence 
relation on ℜ, where every E invariant set of measure 0 (or 
meager) contains or is disjoint from some translate of SUM(4-
1,4-2,4-3,...).  
 
Proof: This is proved in [Fr07a}, Theorem 2.12. QED 
 
In higher dimensions, these results take on a more 
geometric meaning. A curve is a homeomorphic image of [0,1] 
in ℜn. 
 
We say that a Borel equivalence relation E on ℜ2 has the 
(finitely) Borel line, curve, vertical line, horizontal 
line, circle about the origin, property if and only if 
every invariant (finitely) Borel set contains or is 
disjoint from a line, curve, vertical line, horizontal 
line, circle about the origin.   
 
We now present a stronger property. 
 
We say that a Borel equivalence relation E on ℜ2 has the 
(finitely) Borel line, curve, vertical line, horizontal 
line, circle about the origin, property if and only if 
every invariant (finitely) Borel F:ℜ2 → ℜ is constant on a 
line, curve, vertical line, horizontal line, circle about 
the origin.   
 
THEOREM 0.12G.6. There is a countable finitely Borel 
equivalence relation on ℜ2, with the strong Borel vertical 
line, horizontal line, circle about the origin, property.  
 
Proof: This is proved in [Fr07a], Theorem 3.1, using Borel 
Turing degree determinacy. QED 
 
Once again, there is the unanswered question of the 
threshold, since evidently all sufficiently inclusive 
countable (finitely) Borel equivalence relations on ℜ2 have 
these properties. 
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THEOREM 0.12G.7. The following are provably equivalent in 
ATR0.  
i. There is a countable (finitely) Borel equivalence 
relation on ℜ2 with the finitely Borel line, curve, 
vertical line, horizontal line, circle about the origin, 
property. 
ii. There is a countable (finitely) Borel equivalence 
relation on ℜ2

 with the strong finitely Borel line, curve, 
vertical line, horizontal line, circle about the origin, 
property. 
iii. BFRA. 
In particular, i),ii) can be proved in Z but not in WZC.  
 
Proof: This is implicit in [Fr07a]. QED 
 
THEOREM 0.12G.8. The following are provably equivalent in 
ATR0.  
i. There is a countable (finitely) Borel equivalence 
relation on ℜ2 with the Borel line, curve, vertical line, 
horizontal line, circle about the origin, property. 
ii. There is a countable (finitely) Borel equivalence 
relation on ℜ2

 with the strong Borel line, curve, vertical 
line, horizontal line, circle about the origin, property. 
iii. BCRA. 
In particular, i-iii can be proved in Z(Ω) but not in 
DCIPS. 
 
Proof: This is proved in [Fr07a]. QED 
 
We say that (ℜ,≤) is a quasi order if and only if ≤ is 
reflexive and transitive on X. We define x ≡ y ↔ x ≤ y ∧ y 
≤ x. We say that (ℜ,≤) is an ω1 like quasi order if and only 
if (X,≤) is a quasi order where each {y: y ≤ x} is 
countable. 
 
We say that B ⊆ ℜ is invariant if and only if x ≡ y → (x ∈ 
B ↔ y ∈ B). We say that F:ℜ → ℜ is invariant if and only 
if x ≡ y → f(x) = f(y). 
 
A cone in (ℜ,≤) is a set of the form {y: x ≤ y}, x ∈ ℜ. 
 
We say that a Borel quasi order ≤ on ℜ has the (finitely) 
Borel cone property if and only if every invariant 
(finitely) Borel set A contains or is disjoint from a cone. 
 
We say that a Borel quasi order ≤ on ℜ has the strong 
(finitely) Borel cone property if and only if every 
invariant (finitely) Borel F:ℜ → ℜ is constant on a cone.  
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THEOREM 12G.9. There is a countable finitely Borel quasi 
order ≤ on ℜ with the strong Borel cone property.  
 
Proof: This is proved in [Fr07a]. Turing reducibility, ≤T, has 
the strong Borel cone property. QED 
 
THEOREM 0.12G.10. The following are provably equivalent in 
ATR0.  
i. There is a countable (finitely) Borel quasi order on ℜ 
with the finitely Borel cone property.  
ii. There is a countable (finitely) Borel quasi order on ℜ 
with the strong finitely Borel cone property.  
iii. BFRA.  
In particular, i),ii) are provable in Z but not in WZC.  
 
Proof: This is implicit in [Fr07a]. QED 
 
THEOREM 0.12G.11. The following are provably equivalent in 
ATR0.  
i. There is a countable (finitely) Borel quasi order on ℜ 
with the Borel cone property.  
ii. There is a countable (finitely) Borel quasi order on ℜ 
with the strong Borel cone property.  
iii. BCRA.  
In particular, i),ii) are provable in Z(Ω) but not in 
DCIPS.  
 
Proof: This is proved in [Fr07a]. QED 
 
Let ≤ be a quasi order on ℜ. We say F:ℜ∞ → ℜ is left/right 
invariant if and only if for all x,y ∈ ℜ∞, if x,y are 
coordinatewise ≈, then F(x) ≈ F(y).   
 
THEOREM 0.12G.12. There is a countable finitely Borel quasi 
order ≤ on ℜ such that the following holds. For all 
left/right invariant Borel F:ℜ∞ → ℜ, there exists x ∈ ℜ∞ 
and n < ω such that F(x) ≤ xn.  
 
Proof: We established in [Sta85], using Turing degrees. The 
proof lies in ZF\P + V(ω+ω) exists. QED 
 
THEOREM 0.12G.13. Theorem 0.12G.12 is provable in ZF\P + 
V(ω+ω). Theorem 0.12G.12 is not provable in ZC, even for 
Borel ≤ and finitely Borel F.  
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Which countable Borel quasi orders have the (strong) Borel 
cone property? {(x,y): x,y ∈ ℜ ∧ y-x ∈ N} does not have the 
finitely Borel cone property, using the invariant set {x ∈ 
ℜ: the integer part of x is even}. What can we say about 
the threshold? 
 
We have recently discovered a kind of universality 
condition on a countable Borel quasi order ≤ on 2N that is 
sufficient for the strong Borel cone property.  
 
Let ≤ be a Borel quasi order on 2N. We say that ≤ is 
continuously full if and only if for all continuous F:2N → 
2N, there is a cone C in ≤ such that (∀x ∈ C)(F(x) ≤ x).  
 
We say that ≤ is strongly continuously full if and only if 
for all continuous Fi:2N → 2N, i ≥ 1, there is a cone C in ≤ 
such that (∀x ∈ C)(∀i ≥ 1)(Fi(x) ≤ x). 
 
We now formulate the Borel cone property, and the strong 
Borel cone property for ≤, using 2N everywhere instead of ℜ.  
 
THEOREM 0.12G.14. There is a finitely Borel quasi order on 
2N which is strongly continuously full. In fact, ≤T on 2N is 
strongly continuously full.  
 
Proof: Let Fi:2N → 2N be continuous, i ≥ 1. Let ui ∈ 2N 
appropriately code Fi, respectively. Let u be the join of 
the ui, i ≥ 1. Let C be the cone in ≤T with base u. We have 
only to verify that v ≥T u → Fi(v) ≤T v. This is clear. QED 
 
THEOREM 0.12G.15. Every continuously full Borel quasi order 
on 2N has the Borel cone property. 
 
Proof: Let ≤ be a continuously full Borel quasi order on 2N. 
Let A ⊆ 2N be Borel and ≤ invariant.  
 
I,II play a game, with outcomes x,y ∈ 2N. II wins if and 
only if x ∉ A ∨ (¬y < x ∧ y ∉ A).  
 
A winning strategy H is a continuous function from 2N into 
2N, with the identity function as a modulus of continuity. 
By continuous fullness, let u be the base of a cone C where 
x ∈ C → H(x) ≤ x.  
 
case 1. I wins. If II plays y ∈ C\A then I plays H(y) ≤ y, 
and we have H(y) ∈ A, ¬(¬y < H(y) ∧ y ∉ A), which is a 
contradiction. Hence A contains the cone C.  
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case 2. II wins. If I plays x ∈ C ∩ A then II plays H(x) ≤ 
x, and we have ¬H(x) < x, H(x) ∉ A, H(x) ≡ x, H(x) ∈ A, 
which is a contradiction. Hence A is disjoint from the cone 
C.    
 
QED 
 
LEMMA 0.12G.16. In every strongly continuously full Borel 
quasi order on 2N, every infinite sequence has an upper 
bound (≥). 
 
Proof: Let x1,x2,... . Use the sequence of continuous 
functions which are constantly x1,x2,... . QED 
 
THEOREM 0.12G.17. Every strongly continuously full Borel 
quasi order on 2N has the strong Borel cone property. 
 
Proof: Apply Lemma 0.12G.16 to the bases of the cones given 
by Theorem 0.12G.15. QED 
 
THEOREM 0.12G.18. The following are provably equivalent in 
ATR0. 
i. Every continuously full finitely Borel quasi order on 2N 
has the finitely Borel cone property.  
ii. Every strongly continuously full finitely Borel quasi 
order on 2N has the strong finitely Borel cone property. 
iii. BFRA. 
In particular, i,ii are provable in Z but not in WZC. 
 
Proof: From the above, and the metamathematics of Borel 
determinacy and Borel Turing degree determinacy. QED 
 
THEOREM 0.12G.19. The following are provably equivalent in 
ATR0. 
i. Every continuously full (finitely) Borel quasi order on 
2N has the Borel cone property.  
ii. Every strongly continuously full (finitely) Borel quasi 
order on 2N has the strong Borel cone property. 
iii. BCRA. 
In particular, i,ii are provable in Z(Ω) but not in DCIPS. 
 
Proof: From the above, and the metamathematics of Borel 
determinacy and Borel Turing degree determinacy. QED 
 
0.12H. Borel Sets and Functions in Groups.  
 
As in section 0.11D, we define GRP as the space of groups 
whose domain is N or a finite subset of N. We let FGG be 
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the subspace of GRP consisting of the finitely generated 
elements of GRP. 
 
We say that F:GRP → ℜ is isomorphically invariant if and 
only if for all G,H ∈ GRP, if G,H are isomorphic then F(G) 
= F(H). 
 
We say that A ⊆ GRP is unbounded if and only if every G ∈ 
GRP is embeddable in an element of A. 
 
THEOREM 0.12H.1. Every isomorphically invariant finitely 
Borel function F:FGG → ℜ is constant on an unbounded Borel 
subset of FGG of finite rank. In fact, Borel rank ≤ 4 
suffices. 
 
Proof: This is proved in [Fr07a], Theorem 5.4. The exact 
rank needed depends on the exact setup of FGG as a Borel 
space. Here 4 is a crude upper bound that works for even 
naïve setups. QED 
 
THEOREM 0.12H.2. Every isomorphically invariant Borel 
subset of FGG contains or is disjoint from an unbounded 
Borel set of finite Borel rank. In fact, Borel rank ≤ 4 
suffices. 
 
Proof: Immediate from Theorem 0.12H.1. QED  
 
THEOREM 0.12H.3. Theorem 0.12H.1 is provable in Z but not 
in WZC. Theorem 12H.2 is provable in Z(Ω) but not using any 
countable iteration of the power set operation.  
 
Proof: See [Fr07a]. QED 
 
We now consider Borel F:FGG∞ → FGG. We say that F is 
isomorphic preserving if and only if for all α,β ∈ FGG∞, if 
α,β are coordinatewise isomorphic, then F(α),F(β) are 
isomorphic. 
 
THEOREM 0.12H.4. For all isomorphic preserving Borel F:FGG∞ 
→ FGG, there exists α ∈ FGG∞ such that F(α) is embeddable 
in a coordinate of α. 
 
Proof: See [Sta85], p. 35. QED 
 
We consider Borel F:FGG∞ → GRP. We say that F is isomorphic 
preserving if and only if for all α,β ∈ FGG∞, if α,β are 
coordinatewise isomorphic, then F(α),F(β) are isomorphic. 
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THEROEM 0.12H.5. For all isomorphic preserving Borel F:FGG∞ 
→ GRP, there exists α ∈ FGG∞ such that F(α) is embeddable 
in some direct limit of α1,α2,... . 
 
Proof: Implicit in [Sta85]. QED 
 
THEOREM 0.12H.6. Theorems 0.12H.4 and 0.12H.5 are provable 
in ZFC\P + "V(ω+ω) exists" but not in ZC. Theorems 0.12H.4 
and 0.12H.5 for finitely Borel F are not provable in ZC.  
 
Proof: Implicit in [Sta85]. QED 
 
0.13. Incompleteness in ZFC using Borel Functions. 
 
0.13A. Preliminaries. 
0.13B. Borel Ramsey Theory. 
0.13C. Borel Functions on Groups. 
0.13D. Borel Functions on Borel Quasi Orders. 
0.13E. Borel Functions on Countable Sets. 
 
0.13A. Preliminaries.  
 
ZF is the following well known axiom system with one binary 
relation symbol ∈, in one sorted first order predicate 
calculus with equality.  
 
EXTENSIONALITY. (∀x)(x ∈ y ↔ x ∈ z) → y = z. 
PAIRING. (∃x)(y ∈ x ∧ z ∈ x). 
UNION. (∃x)(∀y)(∀z)(y ∈ z ∧ z ∈ w → y ∈ x). 
SEPARATION. (∃x)(∀y)(y ∈ x ↔ y ∈ z ∧ ϕ), where x is not 
free in ϕ. 
POWER SET. (∃x)(∀y)((∀z)(z ∈ y → z ∈ w) → z ∈ x). 
INFINITY. (∃x)(∅ ∈ x ∧ (∀y)(y ∈ x → y ∪ {y} ∈ x)). 
FOUNDATION. y ∈ x → (∃y)(y ∈ x ∧ (∀z)(¬(z ∈ x ∧ z ∈ y))). 
REPLACEMENT. (∀x)(x ∈ u → (∃!y)(ϕ)) → (∃z)(∀x)(x ∈ u → 
(∃y ∈ z)(ϕ)), where ϕ ∈ L(∈), and z is not free in ϕ.  
 
ZFC is ZF together with  
 
CHOICE. If x is a set of pairwise disjoint nonempty sets, 
there is a set which has exactly one element in common with 
each of the elements of x. 
 
As discussed in section 0.3, we sharply distinguish typical 
statements in set theory from statements involving at most 
finitely Borel sets and functions on complete separable 
metric spaces. In this section we will consider only 
Concrete Mathematical Incompleteness involving finitely 
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Borel sets and functions on complete separable metric 
spaces.  
 
Recall that we have already presented the following 
Mathematical Incompleteness from ZFC in section 0.12C, 
using Borel sets.  
 
FROM TEMPLATE A. Let S ⊆ NN × NN be (finitely) Borel. If 
there is a Borel selection for S on every compact subset of 
E, then there is a Borel selection for S on E. 
 
FROM TEMPLATE B. Let S ⊆ NN × NN and E ⊆ NN be (finitely) 
Borel. If there is a Borel selection for S on every compact 
subset of E, then there is a Borel selection for S on E. 
 
We don't classify these as Concrete Mathematical 
Incompleteness, as it is not confined to finitely Borel 
sets. See the last four paragraphs of section 0.12C.  
 
In section 0.12C, we also discussed the versions with NN 
replaced by ℜ, above. 
 
The Concrete Mathematical Incompleteness in this section 
overshoots ZFC considerably.  
 
In section 0.13B, we use strongly Mahlo cardinals of finite 
order. These also represent the level associated with the 
Exotic Case which preoccupies Chapters 4-6 of this book. 
The Mahlo cardinals of finite order are defined in section 
0.14A.  
 
In sections 0.13C and 0.13D, we use the much stronger large 
cardinal hypotheses asserting the existence of Ramsey 
cardinals and measurable cardinals. Yet stronger large 
cardinal hypotheses are used in section 0.13E.  
 
A Ramsey cardinal is a cardinal κ with the partition 
property κ → κ<ω2, which asserts the following. If we 
partition the nonempty finite sequences from κ into 2 
pieces, then there exists A ⊆ κ of cardinality κ such that 
for all 1 ≤ n < ω, all of the n-tuples from κ lie in the 
same piece.  
 
A measurable cardinal is an uncountable cardinal κ such that 
there is a {0,1} valued measure µ on ℘(κ) which is <κ 
additive, µ(κ) = 1, and each µ({α}) = 0. 
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It is well known that the first measurable cardinal (if it 
exists) is much larger than the first Ramsey cardinal. See, 
e.g., [Ka94], p. 83, and [Je78], p. 328.  
 
In section 0.13E, we will use the yet much stronger Woodin 
cardinals. The notion of Woodin cardinal is a specialized 
notion that matches up exactly with determinacy 
(corresponding to infinitely many Woodin cardinals); see 
[MS89], [KW∞].  
 
A Woodin cardinal is a cardinal κ such that for any f:κ → 
κ, there exists an elementary embedding j:V → M, M 
transitive, with critical point α < κ such that f[α] ⊆ α 
and Vj(f)(α) ⊆ M. 
 
A Woodin cardinal is a weakening of the more natural notion 
of superstrong cardinal: there exists an elementary 
embedding j:V → M, M transitive, with critical point κ such 
that Vj(κ) ⊆ M. See [Ka94], p. 361. Every superstrong 
cardinal is a Woodin cardinal, but not vice versa (assuming 
there is a Woodin cardinal).  
 
A Woodin cardinal is also a strengthening of the 
specialized notion of strong cardinal, in terms of 
consistency strength. We refer the reader to [Ka94], p. 
358, for its definition.  
 
Our first Concrete Mathematical Incompleteness from ZFC was 
Borel Ramsey Theory, involving (finitely) Borel functions 
on ℜ∞. We have already encountered such functions in 
section 0.11C.  
 
Later, we discovered statements involving Borel functions 
from infinite sequences of Turing degrees into Turing 
degrees, which can be proved using a measurable cardinal 
but not a Ramsey cardinal. An account of this work appears 
in [Sta85].  
 
Still later, we converted the Turing degrees into finitely 
generated groups (FGG), and more recently, points in 
countable Borel quasi orders. See sections 0.13C and 0.13D. 
The extensions involving (finitely) Borel functions on 
countable sets discussed in section 0.13E are the strongest 
of all - reaching the level of multiple Woodin cardinals.   
 
0.13B. Borel Ramsey Theory. 
 



 169 

Recall the Borel Ramsey Theorem (otherwise known as the 
Galvin/Prikry theorem) discussed in section 0.10D. This 
combines Borel measurability with Ramsey theory. 
 
We discovered yet more powerful combinations of Borel 
measurability with Ramsey theory, that go beyond ZFC. 
 
For this development, we use the infinite product space ℜ∞, 
which is a complete separable metric space in the natural 
way. We write x ~ y ↔ x,y ∈ ℜ∞ ∧ y is a permutation of x.  
 
PROPOSITION 0.13B.1. Let F:ℜ∞ × (ℜ∞)n → ℜ be a (finitely) 
Borel function such that if x ∈ ℜ∞, y,z ∈ (ℜ∞)n, and y ~ z, 
then F(x,y) = F(x,z). Then there is a sequence {xk} from ℜ∞ 
of length m ≤ ω such that for all indices s < t1 < ... < tn 
≤ m, F(xs,xt_1,...,xt_n) is the first coordinate of xs+1. 
 
THEOREM 0.13B.2. Proposition 0.13B.1 for Borel functions is 
provable in ZFC + (∀n)∃κ)(κ is strongly n-Mahlo). However, 
for all n, ZFC + (∃κ)(κ is strongly n-Mahlo) + V = L does 
not prove Proposition 0.13B.1 for finitely Borel functions, 
using m < ω (instead of m ≤ ω). ZFC + V = L does not prove 
Proposition 0.13B.1 for n = 4 and finitely Borel functions, 
using m < ω (instead of m ≤ ω).  
 
Proof: This is proved in [Fr01], section 5. QED 
 
In [Fr01], Proposition 0.13B.1 is couched in terms of the 
Hilbert cube I∞, which is, of course, equivalent to ℜ∞ for 
present purposes. 
 
In [Ka89], a more refined analysis of Proposition 0.13B.1 
is presented. In [Ka91], a strengthening of Proposition 
0.13B.1 that corresponds to the subtle cardinal hierarchy 
is presented. The subtle cardinal hierarchy is presented in 
section 0.14A.  
 
0.13C. Borel Functions on Borel Quasi Orders. 
 
Let ≤ be a quasi order on ℜ. We say that F:ℜ∞ → ℜ is ≈ 
preserving if and only if for all x,y ∈ ℜ∞, if x,y are 
coordinatewise ≈, then F(x) ≈ F(y).  
 
Recall that a quasi order is said to be countable if and 
only if the set of predecessors of any point is countable.  
 
A finite deletion subsequence is a subsequence obtained by 
deleting finitely many terms.  
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PROPOSITION 0.13C.1. There is a countable (finitely) Borel 
quasi order ≤ on ℜ such that the following holds. For all ≈ 
preserving (finitely) Borel F:ℜ∞ → ℜ, there exists x ∈ ℜ∞ 
such that for all infinite subsequences y of x, there 
exists n such that F(y) ≤ xn. 
 
PROPOSITION 0.13C.2. There is a countable (finitely) Borel 
quasi order ≤ on ℜ such that the following holds. For all ≈ 
preserving (finitely) Borel F:ℜ∞ → ℜ, there exists x ∈ ℜ∞ 
and n < ω such that for all infinite (finite deletion) 
subsequences y of x, F(y) ≤ yn.  
 
THEOREM 0.13C.3. All forms of Proposition 0.13C.1 and 
0.13C.2 are provable in ZFC + "there exists a measurable 
cardinal" but not in ZFC + "there exists a Ramsey 
cardinal". The same holds for their relativizations to the 
constructible universe, L, or even to the sets recursive in 
the first ω hyperjumps of ∅.  
 
Proof: We originally proved this with "there exists a 
Ramsey cardinal" replaced by "(∀x ⊆ ω)(x# exists)", at 
least breaking the constructibility barrier in large 
cardinals (see [Sta85]). However our arguments can be 
combined with the inner model theory of large cardinals 
below a measurable cardinal - as was first observed by R. 
Solovay (private communication and lectures). QED 
 
PROPOSITION 0.13C.4. There is a countable (finitely) Borel 
quasi order ≤ on ℜ such that the following holds. For all ≈ 
preserving (finitely) Borel F:ℜω+ω → ℜ, there exists x ∈ 
ℜω+ω and α < ω+ω such that for all finite deletion 
subsequences y of x, F(y) ≤ yα.  
 
THEOREM 0.13C.5. All forms of Proposition 0.13C.4 are 
provable in ZFC + "there exists a strong cardinal", but not 
in ZFC + "there exists arbitrarily large measurable 
cardinals". The same holds for their relativizations to the 
constructible universe, L, or even to the sets recursive in 
the first ω hyperjumps of ∅.  
 
Proof: This also combines work of ours reported in [Sta85] 
with the inner model theory of "strongly" measurable 
cardinals. QED 
 
0.13D. Borel Functions on Groups. 
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This section is basically a reworking of section 0.13C 
using the space FGG of finitely generated groups. However, 
there are some additional statements involving the space 
GRP of all countable groups. Recall that we have already 
introduced these spaces in section 0.12H.  
 
We say that x in GRP∞ is towered if and only if for all n, 
xn is a subgroup of xn+1. 
 
We say that F:FGG∞ → GRP is isomorphic preserving if and 
only if for all x,y ∈ ℜ∞, if x,y are coordinatewise 
isomorphic, then F(x),F(y) are isomorphic.  
 
PROPOSITION 0.13D.1. For all isomorphic preserving 
(finitely) Borel F:FGG∞ → GRP, (F:FGG∞ → FGG), there exists 
towered x ∈ FGG∞ such that for all infinite subsequences y 
of x, F(y) is embeddable in ∪nxn. 
 
PROPOSITION 0.13D.2. For all isomorphic preserving 
(finitely) Borel F:FGG∞ → FGG, there exists x ∈ FGG∞ and n 
< ω such that for all infinite (finite deletion) 
subsequences y of x, F(y) is embeddable in yn.  
 
THEOREM 0.13D.3. All forms of Proposition 0.13D.1 and 
0.13D.2 are provable in ZFC + "there exists a measurable 
cardinal" but not in ZFC + "there exists a Ramsey 
cardinal". The same holds for their relativizations to the 
constructible universe, L, or even to the sets recursive in 
the first ω hyperjumps of ∅.  
 
Proof: We originally proved this with "there exists a 
Ramsey cardinal" replaced by "(∀x ⊆ ω)(x# exists)", at 
least breaking the constructibility barrier in large 
cardinals (see [Sta85]). However our arguments can be 
combined with the inner model theory of large cardinals 
below a measurable cardinal - as was first observed by R. 
Solovay (private communication and lectures). QED 
 
PROPOSITION 0.13D.4. For all isomorphic preserving 
(finitely) Borel F:FGGω+ω → FGG, there exists x ∈ ℜω+ω and α 
< ω+ω such that for all finite deletion subsequences y of 
x, F(y) is embeddable in yα.  
 
THEOREM 0.13D.5. All forms of Proposition 0.13D.4 are 
provable in ZFC + "there exists two measurable cardinals", 
but not in ZFC + "there exists a measurable cardinal". The 
same holds for their relativizations to the constructible 
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universe, L, or even to the sets recursive in the first ω 
hyperjumps of ∅.  
 
Proof: This also combines work of ours reported in [Sta85] 
with the inner model theory of a measurable cardinal. QED 
 
0.13E. Borel Functions on Countable Sets. 
 
We write CS(ℜ) for the space of countable subsets of ℜ. 
This is to be viewed as the space ℜ∞, under the equivalence 
relation "having the same range".  
 
The notions of a Borel function F:CS(ℜ) → ℜ, or F:CS(ℜ) → 
CS(ℜ) are very natural. For the former, we mean that there 
is a Borel function G:ℜ∞ → ℜ such that F(rng(x)) = G(x). 
Note that G must be invariant in the sense used in section 
0.11C.  
 
For the latter, we mean that there exists a Borel function 
H:ℜ∞ → ℜ∞ such that F(rng(x)) = rng(H(x)). Note that H must 
be image preserving in the sense used in section 0.11D.  
 
THEOREM 0.13E.1. For all Borel F:CS(ℜ) → ℜ, there exists x 
∈ CS(ℜ) such that F(x) ∈ x. For all Borel F:CS(ℜ) → 
CS(ℜ), there exists x ∈ CS(ℜ) such that F(x) ⊆ x.  
 
Proof: The first claim is equivalent to Theorem 0.11D.1 
using image invariance. The second claim is equivalent to 
Theorem 0.11D.2 using image preserving. Thus these two 
statements correspond to roughly Z2. QED 
 
Now let ≤ be a quasi order on ℜ, and A,B ⊆ ℜ. We say that x 
is a break point for A in B,≤ if and only if x ∈ A ⊆ B, and  
 
i. (∀y ∈ B)(y ≥ x → (∃z ∈ A)(z ≡ y)); or 
ii. (∀y ∈ B)(y ≥ x → (∃z ∉ B)(z ≡ y)). 
 
PROPOSITION 0.13E.2. There is a countable (finitely) Borel 
quasi order ≤ such that for all (finitely) Borel F:ℜ2×CS(ℜ) 
→ CS(ℜ), there exists nonempty A such that each F(x,y,A), 
x,y ∈ A, has a break point in A,≤.  
 
Let λ be a countable limit ordinal. A λ-model of Z2 is an ω 
model M ⊆ ℘ω, of Z2, where every subset of ω lying in the 
first λ levels of the constructible hierarchy starting with 
M and its elements, lies in M.   
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LEMMA 0.13E.3. Proposition 0.13E.2 (all four forms) is 
provable in ZFC + L(ℜ) determinacy. In fact, ZFC + Lω_1(ℜ) 
determinacy suffices. For finitely Borel, ZFC + projective 
determinacy suffices.  
 
Proof: We argue in ZFC +Lω_1(ℜ) determinacy. We set ≤ = ≤T. 
Let λ < ω1, u ⊆ ω, code F:ℜ2×CS(ℜ) → CS(ℜ). Let M be the 
transitive collapse of a countable elementary substructure 
of V(ω1+λ) that contains the elements λ+1,u, and the subset 
λ. Let A = M ∩ ℘ω. Then A is a countable λ-model of Z2 
containing u, and Lλ(ℜ) determinacy holds in M.  
 
By using an M generic enumeration of A (with finite 
conditions), we see that for all x,y ∈ A, F(x,y,A) is a 
subset of A lying in the internal Lλ(ℜ) of M. Therefore we 
can apply Lλ(ℜ) determinacy within M, which implies Lλ(ℜ) 
Turing degree determinacy. Thus we obtain the required 
break points in A. QED  
 
By a degree, we mean a pair λ < ω1 and x ⊆ ω coding λ, where 
we use y ≤λ,x z ↔ y ∈ Lλ(x,z). By projective degree 
determinacy, we mean "there exists a degree such that every 
projective set of degrees contains or is disjoint from a 
cone".  
 
LEMMA 0.13E.4. Proposition 0.13E.2 with "finitely" implies 
the existence of an ω model of Σ1

n-CA + "Σ1
n degree 

determinacy holds for some degree", for each n < ω, over 
ATR0. Proposition 0.13E.2 implies the existence of an ω 
model of Lω+ω(ℜ)-CA + "Lω+ω(ℜ) determinacy holds for some 
degree". 
 
Proof: This uses the techniques from [Fr81] for 
constructing ω models from Borel statements of this general 
form. Let ≤ be given by Proposition 0.13E.2. Let u be a 
Borel code for ≤. Let F:ℜ2×CS(ℜ) → CS(ℜ) be a finitely 
Borel function such that  
 
i. If x < y then F(x,y,A) is singleton of the x-th Σ1n 
subset of ω with parameters x,y, provided u ∈ A; u 
otherwise. 
 
ii. If x ≥ y then F(x,y,A) is the x-th Σ1n subset of A with 
parameters x,y, provided u ∈ A; u otherwise. 
 
Let A be nonempty, where each F(x,y,A), x,y ∈ A, has a 
break point in A,≤. In particular, each F(x,y,A), x,y ∈ A, 
is a subset of A. It is now clear that u ∈ A, and that A is 
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an ω model of Σ1
n-CA. We also see by the break points that A 

satisfies Σ1
n determinacy for ≤.  

 
The second claim is proved analogously. QED 
 
LEMMA 0.13E.5. ZFC + "there exists infinitely many Woodin 
cardinals" proves projective determinacy. ZFC + "there 
exists a measurable cardinal above infinitely many Woodin 
cardinals" proves L(ℜ) determinacy.  
 
Proof: The first claim is from [MSt89]. The second claim is 
from [Wo88] and [Lar04]. QED 
 
THEOREM 1.13E.6. Proposition 0.13E.2 (all four forms) are 
provable in ZFC + "there exists a measurable cardinal above 
infinitely many Woodin cardinals", but not in ZFC + "there 
exists infinitely Woodin cardinals". Proposition 0.13E.2 
for finitely Borel is provable in ZFC + "there exists 
infinitely many Woodin cardinal", but not in ZFC + "there 
exists at least n Woodin cardinals", for any n < ω.  
 
Proof: The provability claims are from Lemma 0.13E.3. The 
unprovability claims follow from Lemma 0.13E.4 together 
with the reversal of the Σ1

n determinacy, n < ω, for any 
degree, and of the reversal of Lω+ω(ℜ) determinacy for any 
degree. The reversals can be carried out without choice and 
over Z2, and weak extensions thereof (communication from W. 
Woodin). See [KW10]. QED 
 
0.14. Incompleteness in ZFC using Discrete Structures. 
 
0.14A. Preliminaries. 
0.14B. Function Assignments. 
0.14C. Boolean Relation Theory. 
0.14D - 0.14J. NEW MATERIAL AS AGREED. 
 
0.14A. Preliminaries. 
 
The first arguably natural examples of incompleteness in 
ZFC using discrete structures appeared in [Fr98], and are 
discussed in section 0.14B.  
 
The second examples of incompleteness in ZFC using discrete 
structures are from Boolean Relation Theory, which is the 
subject of this book. BRT represents a more natural and far 
more systematic approach than Function Assignments, with 
much greater points of contact with existing mathematical 
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contexts. In section 0.14C, we give a brief account of BRT, 
reserving the extended account for section 0.15.  
 
The third examples of incompleteness in ZFC using discrete 
structures are the culmination of recent developments since 
2009, culminating with announcements made in May, 2011. 
These take a different direction from BRT, but rely on many 
technical insights from BRT. They result in statements 
equivalent to the consistency of certain large cardinal 
hypotheses, and thus are equivalent to Π0

1 sentences. In 
contrast, function assignments and BRT result in statements 
equivalent to the 1-consistency of large cardinals, and 
thus equivalent to Π0

2 sentences.  
 
These new developments are discussed in sections 0.14D - 
0.14I. This is work in progress, and proofs will appear 
elsewhere. 
 
There are two hierarchies of large cardinal hypotheses 
relevant to this section (except for 0.14G). The weaker of 
the two is the hierarchy of strongly n-Mahlo cardinals. 
These are defined inductively as follows.  
 
The strongly 0-Mahlo cardinals are the strongly 
inaccessible cardinals (uncountable regular strong limit 
cardinals).  
The strongly n+1-Mahlo cardinals are the infinite cardinals 
all of whose closed unbounded subsets contain a strongly n-
Mahlo cardinal. 
 
We define SMAH+ = ZFC + (∀n < ω)(∃κ)(κ is a strongly n-Mahlo 
cardinal). SMAH = ZFC + {(∃κ)(κ is a strongly n-Mahlo 
cardinal)}n. 
 
Mahlo cardinals were introduced surprisingly early, in 
[Mah11], [Mah12], [Mah13]. For more information about the 
strongly Mahlo hierarchy, and the related Mahlo hierarchy, 
see section 4.1.  
 
The second, stronger hierarchy of large cardinal hypotheses 
relevant to this section is the stationary Ramsey cardinal 
hierarchy. This hierarchy originated with [Ba75]. Also see 
[Fr01].  
 
We say that λ has the k-SRP if and only if λ is a limit 
ordinal, k ≥ 1, and every partition of the unordered k-
tuples from λ into two pieces has a homogeneous stationary 
subset of λ.  
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We define SRP+ = ZFC + (∀k < ω)(∃κ)(κ has the k-SRP). SRP = 
ZFC + {(∃κ)(κ has the k-SRP)}k. 
 
The SRP hierarchy is intertwined with the more technical 
subtle cardinal hierarchy. See [Fr01] for a detailed 
treatment of this level of the large cardinal hierarchy. 
 
0.14B. Function Assignments. 
 
The first published examples of arguably mathematically 
natural arithmetic sentences independent of ZFC appeared in 
[Fr98]. These examples are Π0

2, although it was left open in 
[Fr98] whether they are provably equivalent to 1-Con(SRP), 
as we expect.  
 
A function assignment for a set X is a mapping U which 
assigns to each finite subset A of X, a unique function  
 

U(A): A → A. 
 
The following is easily obtained from Theorem 0.8F.4 
(Theorem 0.4 in [Fr98]). See section 0.8F for the 
definition of regressive values.  
 
THEOREM 0.14B.1. Let k,p > 0 and U be a function assignment 
for Nk. Then some U(A) has ≤ (kk)p regressive values on some 
Ek ⊆ A, |E| = p.  
 
In the set theoretic world, we have the following analog 
(Theorem 0.5 in [Fr98]).  
 
THEOREM 0.14B.2. Let k,r,p > 0 and F:λk → λr, where λ is a 
suitably large cardinal. Then F has ≤ kk regressive values 
on some Ek ⊆ λk, |E| = p. It suffices that λ has the k-SRP. 
 
We placed a natural condition on function assignments for Nk 
so that we get the improved estimate kk in Theorem 0.14B.2 
rather than the (kk)p in Theorem 0.14B.1.  
 
Let U be a function assignment for Nk. We say that U is #-
decreasing if and only if for all finite A ⊆ Nk and x ∈ Nk,  
 

either U(A) ⊆ U(A ∪ {x}) or there exists 
|y| > |x| such that |U(A)(y)| > |U(A ∪ {x})(y)|. 

 
Here we have used | | for max.  
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An alternative definition of #-decreasing is as follows. 
For all finite A ⊆ Nk and x ∈ Nk, either U(A) ⊆ U(A ∪ {x}), 
or there exists |y| > |x| such that  
 
i. |U(A)(y)| > |U(A ∪ {x})(y)|. 
ii. for all z ∈ A, if |z| < |y|, then U(A)(z) = U(A ∪ 
{x})(z). 
iii. for all z ∈ A, if |z| = |y|, then U(A)(z) = U(A ∪ 
{x})(z) or |U(A)(z)| > |U(A ∪ {x})(z)|.  
 
The following infinitary proposition is Proposition A in 
[Fr98]. 
 
PROPOSITION 0.14B.3. Let k,p > 0 and U be a #-decreasing 
function assignment for Nk. Then some U(A) has ≤ kk 
regressive values on some Ek ⊆ A, |E| = p.  
 
The finite form is Proposition B in [Fr98].  
 
PROPOSITION 0.14B.4. Let n >> k,p > 0 and U be a #-
decreasing function assignment for [n]k. Then some U(A) has 
≤ kk regressive values on some Ek ⊆ A, |E| = p. 
 
Proposition 0.14B.4 takes the form  
 
for all k,p there exists n such that every gadget bounded 

by n has an internal property 
 
and is therefore explicitly Π0

2.  
 
As remarked in [Fr98], p. 808, Proposition 0.14B.3 
immediately implies Proposition 0.14B.4, using a standard 
compactness (finitely branching tree) argument. The 
implication from Proposition 0.14B.4 to Proposition 0.14B.3 
is immediate. So clearly Proposition 0.14B.3 is provably 
equivalent to a Π0

2 sentence, over RCA0. 
 
The following is proved in [Fr98]. See Theorems 4.18, 5.91.  
 
THEOREM 0.14B.5. SRP+ proves Propositions 0.14B.3, 0.14B.4, 
but not from any consequence of SRP that is consistent with 
ZFC. Propositions 0.14B.3, 0.14B.4 imply Con(SRP) over ZFC.  
 
We conjecture that Propositions 0.14B.3, 0.14B.4 are 
provably equivalent to 1-Con(SRP) over ZFC.  
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In fact, we conjecture that Proposition 0.14B.3 is provably 
equivalent to 1-Con(SRP) over ACA', and Proposition 0.14B.4 
is provably equivalent to 1-Con(SRP) over EFA. 
 
0.14C. Boolean Relation Theory. 
 
We give a brief account of some highlights of Boolean 
Relation Theory (BRT), the subject of this book. A much 
more detailed account will be given in section 0.15.  
 
BRT begins with two theorems proved well within ZFC that 
provides an excellent point of departure. 
 
Let N be the set of all nonnegative integers. 
 
COMPLEMENTATION THEOREM. Let f:Nk → N obey the inequality 
f(x) > max(x). There exists a (unique) A ⊆ N with f[Ak] = 
N\A.  
 
THIN SET THEOREM. Let f:Nk → N. There exists an infinite A 
⊆ N such that f[Ak] ≠ N.  
 
These theorems are discussed in detail in sections 1.3 and 
1.4.  
 
Note that the Complementation Theorem (without uniqueness) 
has the following structure: 
 

for every function of a certain kind there is a set of a 
certain kind such that a given Boolean equation holds 
involving the set and its image under the function. 

 
The Thin Set Theorem has the following structure: 
 

for every function of a certain kind there is a set of a 
certain kind such that a given Boolean inequation holds 

involving the set and its image under the function. 
 
In fact, the inequation in the Thin Set Theorem involves 
only the image of the set under the function. 
 
Here, and throughout BRT, we use a particular notion of the 
image of a set A under a multivariate function f - namely 
f[Ak]. For notational brevity, we suppress the arity of f, 
and simply write fA for f[Ak]. In all contexts under 
consideration, the arity, k, of f will be apparent.  
 



 179 

In addition, here N serves as the universal set for the 
Boolean algebra.  
 
More specifically, we use MF for the set of all f such that 
for some k ≥ 1, f:Nk → N. SD for the set of all f ∈ MF such 
that for all x ∈ dom(f), f(x) > max(x). INF for the set of 
all infinite A ⊆ N.  
 
We can restate these two theorems in the form 
 
COMPLEMENTATION THEOREM. For all f ∈ SD there exists A ∈ 
INF such that fA = N\A. 
 
THIN SET THEOREM. For all f ∈ MF there exists A ∈ INF such 
that fA ≠ N.  
 
The Complementation Theorem is an instance of what we call  
 

EBRT in A,fA on (SD,INF). 
 
The Thin Set Theorem is an instance of what we call  
 

IBRT in A,fA on (MF,INF). 
 
Here EBRT means "equational BRT", and IBRT means 
"inequational BRT".  
 
For our independence results, we use a somewhat different 
class of functions. We let ELG be the set of all f ∈ MF of 
expansive linear growth; i.e., where there exist rational 
constants c,d > 1 such that for all but finitely many x ∈ 
dom(f), 
 

c|x| ≤ f(x) ≤ d|x| 
 
where |x| is the maximum coordinate of the tuple x.  
 
The core finding of this book is the discovery and analysis 
of a particular instance of  
 

EBRT in A,B,C,fA,fB,fC,gA,gB,gC on (ELG,INF) 
 
that is independent of ZFC. More specifically, we show that 
this "special instance" has the following three 
metamathematical properties:  
 
i. It is provable in SMAH+. 
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ii. It is not provable from any set of consequences of SMAH 
that is consistent with ACA'. 
iii. It is provably equivalent to the 1-consistency of SMAH 
over ACA'.  
 
In fact, the special instance is an instance of  
 

EBRT in A,B,C,fA,fB,gB,gC on (ELG,INF). 
 
Although this special instance is far simpler than a 
randomly chosen instance, it does not convey any clear 
compelling information.  
 
We were very anxious to establish the necessary use of 
large cardinals in order to analyze EBRT in 
A,B,C,fA,fB,fC,gA,gB,gC on (ELG,INF).  
 
CONJECTURE. Every instance of EBRT in 
A,B,C,fA,fB,fC,gA,gB,gC on (ELG,INF) is provable or 
refutable in SMAH+.  
 
This conjecture would establish a necessary and sufficient 
use of large cardinals in BRT in light of the "special 
instance". 
 
There are 2512 instances of EBRT in A,B,C,fA,fB,fC,gA,gB,gC 
on (ELG,INF), there being nine terms involved. This proved 
far too difficult to analyze, even using theoretical 
considerations.  
 
There are 264 instances of EBRT in A,C,fA,fB,gB,gC on 
(ELG,INF), and the special instance referred to above comes 
under this smaller set.  
 
CONJECTURE. Every instance of EBRT in A,C,fA,fB,gB,gC on 
(ELG,INF) is provable or refutable in SMAH+.  
 
Unfortunately, this conjecture also appears out of reach. 
 
What was needed is a natural fragment of EBRT in 
A,B,C,fA,fB,fC,gA,gB,gC that is small enough to be 
completely analyzable, yet large enough to include our 
instance.  
 
We discovered the following class of 38 = 6561 instances of 
EBRT in A,B,C,fA,fB,fC,gA,gB,gC on (ELG,INF). 
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TEMPLATE. For all f,g ∈ ELG there exist A,B,C ∈ INF such 
that  

X ∪. fY ⊆ V ∪. gW 
 P ∪. fR ⊆ S ∪. gT. 

 
Here X,Y,V,W,P,R,S,T are among the three letters A,B,C.  
 
Here we have used ∪. for disjoint union. I.e.,  
 

D ∪. E is D ∪ E if D ∩ E = ∅;  
undefined otherwise. 

 
The special instance is called the Principal Exotic Case 
throughout the book. It appears as Proposition A in section 
4.2.  
 
PRINCIPAL EXOTIC CASE. For all f,g ∈ ELG there exist A,B,C 
∈ INF such that  

A ∪. fA ⊆ C ∪. gB 
 A ∪. fB ⊆ C ∪. gC. 

 
There are obviously 12 symmetric forms of the Principal 
Exotic Case obtained by permuting A,B,C, and switching the 
two clauses. These 12 are called the Exotic Cases. The 
remaining 6561 - 12 = 6549 instances of the Template are 
shown to be provable or refutable in Chapter 3.  
 
In section 4.2, we prove the Principal Exotic Case from 
SMAH+. In section 4.4, we sharpen this by proving the Exotic 
Case from ACA' + 1-Con(SMAH).  
 
In Chapter 5, we derive 1-Con(SMAH) from ACA' + the Exotic 
Case. In section 5.9, we establish that the Principal 
Exotic Case (Proposition A) is not provable from any set of 
consequences of SMAH that is consistent with ACA'.  
 
In section 3.15, we also consider the modified, weaker 
Template 
 
TEMPLATE'. For all f,g ∈ ELG there exist arbitrarily large 
finite A,B,C ⊆ N such that  

X ∪. fY ⊆ V ∪. gW 
 P ∪. fR ⊆ S ∪. gT. 

 
In section 3.15, we show that every instance of Template' 
is provable or refutable in RCA0, and that Template and 
Template' are equivalent for all but the 12 Exotic Cases. 
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We also show that the 12 Exotic Cases become provable in 
RCA0 under Template'.  
 
We then draw the conclusion that the assertion  
 

Template and Template' are equivalent 
 
which we refer to as the BRT Transfer Principle, has the 
same metamathematical properties i-iii enumerated two pages 
earlier. In this sense, the above assertion represents a 
necessary use of large cardinals for obtaining arguably 
clear and compelling information in the realm of discrete 
mathematics.  
 
0.14D - 0.14J. NEW MATERIAL GOES HERE AS AGREED.  
 
0.15. Detailed Overview of Book Contents.  
 
We give an informal discussion of the contents of the book, 
section by section. This discussion is far more detailed 
than the overview given in section 0.14C above. 
 

Chapter 1 Introduction to BRT   
1.1. General Formulation 

 
Here we begin with two Theorems that lie at the heart of 
Boolean Relation Theory (abbreviated BRT). These are the 
Thin Set Theorem and the Complementation Theorem. We repeat 
these here. 
 
THIN SET THEOREM. Let k ≥ 1 and f:Nk → N. There exists an 
infinite set A ⊆ N such that f[Ak] ≠ N. 
 
COMPLEMENTATION THEOREM. Let k ≥ 1 and f:Nk → N. Suppose 
that for all x ∈ Nk, f(x) > max(x). There exists an infinite 
set A ⊆ N such that f[Ak] = N\A.  
 
Note that the Thin Set Theorem asserts that for every 
function in a certain class there is a set in a certain 
class such that a Boolean inequation holds between the set 
and its forward image under the function. In fact, the 
Boolean inequation does not even use the set.  
 
Similarly, the Complementation Theorem asserts that for 
every function in a certain class there is a set in a 
certain class such that a Boolean equation holds between 
the set and its forward image under the function.  
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The notion of forward image used throughout BRT is the set 
of values of the multivariate function at arguments drawn 
from the set. Throughout BRT, we abbreviate this 
construction, f[Ak], by fA. 
 
Thus we can rewrite the Thin Set Theorem and the 
Complementation Theorem in the following form. 
 
THIN SET THEOREM.  For all f ∈ MF there exists A ∈ INF such 
that fA ≠ N. 
 
COMPLEMENTATION THEOREM. For all f ∈ SD there exists A ∈ 
INF such that fA = N\A.  
 
We say that the Thin Set Theorem is an instance of IBRT 
(inequatonal BRT) on the BRT setting (MF,INF), and the 
Complementation Theorem is an instance of EBRT (equational 
BRT) on the BRT setting (SD,INF). 
 
More specifically, we say that  
 
i. The Thin Set Theorem is an instance of: IBRT in fA on 
(MF,INF). 
ii. The Complementation Theorem is an instance of: EBRT in 
A,fA on (SD,INF). 
 
We then present the general formulation. We define the 
following concepts, starting with Definition 1.1.4.  
 
As an aid to the reader, we give examples of most of these 
concepts based on the Thin Set Theorem (TST), and the 
Complementation Theorem (CT). 
 
1. BRT set variable, BRT function variable. For CT, TST we 
use A and f.  
 
2. BRT term. For CT, we use fA,U\A. For TST, we use fA,U. 
 
3. BRT equation, BRT inequation, BRT inclusion. For CT, we 
use the BRT equation fA = U\A. For TST, we use the BRT 
inequation fA ≠ U.  
 
4. BRT formula. These are quantifier free. For CT, we use 
fA = U\A. For TST, we use fA ≠ U. 
 
5. Formal treatment of multivariate function, arity, and 
the forward imaging fE.  
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6. BRT setting. For CT we use (SD,INF). For TST we use 
(MF,INF). 
 
7. BRT assertion. BRT,⊆ assertion. For CT, we use (∀f ∈ 
V)(∃A ∈ K)(fA = U\A). For TST, we use (∀f ∈ V)(∃A ∈ K)(fA ≠ 
U).   
 
8. BRT valid formula, BRT,⊆ valid formula. 
 
9. BRT equivalent formulas, BRT,⊆ equivalent formulas. 
 
10. BRT environments. For CT, we use EBRT. For TST, we use 
IBRT. 
 
11. BRT signatures. For CT, we use A,fA. For TST, we use 
fA. 
 
12. BRT fragment. For CT, we use EBRT in A,fA on (SD,INF). 
For TST, we use IBRT in fA on (MF,INF).  
 
13. The standard BRT signatures. For CT and TST, we use 
A,fA. 
 
14. Standard BRT fragments. For CT we use EBRT in A,fA on 
(SD,INF). For TST we use IBRT in A,fA on (MF,INF).  
 
The highlight of the book is the proof of the Principal 
Exotic Case (see Appendix A) from large cardinals, and its 
unprovability from weaker large cardinals. The proof is in 
Chapter 4, and the unprovability is from Chapter 5.  
 
The Principal Exotic Case arises in Chapter 3, and lies in 
the standard BRT fragment  
 

EBRT in A,B,C,fA,fB,fC,gA,gB,gC on (ELG,INF). 
 
Here ELG is the class of f ∈ MF which are of expansive 
linear growth (see section 0.14C)).  
 
In fact, the Principal Exotic Case lives in the 
considerably reduced flat BRT fragment  
 

EBRT in A,C,fA,fB,gB,gC,⊆ on (ELG,INF) 
 
since Proposition A is not affected by inserting A ⊆ B ⊆ C 
in its conclusion (see Appendix A).  
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Even the above BRT fragment is too rich for us to 
completely analyze at this time, let alone the standard 
fragment above.  
 
In Chapter 2, we do give a complete analysis of several 
much more restricted BRT fragments, as indicated by their 
section headings. 
 
The main BRT settings considered in this book are (MF,INF), 
(SD,INF), and (ELG,INF). See Definitions 1.1.2 and 2.1.  
 
The state of the art with regard to complete analyses of 
BRT fragments on these BRT settings can be summarized as 
follows.  
 
In both EBRT and IBRT, we completely understand one 
function and two sets with ⊆, in the sense that RCA0 
suffices to prove or refute every instance. See sections 
2.4 - 2.7.  
 
However, it remains to analyze one function and two sets 
without the substantial simplifier ⊆. This is a very 
substantial challenge, although we are convinced that this 
is a manageable project. 
 
Only very special parts of the standard fragment EBRT in 
A,B,C,fA,fB,fC,gA,gB,gC on (ELG,INF) are presently amenable 
to complete analysis. One very symmetric part consisting of 
38 = 6561 cases is completely analyzed in Chapter 3. All 
instances are provable or refutable in RCA0 - expect for the 
Principal Exotic Case and its eleven symmetric forms, 
forming the twelve Exotic Cases.  
 
Section 1.1 presents a very useful canonical form for any 
Boolean equation (arising in the BRT fragments analyzed in 
the book) as a finite conjunction of Boolean inclusions of 
certain forms. This greatly facilitates work with the 
general Boolean equations that arise.  
 
For instance, see the 16 A,B,fA,fB pre elementary 
inclusions listed right after Lemma 2.4.5 according to 
Definition 1.1.35. Also see the 9 A,B,fA,fB,⊆ elementary 
inclusions listed right after Lemma 2.4.5 according to 
Definition 1.1.37.  
 

1.2. Some BRT settings 
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In this section, we give an indication of the tremendous 
variety of BRT settings that arise from standard 
mathematical considerations.  
 
We conjecture that the behavior of BRT fragments in BRT 
settings depends very delicately on the choice of BRT 
setting. Generally speaking, we believe that even small 
changes in the BRT setting lead to different 
classifications, even with BRT fragments in modest 
signatures.  
 
This leads us to the conviction that BRT is a 
mathematically fruitful problem generator of unprecedented 
magnitude and scope. 
 
Indications of this sensitivity are already present in the 
classifications of Chapter 2 as well as the results of 
section 1.4. 
 
Even in the realm of natural subsets of the set MF of all 
functions from some Nk into N, the variety of subclasses is 
staggering. These are discussed in part I of section 1.2. 
In addition, a large variety of subclasses of INF are also 
very natural.  
 
It is very compelling to use Z, Q, ℜ, and C, instead of N, 
creating many additional natural BRT settings, involving 
algebraic, topological, and analytic considerations.  
 
The use of function spaces is also compelling. We mention 
(V,K), where V is the set of all bounded linear operators 
on L2, and K is the set of all nontrivial closed subspaces 
of L2. Then the famous invariant subspace problem for L2 is 
expressed as the following instance of EBRT in A,fA on 
(V,K): 
 

(∀f ∈ V)(∃A ∈ K)(fA = A). 
 
We can obviously use other function spaces for BRT 
settings. 
 
We also propose Topological BRT, where we use the 
continuous functions - and even the multivariate continuous 
functions - on various topological spaces, and the open 
subsets of the spaces.  
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It also makes sense to investigate those BRT statements 
that hold in the continuous functions and nonempty open 
sets, on all topological spaces obeying certain conditions. 
 
Section 1.2 concludes with a back of the envelope 
calculation of the number of BRT settings presented there, 
that are suspected of having different BRT behavior. We 
count only those on N.  
 
The estimate given there is 1,000,000 naturally described 
individual BRT settings with substantially different BRT 
behavior.  
 
The book focuses on only five BRT settings (MF,INF), 
(ELG,INF), (SD,INF), (EVSD,INF), (ELG ∩ SD,INF), and only 
scratches the surface of very simple BRT fragments even in 
these settings. For the definition of all these settings in 
one place, see Appendix A.  As indicated by the 
classifications in Chapter 2, incredible complexities are 
expected to always arise in passing from BRT fragments to 
even slightly richer BRT fragments - even on these five BRT 
settings. When considering the number 1,000,000 above, we 
see how vast and deep BRT is expected to be.  
 

1.3. Complementation Theorems 
 
This section focuses on aspects of the Complementation 
Theorem (CT). Recall the discussion at the beginning of 
section 1.1. 
 
COMPLEMENTATION THEOREM. For all f ∈ SD there exists A ∈ 
INF such that fA = N\A.  
 
COMPLEMENTATION THEOREM (with uniqueness). For all f ∈ SD 
there exists a unique A ⊆ N with fA = N\A. Moreover, A ∈ 
INF.  
 
A few equivalent formulations of CT are given, as well as 
the simple inductive proof.  
 
CT is then extended to strictly dominating functions on 
well founded relations. This extension is used in Chapter 4 
to prove the Principal Exotic Case (Proposition A). 
 
We also show that for irreflexive transitive relations with 
an upper bound condition, CT is equivalent to well 
foundedness.   
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In CT, we define the complementation of f ∈ SD to be the 
unique A ⊆ N with fA = N\A.  
 
There is the expectation that even for very simple f ∈ SD, 
the unique complementation A of f can be very complicated - 
and have an intricate structure well worth exploring.  
 
We present some basic examples, where we calculate the 
unique complementation. In particular, we consider some 
cases where f is an affine transformation from Nk into N. 
 
It is also very natural to consider affine f:Nk → Z. Only 
here we need to use the following variant of CT. This 
requires use of the "upper image" of f on A, defined by  
 

f<A = {f(x1,...,xk):  
f(x1,...,xk) > max(x1,...,xk) and x1,...,xn ∈ A}. 

 
An upper complement of f is an A ⊆ N with f<A = N\A. 
 
UPPER COMPLEMENTATION THEOREM. Every f:Nk → Z has a unique 
upper complementation. This unique upper complement is 
infinite.  
 
This formulation has the advantage that it applies to all 
f:Nk → Z, without requiring that f obey any inequalities.  
 
We then present some calculations of upper 
complementations.  
 
We then view CT as a fixed point theorem, and present a 
more general BRT Fixed Point Theorem.  
 
We also consider a version on the reals, and present a 
continuous complementation theorem.  
 
The Complementation Theorem is closely related to an 
important development in digraph theory. These are the 
kernels and dominators of digraphs. Kernels are used in the 
recent work reported in section 0.14D. 
 

1.4. Thin Set Theorems 
 
This section focuses on aspects of the Thin Set Theorem 
(TST). Recall the discussion at the beginning of section 
1.1. 
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THIN SET THEOREM. For all f ∈ MF there exists A ∈ INF such 
that fA ≠ N.   
 
We begin by tracing the origins of the Thin Set Theorem 
back to the square bracket partition calculus in 
combinatorial set theory. There, one uses unordered tuples 
instead of ordered tuples. However, we give an equivalence 
proof in RCA0 (see Theorem 1.4.2).  
 
This is followed by a discussion of the metamathematical 
status of TST, which is only partially understood. 
 
We then present a simple proof of TST using the infinite 
Ramsey theorem.  
 
We give a strong form of TST where the codomain is 
[0,ot(k)], and establish its metamathematical status. We 
show that it is provably equivalent to ACA' over RCA0. 
 
We briefly consider TST with an infinite cardinal κ instead 
of N. We cite [To87], [BM90], and [Sh95] to obtain some 
results.  
 
TST makes sense on any BRT setting. We explore TST on some 
BRT settings in real analysis.  
 
We first consider 8 natural families of unary functions 
from ℜ to ℜ, and 9 families of subsets of ℜ, for a total of 
72 BRT settings.  
 
FCN(ℜ,ℜ). All functions from ℜ to ℜ. 
BFCN(ℜ,ℜ).  All Borel functions from ℜ to ℜ. 
CFCN(ℜ,ℜ). All continuous functions from ℜ to ℜ. 
C1FCN(ℜ,ℜ). All C1 functions from ℜ to ℜ. 
C∞FCN(ℜ,ℜ). All C∞ functions from ℜ to ℜ. 
RAFCN(ℜ,ℜ). All real analytic functions from ℜ to ℜ. 
SAFCN(ℜ,ℜ). All semialgebraic functions from ℜ to ℜ. 
CSAFCN(ℜ,ℜ). All continuous semialgebraic functions from ℜ 
to ℜ.  
 
cSUB(ℜ). All subsets of ℜ of cardinality c. 
UNCLSUB(ℜ). All uncountable closed subsets of ℜ. 
NOPSUB(ℜ). All nonempty open subsets of ℜ.  
UNOPSUB(ℜ). All unbounded open subsets of ℜ. 
DEOPSUB(ℜ). All open dense subsets of ℜ. 
FMOPESUB(ℜ). All open subsets of ℜ of full measure. 
CCOPSUB(ℜ). All open subsets of ℜ whose complement is 
countable. 
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FCSUB(ℜ). All subsets of ℜ whose complement is finite. 
≤1CSUB(ℜ). All subsets of ℜ whose complement has at most 
one element. 
 
We determine the status of TST in all 72 BRT settings.  
 
We then consider the corresponding 8 families of 
multivariate functions from ℜ to ℜ. I.e., functions whose 
domain is some ℜn and whose range is a subset of ℜ. We use 
the same 9 families of subsets of ℜ.  
 
FCN(ℜ*,ℜ). All multivariate functions from ℜ to ℜ. 
BFCN(ℜ*,ℜ). All multivariate Borel functions from ℜ to ℜ. 
CFCN(ℜ*,ℜ). All multivariate continuous functions from ℜ to 
ℜ. 
C1FCN(ℜ*,ℜ). All multivariate C1 functions from ℜ to ℜ. 
C∞FCN(ℜ*,ℜ). All multivariate C∞ functions from ℜ to ℜ. 
RAFCN(ℜ*,ℜ). All multivariate real analytic functions from 
ℜ to ℜ. 
SAFCN(ℜ*,ℜ). All multivariate semialgebraic functions from 
ℜ to ℜ. 
CSAFCN(ℜ*,ℜ). All multivariate continuous semialgebraic 
functions from ℜ to ℜ. 
 
We again determine the status of TST in all 72 BRT 
settings.  
 
The status of TST in all 144 BRT settings is displayed in a 
table at the end of section 1.4.  
 

Chapter 2 Classifications 
 2.1. Methodology 

 
In Chapter 2, we focus on five BRT settings, falling 
naturally into three groups according to their observed BRT 
behavior. 
 

(SD,INF), (ELG ∩ SD,INF). 
(ELG,INF), (EVSD,INF). 

(MF,INF). 
 
The inclusion diagram for these five sets of multivariate 
functions is  
 

ELG ∩ SD 
SD ELG 
EVSD 
MF 
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(SD,INF), (ELG,INF), and (MF,INF) are the most natural of 
these five BRT settings. The remaining two BRT settings are 
closely related to these three, and serve to round out the 
theory. 
 
In section 2.1, we present the treelike methodology for 
giving complete classifications for BRT fragments.  
 
This treelike methodology is used in sections 2.4, 2.5, and 
the reader can absorb this methodology by looking at the 
physical layout of the classifications in those sections.  
 
The formal treatment of the treelike methodology is given 
fully in section 2.1.  
 

2.2. EBRT, IBRT in A,fA 
 
In this section, we give a complete classification of EBRT 
in A,fA, and IBRT in A,fA, on our list of five basic BRT 
settings, (SD,INF), (ELG ∩ SD,INF), (ELG,INF), (EVSD,INF), 
(MF,INF).  
 
The EBRT classifications are conducted entirely within RCA0. 
The IBRT classifications are conducted entirely within 
ACA'.  
 
This establishes that every instance of the EBRT fragments 
is provable or refutable in RCA0, and every instance of the 
IBRT fragments is provable or refutable in ACA'. 
 
Since there are only 16 instances for each of these simple 
BRT fragments, we can afford to simply list all of the A,fA 
elementary inclusions  
 

A ∩ fA = ∅. 
A ∪ fA = U. 

A ⊆ fA. 
fA ⊆ A. 

 
and consider all of the 16 subsets, interpreted 
conjunctively. For EBRT in A,fA, if we reject a subset of 
the elementary inclusions, then we automatically reject any 
superset. So in order to save work, we can first list the 
subsets (A,fA formats) of cardinality 0, then list the 
subsets of cardinality 1, and so forth, through the subset 
of cardinality 4. But of course we don't have to list any 
subset where some proper subset has already been rejected.  
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This kind of classification is called a tabular 
classification. We give a tabular classification for EBRT 
in A,fA on (SD,INF), (ELG ∩ SD,INF), (ELG,INF), (EVSD,INF), 
(MF,INF), and present the results in a table that lists all 
sixteen of the A,fA formats.  
 
For IBRT in A,fA on (SD,INF), we dualize, and thus put the 
assertions in the form  
 

(∃f ∈ V)(∀A ∈ K)(ϕ) 
 
where ϕ is an A,fA format interpreted conjunctively. Once 
again, if we reject a format, then we automatically reject 
any superset. So we also give a tabular classification of 
IBRT in A,fA on (SD,INF), (ELG ∩ SD,INF), (ELG,INF), 
(EVSD,INF), (MF,INf). We also present the results in a 
table listing all sixteen of the A,fA formats.  
 
In the course of working out the classification on the IBRT 
side, we came across the following sharpening of the Thin 
Set Theorem, which we derive from TST. 
 
THIN SET THEOREM (variant). For all f ∈ MF there exists A ∈ 
INF such that A ∪ fA ≠ N. 
 
We conclude section 2.2 with a discussion of the effect of 
restricting the arity of the functions in the various 
classes. 
 
The EBRT classifications are conducted in RCA0, and the IBRT 
classifications are conducted in ACA'.  
 
As a Corollary, all instances of EBRT in A,fA on these five 
BRT settings are provable or refutable in RCA0, and all 
instances of IBRT in A,fA on these five BRT settings are 
provable or refutable in ACA'.  
 
In fact, ACA' is used only in IBRT in A,fA on the setting 
(MF,INF), and not on the other four settings. 
 

2.3. EBRT, IBRT in A,fA,fU 
 
Here we redo section 2.2 for the signature A,fA,fU, with 
the same five BRT settings (SD,INF), (ELG ∩ SD,INF), 
(ELG,INF), (EVSD,INF), (MF,INF). Here U stands for the 
universal set, which in these five BRT settings, is N.  
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Now we have the 6 A,fA,fU elementary inclusions  
 

A ∩ fA = ∅. 
A ∪ fU = U. 

A ⊆ fU. 
fU ⊆ A ∪ fA. 
A ∩ fU ⊆ fA. 

fA ⊆ A. 
 
There are 64 subsets of these 6 elementary inclusions. 
These are conveniently handled again by tabular 
classifications for both EBRT and IBRT.  
 
Some interesting issues arise using N and fN, as presented 
in Theorems 2.3.2 and 2.3.3. We also examine the effect of 
arity on the class of functions, as in section 2.2. 
 
As in section 2.2, the EBRT classifications are conducted 
in RCA0, and the IBRT classifications are conducted in ACA'.  
 
As a Corollary, all instances of EBRT in A,fA,fU on these 
five BRT settings are provable or refutable in RCA0, and all 
instances of IBRT in A,fA,fU on these five BRT settings are 
provable or refutable in ACA'.  
 
In fact, ACA' is used only in IBRT in A,fA,fU on (MF,INF), 
and not on the other four settings. 
 

2.4. EBRT in A,B,fA,fB,⊆ on (SD,INF) 
 2.5. EBRT in A,B,fA,fB,⊆ on (ELG,INF) 

 
Here we use the treelike classification method in order to 
give complete classifications of EBRT in A,B,fA,fB,⊆ on 
(SD,INF), (ELG ∩ SD,INF), (ELG,INF), and (EVSD,INF). EBRT 
on (MF,INF) is treated in section 2.6.  
 
The classifications in sections 2.4, 2.5 are conducted in 
RCA0. As a Corollary, all instances of these four BRT 
fragments are provable or refutable in RCA0. 
 
A substantial number of new issues arise in both of these 
classifications. The new issues can be seen from Lemmas 
2.4.1 - 2.4.5, 2.5.1 - 2.5.14.  
 
Both treelike classifications start with a listing of the 9 
elementary inclusions in A,B,fA,fB,⊆. 
 
A ∩ fA = ∅. 
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B ∪ fB = N. 
B ⊆ A ∪ fB. 
fB ⊆ B ∪ fA. 
A ⊆ fB. 
B ∩ fB ⊆ A ∪ fA. 
fA ⊆ B. 
A ∩ fB ⊆ fA. 
B ∩ fA ⊆ A.  
 
Recall that the elementary inclusions originate from the 16 
pre elementary inclusions through formal simplification 
using A ⊆ B.  
 
The classifications provide a determination of the subsets 
S of the above nine inclusions for which  
 
(∀f ∈ SD)(∃A ⊆ B from INF)(S) 
(∀f ∈ ELG ∩ SD)(∃A ⊆ B from INF)(S) 
(∀f ∈ ELG)(∃A ⊆ B from INF)(S) 
(∀f ∈ EVSD)(∃A ⊆ B from INF)(S) 
 
holds, where S is interpreted conjunctively. 
 
We believe that obtaining complete classifications of EBRT 
in A,B,fA,fB on (SD,INF), (ELG ∩ SD,INF), (ELG,INF), and 
(EVSD,INF) is a manageable project, and can be completed 
within five years. The pre elementary inclusions in 
A,B,fA,fB number 16. 
 
There needs to be a determination of the sets S of these 
sixteen inclusions for which  
 
(∀f ∈ SD)(∃A ⊆ B from INF)(S) 
(∀f ∈ ELG ∩ SD)(∃A ⊆ B from INF)(S) 
(∀f ∈ ELG)(∃A ⊆ B from INF)(S) 
(∀f ∈ EVSD)(∃A ⊆ B from INF)(S) 
 
holds, where S is interpreted conjunctively.  
 
The classifications are carried out entirely within RCA0. 
Hence every instance of these classifications is provable 
or refutable in RCA0. 
 

2.6. EBRT in A1,...,Ak,fA1,...,fAk,⊆ on (MF,INF) 
 
Classifications in EBRT on (MF,INF) are substantially 
easier than on (SD,INF), (ELG ∩ SD,INF), (ELG,INF), and 
(EVSD,INF), at least under ⊆. Here we handle one function 
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and k sets under ⊆ on (MF,INF). Again, the classification 
is conducted in RCA0, and so we see that every instance of 
this BRT fragment is provable or refutable in RCA0. 
 
We begin with a listing of the fifteen convenient types of 
elementary inclusions based on simple inequalities on the 
subscripts. Five of these are easily eliminated, leaving a 
sublist of ten. The conjunction of all of these is 
accepted. 
 
Without ⊆, we have an incomparably more difficult 
challenge, which we have not attempted.   
 

2.7. IBRT in A1,...,Ak,fA1,...,fAk,⊆ 
 
In this section, we give a complete classification of IBRT 
in A1,...,Ak,fA1,...,fAk,⊆ on (SD,INF), (ELG ∩ SD,INF), 
(ELG,INF), (EVSD,INF), and (MF,INF). We work entirely 
within RCA0, except for the BRT setting (MF,INF), where we 
work within ACA'.  
 
In fact, this classification for the first four of these 
BRT settings is seen to be trivial, and so section 2.7 
focuses on the BRT setting (MF,INF).  
 
We start with the A1,...,Ak,fA1,...,fAk,⊆ elementary 
inclusions, grouped into the same 15 categories based on 
simple inequalities of the subscripts that were used in 
section 2.6.  
 
For each of these elementary inclusions, ρ, we will provide 
a useful description of the witness set for ρ, in the 
following sense: The set of all f ∈ MF such that  
 

(∀A1,...,Ak ∈ INF)(A1 ⊆ ... ⊆ Ak → ρ). 
 
We then calculate the witness sets for the sets of 
elementary inclusions by taking intersections.  
 
It is easily seen that a format is correct if and only if 
this intersection is nonempty. Correctness of formats 
correspond to Boolean inequations. See item 4) just before 
Definition 1.1.40, with n = 1.  
 
We completely determine the formats (sets of elementary 
inclusions) for which the intersection is nonempty.   
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Once again, without ⊆, we have an incomparably more 
difficult challenge, which we have not attempted.   
 
Chapter 3 6561 Cases of Equational Boolean Relation Theory 

3.1. Preliminaries 
 
Recall that EBRT in A,B,C,fA,fB,fC,gA,gB,gC on (ELG,INF) 
involves 29 = 512 pre elementary inclusions, with 2512 
statements. A complete classification is well beyond our 
capabilities. This is also true for EBRT in 
A,B,C,fA,fB,fC,gA,gB,gC,⊆ on (ELG,INF), although the number 
of elementary inclusions reduces to 64, with 264 statements.  
 
Here we completely classify a modest, but significant, part 
of EBRT in A,B,C,fA,fB,fC,gA,gB,gC on (ELG,INF).  
 
We use the notation A ∪. B from Definition 1.3.1. In 
particular,  
 

A ∪. B ⊆ C ∪. D 
 
means  
 

A ∩ B = ∅ ∧ C ∩ D = ∅ ∧ A ∪ B ⊆ C ∪ D. 
 
This is a very natural concept, and is illustrated by a 
diagram in section 3.1.  
 
The part of EBRT in A,B,C,fA,fB,fC,gA,gB,gC on (ELG,INF) 
treated here is given as follows. 
 
TEMPLATE. For all f,g ∈ ELG there exist A,B,C ∈ INF such 
that  

X ∪. fY ⊆ V ∪. gW 
 P ∪. fR ⊆ S ∪. gT. 

 
Here X,Y,V,W,P,R,S,T are among the three letters A,B,C. We 
refer to the statements X ∪. fY ⊆ V ∪. gW, for X,Y,V,W ∈ 
{A,B,C}, as clauses.   
 
In Chapter 3, we determine the truth values of all of these 
6561 statements. We also read off a number of specific 
results about the Template. We do not know how to obtain 
these results without examining the classification.  
 
In particular, every assertion in the Template is either 
provable or refutable in SMAH+. In fact, there exist 12 
assertions in the Template, which are obtained by permuting 
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A,B,C and interchanging the two clauses, so that the 
remaining 6549 assertions are each provable or refutable in 
RCA0.   
 
These 12 exceptional cases are called the Exotic Cases. The 
Principal Exotic Case is as follows.  
 
PROPOSITION A. For all f,g ∈ ELG there exist A,B,C ∈ INF 
such that  

A ∪. fA ⊆ C ∪. gB 
 A ∪. fB ⊆ C ∪. gC. 

 
In Chapter 4, we prove Proposition A in SMAH+. In Chapter 5, 
we show that Proposition A is provably equivalent to 1-
Con(SMAH) over ACA’.  
 
We also show that every one of the 6561 assertions in the 
Template, other than the 12 Exotic Cases, are provably 
equivalent to the result of replacing ELG by any of ELG ∩ 
SD, SD, EVSD. All 12 Exotic Cases are refutable in RCA0 if 
ELG is replaced by SD or EVSD (Theorem 6.3.5). 
 
The 6561 cases are organized into 10 manageable groups 
according to the inner trace (quadruple) of letters used. 
I.e., the Principal Exotic Case above (Proposition A) has 
inner quadruple ACBC.  
 
Lemma 3.1.6 establishes that we need only consider single 
clauses, of which there are 14 up to symmetry - and these 
ten inner traces: 
 
1. AAAA. 20 up to symmetry. 
2. AAAB. 81. No symmetries. 
3. AABA. 81. No symmetries. 
4. AABB. 45 up to symmetry. 
5. AABC. 81. No symmetries. 
6. ABAB. 36 up to symmetry. 
7. ABAC. 45 up to symmetry. 
8. ABBA. 45 up to symmetry. 
9. ABBC. 81. No symmetries. 
10. ACBC. 45 up to symmetry. 
 
This adds up to a total of 574 ordered pairs up to 
equivalence (including the 14 duplicates or single 
clauses). 
 

3.2. Some Useful Lemmas 
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In this section, five useful lemmas are established that 
are used extensively throughout Chapter 3.  
 
The first of these lemmas provides f ∈ ELG ∩ SD such that 
whenever A is nonempty and fA ∩ 2N ⊆ A, we have fA is 
cofinite. This is useful for refuting instances of the 
Template, since if fA is cofinite then all instances of the 
Template in which fA appears must be false.  
 
The second and fourth lemmas are variants of the first, 
also providing g ∈ ELG ∩ SD such that if g feeds any 
nontrivial A back into A, the gA is cofinite.  
 
The third lemma decomposes any f ∈ ELG ∩ SD into a suitable 
composition of functions in ELG ∩ SD. It is used to prove 
the fourth lemma.  
 
The fifth lemma says that if we have finitely many terms in 
a set variable A ⊆ N, built out of functions from EVSD, 
then we can find A ∈ INF which is disjoint from all of 
them. This is particularly straightforward.  
 

3.3. Single Clauses (duplicates). 
3.4. AAAA. 
3.5. AAAB. 
3.6. AABA. 
3.7. AABB. 
3.8. AABC. 
3.9. ABAB. 
 3.10. ABAC. 
 3.11. ABBA. 
 3.12. ABBC. 
 3.13. ACBC. 

 
In each section, every instance of the Template covered 
under the titles are either proved or refuted in RCA0, with 
one exception. That exception is in section 3.13, and is 
the Principal Exotic Case (Proposition A). The Principal 
Exotic Case is treated in Chapters 4,5.  
 

3.14. Annotated Table 
 
Here we present a table of all of the results in sections 
3.3 - 3.13.  
 
The Template is based on INF. In sections 3.3 - 3.13, we 
also treat four alternatives to INF.  
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AL is "arbitrarily large", which includes infinite. 
 
ALF is "arbitrarily large finite", which does not include 
infinite. 
 
FIN is "finite".  
 
NON is "nonempty".  
 
The Annotated Table has 584 entries, each treating the five 
attributes INF, AL, ALF, FIN, NON. Every one of the 6561 
instances is symmetric - and therefore trivially equivalent 
- to one of the 584.  
 
Thus the Annotated Table lists a total of 574 × 5 = 2870 
determinations.  
 

3.15 Some Observations 
 
In this final section of Chapter 3, we read off some 
striking information from examination of the Annotated 
Table from section 3.14.  
 
The following asserts that ALF and INF come out the same in 
the Template.  
 
BRT TRANSFER. Let X,Y,V,W,P,R,S,T be among the letters 
A,B,C. The following are equivalent. 
i. for all f,g ∈ ELG and n ≥ 1, there exist finite A,B,C ⊆ 
N, each with at least n elements, such that X ∪. fY ⊆ V ∪. 
gW, P ∪. fR ⊆ S ∪. gT.  
ii. for all f,g ∈ ELG, there exist infinite A,B,C ⊆ N, such 
that X ∪. fY ⊆ V ∪. gW, P ∪. fR ⊆ S ∪. gT. 
 
Of course, BRT Transfer has, as a consequence, the 
Principal Exotic Case (Proposition A). In fact, it is 
clearly provably equivalent to the Principal Exotic Case 
over RCA0.  
 
BRT Transfer provides a way of stating a result in BRT for 
which it is necessary and sufficient to use large cardinals 
to prove, without having to give any particular BRT 
instance.  
 

Chapter 4 Proof of Principal Exotic Case 
4.1. Strongly Mahlo Cardinals of Finite Order 
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In this section, we introduce the large cardinals used to 
prove the Principal Exotic Case. These are the strongly 
Mahlo cardinals of finite order. 
 
The relevant large cardinal combinatorics is developed in a 
self contained way using Erdös-Rado trees.  
 
This large cardinal combinatorics first appeared in [Sc74]. 
We follow the treatment given in [HKS87].  
 
We use SMAH+ for ZFC + (∀n < ω)(∃κ)(κ is an n-Mahlo 
cardinal). We use SMAH for ZFC + {(∃κ)(κ is a strongly n-
Mahlo cardinal)}n<ω. 
 
The large cardinal combinatorics used in the book is given 
by the following. We give a self contained proof. 
 
LEMMA 4.1.6. Let n,m ≥ 1, κ a strongly n-Mahlo cardinal, and 
A ⊆ κ unbounded. For all i ∈ ω, let fi:An+1 → κ, and let 
gi:Am → ω. There exists E ⊆ κ of order type ω such that  
i) for all i ≥ 1, fiE is either a finite subset of sup(E), 
or of order type ω with the same sup as E; 
ii) for all i ∈ ω, giE is finite. 
 

4.2. Proof using Strongly Mahlo Cardinals 
 
In this section, we prove the Principal Exotic Case 
(Proposition A) in SMAH+. We actually prove the following 
sharp form of Proposition B.  
 
PROPOSITION B. Let f,g ∈ ELG and n ≥ 1. There exist 
infinite sets A1 ⊆ ... ⊆ An ⊆ N such that  
i) for all 1 ≤ i < n, fAi ⊆ Ai+1 ∪. gAi+1; 
ii) A1 ∩ fAn = ∅. 
 
We start with f,g ∈ ELG and n ≥ 1, with a cardinal κ that 
is strongly Mahlo of sufficiently high finite order.  
 
We begin with the discrete linearly ordered semigroup with 
extra structure, M = (N,<,0,1,+,f,g).  
 
We first extend this structure to a countable structure  
 

M* = (N*,<*,0*,1*,+*,f*,g*,c0*,...) 
 
generated by the atomic indiscernibles ci*, i ∈ N. This 
construction uses the infinite Ramsey theorem, infinitely 
iterated. 
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After verifying a number of properties of M*, we then 
extend transfinitely to  
 

M** = (N**,<**,0**,1**,+**,f**,g**,c0**,...,cα**,...) 
 
where the c**'s are indexed by the large cardinal κ. In 
particular, we verify that any partial substructure of M** 
boundedly generated by 0**, 1**, and a set of c**'s of 
order type ω, is embeddable back into M* and M.  
 
We then apply then Complementation Theorem for well founded 
relations (Theorem 1.3.1) to obtain a unique set W of 
nonstandard elements of M** such that for all nonstandard x 
in M**,  
 

x ∈ W ↔ x ∉ g**W. 
 
We then build a Skolem hull construction of length ω 
consisting entirely of elements of W. The construction 
starts with the set of all c**’s. Witnesses are thrown in 
from W that verify that values of f** at elements thrown in 
at previous stages do not lie in W (provided they in fact 
do not lie in W). Only the first n stages of the 
construction will be used. 
 
Every element of the n-th stage of the Skolem hull 
construction has a suitable name involving a bounded number 
of the c**'s.  
 
At this crucial point, we then apply Lemma 4.1.6 to the 
large cardinal κ, in order to obtain a suitably 
indiscernible subset of the c**’s of order type ω, with 
respect to this naming system. 
 
We can redo the length n Skolem hull construction starting 
with S.  This is just a restriction of the original Skolem 
hull construction that started with all of the c**'s.  
 
Because of the indiscernibility, we generate a subset of 
N** whose elements are given by terms of bounded length in 
c**'s of order type ω. This forms a suitable partial 
substructure of M**, so that it is embeddable back into M. 
The image of this embedding on the n stages of the Skolem 
hull construction will comprise the A1 ⊆ ... ⊆ An satisfying 
the conclusion of Proposition B. 
 
This completes the proof of Proposition B in SMAH+.  
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4.3. Some Existential Sentences 

 
The proof of the Principal Exotic Case in section 4.2 from 
SMAH+ is not optimal. Proposition B can, in fact, be proved 
in ACA' + 1-Con(SMAH). This is more delicate, and is proved 
in section 4.4. Section 4.3 provides a crucial Lemma for 
that proof.  
 
The Lemma needed is Theorem 4.3.8, which gives a primitive 
recursive algorithm for determining the truth value of all 
sentences of the first form  
 

(∃ infinite B1,...,Bn ⊆ Nk) 
(∀i ∈ {1,...,n-1})(∀x1,...,xm ∈ Bi)  

(∃y1,...,ym ∈ Bi+1)(Ri(x1,...,xm,y1,...,ym)) 
 
where k,n,m ≥ 1, and R1,...,Rn-1 ⊆ N2km are order invariant 
relations. Recall that order invariant sets of tuples are 
sets of tuples where membership depends only on the order 
type of a tuple. Furthermore, it is provable in ACA' that 
this algorithm is correct.  
 
We start with the simpler set of sentences of the second 
form  
 

(∃ infinite B1,...,Bn ⊆ Nk) 
(∀i ∈ {1,...,n-1}) 

(∀x,y,z ∈ Bi)(∃w ∈ Bi+1)(Ri(x,y,z,w)) 
 
where k,n ≥ 1, and R1,...,Rn-1 ⊆ N4k are order invariant 
relations. We primitive recursively convert every sentence 
of the first form to a corresponding sentence of the second 
form, without changing the truth value.  
 
We then consider sentences of the third form  

 
(∃f:Np → N)(∀x1,...,xq ∈ N)(ϕ) 

 
where ϕ is a propositional combination of atomic formulas 
of the forms xi < xj, f(y1,...,yp) < f(z1,...,zp), where 
xi,xj,y1,...,yp,z1,...,zp are among the (distinct) variables 
x1,...,xq. We primitive recursively convert every sentence 
of the second form to a corresponding sentence of the third 
form, without changing the truth value. 
 
Sentences of the third form are analyzed using strong 
SOI's. It is shown that a sentence of the third form is 
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true if and only if there is a small finite set of strong 
SOI's of a certain kind associated with the sentence.  
 

4.4. Proof using 1-consistency 
 
In this section we show that Proposition B - and hence the 
Principal Exotic Case - can be proved in ACA' + 1-
Con(SMAH). 
 
We first restate what is proved in section 4.2 in a 
different form with numerical parameters.  
 
Recall that in section 4.2, we essentially proved in SMAH 
that for any suitable structure 
 

M* = (N*,0*,1*,<*,+*,f*,g*,c0*,...) 
 
there exist r ≥ 1 and infinite sets D[1] ⊆ ... ⊆ D[n] ⊆ 
M*[r] such that D[1] ⊆ {cj*: j ≥ 0}, and for all 1 ≤ i < n, 
f*D[i] ⊆ D[i+1] ∪. g*D[i+1]. Here we assume that n ≥ 1 and 
the arities p,q of f*,g*, and a bound b on the ELG 
inequalities, are given in advance. See Lemma 4.4.1.  
 
Since for fixed parameters n,p,q,b, the set of such M* 
forms a compact space in an appropriate sense, we can 
choose r so large that it works even if the c*s are only 
indiscernible with respect to atomic formulas of bounded 
complexity.  
 
So these considerations allow us formulate an assertion of 
the form (∀n)(∃m)(σ(n,m)) that implies Proposition B, where 
for each n, (∃m)(σ(n,m)) is provable in SMAH.  
 
Note that if σ(n,m) were a primitive recursive equation, 
then (∀n)(∃m)(σ(n,m)) would be provable in ACA' + 1-
Con(SMAH), and so would Proposition B, as required.  
 
However, σ(n,m) asserts the existence of a chain of 
infinite sets of length n satisfying some inclusion 
relations.  
 
Now Theorem 4.3.8 comes to the rescue, telling us that 
σ(n,m) can be put in primitive recursive form.  
 

Chapter 5 Independence of Exotic Case 
5.1 Proposition C and Length 3 Towers 
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Chapter 5 is devoted to a proof of 1-Con(SMAH) in ACA' + 
the Principal Exotic Case.  
 
In fact, we use a specialization of the Principal Exotic 
Case, to a subset of ELG.  
 
This subset is ELG ∩ SD ∩ BAF, where BAF is the countable 
set of functions given by terms in 0,1,+,-,•,↑,log. Here 
(see Definition 5.1.1),  
 
1. Addition. x+y is the usual addition. 
2. Subtraction. Since we are in N, x-y is defined by the 
usual x-y if x ≥ y; 0 otherwise. 
3. Multiplication. x•y is the usual multiplication. 
4. Base 2 exponentiation. x↑ is the usual base 2 
exponentiation. 
5. Base 2 logarithm. Since we are in N, log(x) is the floor 
of the usual base 2 logarithm, with log(0) = 0. 
 
It is easier to work with EBAF (extended basic functions), 
defined in Definition 5.1.7. By Theorem 5.1.4, EBAF = BAF. 
 
In Chapter 5, we give a proof of 1-Con(SMAH) in ACA' + 
Proposition C.  
 
PROPOSITION C. For all f,g ∈ ELG ∩ SD ∩ BAF, there exist 
A,B,C ∈ INF such that  

A ∪. fA ⊆ C ∪. gB 
 A ∪. fB ⊆ C ∪. gC. 

 
Throughout Chapter 5, we assume Proposition C.  
 
Note that Proposition C does not tell us that A ⊆ B ⊆ C. 
This is a very important condition to have, as we want to 
extend length 3 chains to chains of arbitrary finite 
length, and then apply compactness to get a single 
structure.  
 
So in section 5.1, we obtain the badly needed chain of 
length 3 - but at the cost of degrading the two clauses in 
Proposition C. The tradeoff is well worth it - and needed.  
 
Section 5.1 concludes with the following.  
 
LEMMA 5.1.7. Let f,g ∈ ELG ∩ SD ∩ BAF and rng(g) ⊆ 6N. 
There exist infinite A ⊆ B ⊆ C ⊆ N\{0} such that  
i) fA ∩ 6N ⊆ B ∪ gB; 
ii) fB ∩ 6N ⊆ C ∪ gC; 
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iii) fA ∩ 2N+1 ⊆ B; 
iv) fA ∩ 3N+1 ⊆ B; 
v) fB ∩ 2N+1 ⊆ C; 
vi) fB ∩ 3N+1 ⊆ C; 
vii) C ∩ gC = ∅; 
viii) A ∩ fB = ∅. 
 
The remaining sections in Chapter 5 use only the last Lemma 
from the previous section, together with the previous 
definitions.  
 

5.2. From length 3 towers to length n towers 
 
In this section, we obtain a variant of Lemma 5.1.7 (Lemma 
5.2.12) involving length n towers rather than length 3 
towers.  
 
However, we have to pay a serious cost. As opposed to Lemma 
5.1.7, we will only have that the sets in the length n 
towers have at least r elements, for any given r ≥ 1.  
 
So it is important to make sure that the first sets in 
these towers be a suitable set of indiscernibles before we 
relinquish that the first sets be infinite.  
 
In order to accomplish this, we first apply the infinite 
Ramsey theorem to shrink the infinite first sets coming 
from Lemma 5.1.7 to infinite subsets that are sets of 
indiscernibles of the right kind.  
 
Section 5.2 concludes with the following.  
 
LEMMA 5.2.12. Let r ≥ 3 and g ∈ ELG ∩ SD ∩ BAF, where 
rng(g) ⊆ 48N. There exists (D1,...,Dr) such that  
i) D1 ⊆ ... ⊆ Dr ⊆ N\{0}; 
ii) |D1| = r and Dr is finite; 
iii) for all x < y from D1, x↑ < y; 
iv) for all 1 ≤ i ≤ r-1, 48α(r,Di;1,r) ⊆ Di+1 ∪ gDi+1; 
v) for all 1 ≤ i ≤ r-1, 2α(r,Di;1,r)+1, 3α(r,Di;1,r)+1 ⊆ 
Di+1; 
vi) Dr ∩ gDr = ∅; 
vii) D1 ∩ α(r,D2;2,r) = ∅; 
viii) Let 1 ≤ i ≤ β(2r), x1,...,x2r ∈ D1, y1,...,yr ∈ α(r,D2), 
where (x1,...,xr) and (xr+1,...,x2r) have the same order type 
and min, and y1,...,yr ≤ min(x1,...,xr). Then 
t[i,2r](x1,...,xr,y1,...,yr) ∈ D3 ↔ 
t[i,2r](xr+1,...,x2r,y1,...,yr) ∈ D3. 
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Note the partial shift toward the language driven notions 
using α. These are carefully defined sets of nonnegative 
integers given by terms with arguments from sets. Also, 
note the use of t[i,2r].  
 

5.3. Countable nonstandard models with limited 
indiscernibles 

 
Our basic standard structure is (N,<,0,1,+,-,•,↑,log) that 
provides the operations that generate BAF (see section 
5.1).  
 
We use Lemma 5.2.12 to create, for each r ≥ 3, a structure 
(N,<,0,1,+,-,•,↑,log,E1,...,Er) with a related set of 
properties. This is Lemma 5.3.2, which frees us from any 
further consideration of BAF. Thus we no longer see the D ∪ 
gD construction, or the D ∩ gD = ∅ condition. See Lemma 
5.3.2. 
 
The next major step is to consolidate all of the structures 
given by Lemma 5.3.2 relative to each r ≥ 3, to a single 
countable nonstandard structure based on a single tower E1 ⊆ 
E2 ⊆ ... of infinite sets of infinite length. Lemma 5.3.3 
also has further simplifications.  
 
One important point is the condition that the resulting 
single structure M is both a nonstandard model of some 
arithmetic - with primitives 0,1,+,-,•,↑,log - and also has 
the crucial tower of subsets E1 ⊆ E2 ⊆ ..., acting like 
unary predicates. The arithmetic is simply the set of all 
true Π0

1 sentences. This is important for obtaining 1-
Con(SMAH), instead of just Con(SMAH).  
 
A second point is that the elements of the tower are 
cofinal in the structure.  
 
This consolidation into a single structure is obtained by 
two steps. The first step is the compactness argument, 
which arranges for all of the properties except that the 
E's are cofinal in the structure. The second step is to 
restrict this structure to the cut given by a subset of the 
first set in the tower that has order type ω. In fact, this 
subset of order type ω is just the interpretation of 
infinitely many constant symbols used in the compactness 
argument.  
 
There is a considerable development of properties of M. One 
important development is internal finite sequence coding. 
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Because of the role of expansive linear growth - traces of 
which are carried through for several sections - we need 
the rather delicate way of handling coding provided by 
Definition 5.3.11.  
 
Section 5.3 ends with the following.  
 
LEMMA 5.3.18. There exists a countable structure M = 
(A,<,0,1,+,-,•,↑,log,E,c1,c2,...) such that the following 
holds. 
i) (A,<,0,1,+,-,•,↑,log) satisfies TR(Π0

1,L); 
ii) E ⊆ A\{0}; 
iii) The cn, n ≥ 1, form a strictly increasing sequence of 
nonstandard elements in E\α(E;2,<∞) with no upper bound in 
A; 
iv) Let r,n ≥ 1, t(v1,...,vr) be a term of L, and x1,...,xr ≤ 
cn. Then t(x1,...,xr) < cn+1;  
v) 2α(E;1,<∞)+1, 3α(E;1,<∞)+1 ⊆ E; 
vi) Let r ≥ 1, a,b ∈ N, and ϕ(v1,...,vr) be a quantifier 
free formula of L. There exist d,e,f,g ∈ N\{0} such that 
for all x1 ∈ α(E;1,<∞), (∃x2,...,xr ∈ E)(x2,...,xr ≤ ax1+b ∧ 
ϕ(x1,...,xr)) ↔ dx1+e ∉ E ↔ fx1+g ∈ E; 
vii) Let r ≥ 1, p ≥ 2, and ϕ(v1,...,v2r) be a quantifier free 
formula of L. There exist a,b,d,e ∈ N\{0} such that the 
following holds. Let n ≥ 1 and x1,....,xr ∈ α(E;1,<∞) ∩ 
[0,cn]. Then  
(∃y1,...,yr ∈ E)(y1,...,yr ≤ ↑p(|x1,...,xr|) ∧ 
ϕ(x1,...,xr,y1,...,yr)) ↔  
aCODE(cn+1;x1,...,xr)+b ∉ E ↔  
dCODE(cn+1;x1,...,xr)+e ∈ E. Here CODE is as defined just 
before Lemma 5.3.11; 
viii) Let k,n,m ≥ 1, and x1,...,xk ≤ cn < cm, where x1,...,xk 
∈ α(E;1,<∞). Then CODE(cm;x1,...,xk) ∈ E; 
ix) Let r ≥ 1 and t(v1,...,v2r) be a term of L. Let i1,...,i2r 
≥ 1 and y1,...,yr ∈ E, where (i1,...,ir) and (ir+1,...,i2r) 
have the same order type and min, and y1,...,yr ≤ 
min(ci_1,...,ci_r). Then  
t(ci_1,...,ci_r,y1,...,yr) ∈ E ↔ 
t(ci_r+1,...,ci_2r,y1,...,yr) ∈ E. 
 
Note that the infinite tower of sets from the M of Lemma 
5.3.3 is removed in favor of a single subset E, and 
constants cn, n ≥ 1, enumerating the first term of the 
tower. The single set E is simply the union of the tower of 
E's from the M of Lemma 5.3.3. The E is cofinal in the 
structure.  
 

5.4. Limited formulas, limited indiscernibles,  
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x-definability, normal form 
 
Note that the M of Lemma 5.3.18 obeys two special forms of 
existential comprehension (clauses vi, vii), and one form 
of quantifier free indiscernibility (clause ix).  
 
We upgrade these to a single form of comprehension for 
formulas with bounded quantifiers, and indiscernibility for 
formulas with bounded quantifiers. The range of this 
comprehension is E only, and the objects used in the 
indiscernibility are also only from E. 
 
In fact, the bounded quantifier comprehension is given in 
terms of a normal form. I.e., every suitable k-ary relation 
on E is given by fixing 8 parameters from E in a fixed 
atomic formula with k+8 variables.  
 
Section 5.4 ends with the following.  
 
LEMMA 5.4.17. There exists a countable structure M = 
(A,<,0,1,+,-,•,↑,log,E,c1,c2,...), and terms t1,t2,... of L, 
where for all i, ti has variables among v1,...,vi+8, such 
that the following holds. 
i) (A,<,0,1,+,-,•,↑,log) satisfies TR(Π0

1,L); 
ii) E ⊆ A\{0}; 
iii) The cn, n ≥ 1, form a strictly increasing sequence of 
nonstandard elements in E\α(E;2,<∞) with no upper bound in 
A; 
iv) Let r,n ≥ 1 and t(v1,...,vr) be a term of L, and 
x1,...,xr ≤ cn. Then t(x1,...,xr) < cn+1; 
v) 2α(E;1,<∞)+1, 3α(E;1,<∞)+1 ⊆ E; 
vi) Let k,n ≥ 1 and R be a cn-definable k-ary relation. 
There exists y1,...,y8 ∈ E ∩ [0,cn+1] such that R = 
{(x1,...,xk) ∈ Ek ∩ [0,cn]k: tk(x1,...,xk,y1,...,y8) ∈ E}; 
vii) Let r ≥ 1 and ϕ(v1,...,v2r) be a formula of L(E). Let 1 
≤ i1,...,i2r < n, where (i1,...,ir) and (ir+1,...,i2r) have the 
same order type and the same min. Let y1,...,yr ∈ E, 
y1,...,yr ≤ min(ci_1,...,ci_r). Then ϕ(ci_1,...,ci_r,y1,...,yr)c_n 
↔ ϕ(ci_r+1,...,ci_2r,y1,...,yr)c_n. 
 

5.5. Comprehension, indiscernibles 
 
Here we upgrade the bounded quantifier comprehension and 
indiscernibility to unbounded quantifier comprehension and 
indiscernibility. It is the indiscernibility itself that 
allows us to make this transition.  
 
The comprehension produces bounded relations on E only.  
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A very robust and useful notion of internal relation 
emerges. These are the bounded relations on E that are 
definable with parameters from E and quantifiers ranging 
over E. See Lemma 5.5.4. 
 
We pass to a second order structure where the internal 
relations are used to interpret the second order 
quantifiers.  
 
We retain comprehension and indiscernibility in the 
appropriate forms.  
 
Section 5.5 ends with the following.  
 
LEMMA 5.5.8. There exists a countable structure M* = 
(A,<,0,1,+,-,•,↑,log,E,c1,c2,...,X1,X2,...), where for all i 
≥ 1, Xi is the set of all i-ary relations on A that are cn-
definable for some n ≥ 1; and terms t1,t2,... of L, where 
for all i, ti has variables among x1,...,xi+8, such that the 
following holds. 
i) (A,<,0,1,+,-,•,↑,log) satisfies TR(Π0

1,L); 
ii) E ⊆ A\{0}; 
iii) The cn, n ≥ 1, form a strictly increasing sequence of 
nonstandard elements of E\α(E;2,<∞) with no upper bound in 
A; 
iv) For all r,n ≥ 1, ↑r(cn) < cn+1; 
v) 2α(E;1,<∞)+1, 3α(E;1,<∞)+1 ⊆ E; 
vi) Let k,n ≥ 1 and R be a cn-definable k-ary relation. 
There exists y1,...,y8 ∈ E ∩ [0,cn+1] such that R = 
{(x1,...,xk) ∈ Ek ∩ [0,cn]k: tk(x1,...,xk,y1,...,y8) ∈ E}; 
vii) Let k ≥ 1, m ≥ 0, and ϕ be an E formula of L*(E) in 
which R is not free, where all first order variables free 
in ϕ are among x1,...,xk+m+1. Then xk+1,...,xk+m+1 ∈ E → 
(∃R)(∀x1,...,xk ∈ E)(R(x1,...,xk) ↔ (x1,...,xk ≤ xk+m+1 ∧ ϕ)); 
viii) Let r ≥ 1, and ϕ(x1,...,x2r) be an E formula of L*(E) 
with no free second order variables. Let 1 ≤ i1,...,i2r, 
where (i1,...,ir) and (ir+1,...,i2r) have the same order type 
and the same min. Let x1,...,xr ∈ E, x1,...,xr ≤ 
min(ci_1,...,ci_r). Then ϕ(ci_1,...,ci_r,x1,...,xr) ↔ 
ϕ(ci_r+1,...,ci_2r,x1,...,xr). 
 

5.6. Π0
1 correct internal arithmetic, simplification 

 
The main focus of this section is the derivation of a 
suitable form of the axiom of infinity. This is the one 
place where it is essential to use that the cn, n ≥ 1, lie 
outside α(E;2,<∞). This is from Lemma 5.5.8 iii).  
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The axiom of infinity takes the form of the existence of an 
internal set containing 1, and closed under +2c1.  
 
We then define I to be the intersection of all internal 
sets containing 1, and closed under +2c1. The set I will 
serve as the internal natural numbers.  
 
It is important to link the arithmetic operations that are 
uniquely defined, internally, on I, with the arithmetic 
operations given by the structure M* from Lemma 5.5.8. This 
is required in order to be able to use the fact that M* 
satisfies the true Π0

1 sentences. It allows us to conclude 
that the internal arithmetic on I satisfies the true Π0

1 
sentences.  
 
The required link is provided by Lemma 5.6.11. 
 
LEMMA 5.6.11. Every element of I is of the form 2xc1+1, with 
x ∈ E-E. x ∈ I ∧ x > 1 → x-2c1 ∈ I. 
 
Thus we link each 2xc1+1 ∈ I with x ∈ E-E. This suggests 
that we can define +,•,-,↑,log on I by applying the +,•,-
,↑,log at relevant elements of E-E. But in order to do 
this, we need to know, e.g., that  
 

2xc1+1,2yc1+1 ∈ I → 2xyc1+1 ∈ I. 
 
This is exactly what is established in Lemma 5.6.12.  
 
So this defines the structure  
 

M(I) = (I,<,0’,1’,+’,-’,•’,↑’,log’) 
 
as in Definition 5.6.4, which is isomorphically embeddable 
in (A,<,0,1,+,-,•,↑,log).  
 
Since (A,<,0,1,+,-,•,↑,log) satisfies the true Π0

1 
sentences, we would like to conclude that M(I) also 
satisfies the true Π0

1 sentences. However, because of the 
bounded quantifiers in Π0

1 sentences, we can only conclude 
that M(I) satisfies the true Π0

1 sentences with no bounded 
quantifiers allowed.  
 
However, in the presence of PA, every Π0

1 sentence is 
equivalent to a Π0

1 sentence with no bounded quantifiers, 
using the Y. Matiyasevich solution to Hilbert's 10th 
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problem (based on earlier work of J. Robinson, M. Davis, 
and H. Putnam). See [Da73], [Mat93].  
 
By Lemma 5.6.13, M(I) satisfies PA. Therefore M(I) 
satisfies PA + the true Π0

1 sentences.  
 
We now introduce the linearly ordered set theory K(Π) in 
Definition 5.6.10. It has a linear ordering of the 
universe, full separation, an initial segment serving as 
the integers, with operations +,-,•,↑,log, obeying the true 
Π0

1 sentences. There is also an infinite list of constants 
with axioms of indiscernibility. 
 
A model of K(Π) is explicitly constructed using M* and 
M(I). We put I at the bottom, and E (without the initial 
segment of E determined by I) on top. The arithmetical 
operations on I are inherited from M(I). The c's, after c1, 
serve as the indiscernibles. The ∈ relation is interpreted 
using the normal form relation σ from Lemma 5.6.17.    
 
Section 5.6 ends with the following.  
 
LEMMA 5.6.20. There exists a countable structure M# = 
(D,<,∈,NAT,0,1,+,-,•,↑,log,d1,d2,...) such that the 
following holds. 
i) < is a linear ordering (irreflexive, transitive, 
connected); 
ii) x ∈ y → x < y; 
iii) The dn, n ≥ 1, form a strictly increasing sequence of 
elements of D with no upper bound in D; 
iv) Let ϕ be a formula of L# in which v1 is not free. Then 
(∃v1)(∀v2)(v2 ∈ v1 ↔ (v2 ≤ v3 ∧ ϕ)); 
v) Let r ≥ 1 and ϕ(v1,...,v2r) be a formula of L#. Let 1 ≤ 
i1,...,i2r, where (i1,...,ir) and (ir+1,...,i2r) have the same 
order type and min. Let y1,...,yr ≤ min(di_1,...,di_r). Then 
ϕ(di_1,...,di_r,y1,...,yr) ↔ ϕ(di_r+1,...,di_2r,y1,...,yr); 
vi) NAT defines a nonempty initial segment under <, with no 
greatest element, and no limit point, where all points are 
< d1, and whose first two elements are 0,1, respectively; 
vii) (∀x)(if x has an element obeying NAT then x has a < 
least element);  
viii) Let ϕ ∈ TR(Π0

1,L). The relativization of ϕ to NAT 
holds.  
ix) +,-,•,↑,log have the default value 0 in case one or 
more arguments lie outside NAT. 
 

5.7. Transfinite induction, comprehension,  
indiscernibles, infinity, Π0

1 correctness 
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In M#, the < may not be internally well ordered. Moreover, 
we may not have extensionality.  
 
The focus of section 5.7 is on creating a structure 
corresponding to the M# of Lemma 5.6.20 with an internally 
well founded <. However, this new structure will not be a 
model of a set theory, but rather a second order structure. 
I.e., we will have a linearly ordered set of points, with a 
family of relations on the points of each arity.  
 
We will obtain full second order separation (second order 
of course limited to these families of relations), and an 
initial segment corresponding to the natural numbers. We 
will also obtain an infinite sequence of indiscernibles as 
in Lemma 5.6.20, cofinal in the linear ordering.  
 
The idea is to first develop a theory of pre well orderings 
(as binary relations) within M#. Every binary relation in 
M# is a point, since M# is a model of a set theory.  
 
We use this theory of pre well orderings to place two 
closely related relations <#, ≤#, on points. See Definitions 
5.7.21 and 5.7.22. These are, generally speaking, much 
stronger than the relations <, ≤. We define x =# y ↔ (x ≤# 
y ∧ y ≤# x). 
 
By Lemma 5.7.18, we have the trichotomy 
 

x <# y ∨ y <# x ∨ x =# y, with exclusive ∨. 
 
The points in the desired structure with internal well 
foundedness are the equivalence classes under =#, each of 
which forms an interval of points in M*.  
 
For the rest of the definition of the second order 
structure M^, see Definitions 5.7.26 - 5.7.34.  
 
Section 5.7 ends with the following. 
 
LEMMA 5.7.30. There exists a structure M^ = (C,<,0,1,+,-
,•,↑,log,ω,c1,c2,...,Y1,Y2,...) such that the following 
holds. 
i) (C,<) is a linear ordering;  
ii) {x: x < ω} forms an initial segment of (C,<); 
iii) ({x: x < ω},<,0,1,+,-,•,↑,log) satisfies TR(Π0

1,L); 
iv) For all x,y ∈ C, ¬(x < ω ∧ y < ω) → x+y = x•y = x-y = 
x↑ = log(x) = 0; 
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v) The cn, n ≥ 1, form a strictly increasing sequence of 
elements of C, all > ω, with no upper bound in C; 
vi) For all k ≥ 1, Yk is a set of k-ary relations on C whose 
field is bounded above; 
vii) Let k ≥ 1, and ϕ be a formula of L^ in which the k-ary 
second order variable Bkn is not free, and the variables Bmr 
range over Yr. Then (∃Bkn ∈ Yk)(∀x1,...,xk)(Bkn(x1,...,xk) ↔ 
(x1,...,xk ≤ y ∧ ϕ));  
viii) Every nonempty M^ definable subset of C has a < least 
element; 
ix) Let r ≥ 1 and ϕ(v1,...,v2r) be a formula of L^. Let 1 ≤ 
i1,...,i2r, where (i1,...,ir) and (ir+1,...,i2r) have the same 
order type and the same min. Let y1,...,yr ∈ C, y1,...,yr ≤ 
min(ci_1,...,ci_r). Then ϕ(ci_1,...,ci_r,y1,...,yr) ↔ 
ϕ(ci_r+1,...,ci_2r,y1,...,yr). 
 

5.8. ZFC + V = L, indiscernibles, and  
Π0

1 correct arithmetic 
 
Now that we have a second order structure M^ from Lemma 
5.7.30, we want to move back to a model of set theory. This 
time, the model will be of ZFC + V = L + the true Π0

1 
sentences, with an unbounded infinite sequence of ordinals 
with indiscernibility.  
 
We need to build the constructible hierarchy in order to 
fully utilize the indiscernibility afforded by Lemma 
5.7.30. In particular, the definable well ordering arising 
from L is needed in order to derive power set from 
indiscernibility.  
 
Because of the internal well foundedness, the points in M^ 
already behave like ordinals. In M^, we can perform various 
transfinite recursions, resulting in second objects in M^. 
Sometimes in order to accomplish this, we make use of the 
indiscernibles in M^.  
 
Extensionality, pairing, and union are verified in L by 
Lemma 5.8.24. Infinity is verified in L by Lemma 5.8.25. 
Foundation is verified in L by Lemma 5.8.26. Separation and 
Collection, both of which are schemes, are verified in L by 
Lemma 5.8.29. 
 
We then show that power set holds in L with heavy use of 
indiscernibility.  
 
It suffices to show that if, in L, every element of x ∈ L 
is constructed before stage c2, then x < c3. (We can obtain 
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such a strong conclusion because extensionality is built 
into the construction of L). This is Lemma 5.8.32.  
 
If this is false, then by indiscernibility, for each n ≥ 3, 
there is an x ≥ cn such that every element of x in L is 
constructed before stage c2.   
 
Using the definable well ordering of L, we can set J(n) to 
be the < least x ≥ cn such that every element of x in L is 
constructed before stage c2.  
 
But by indiscernibility, J(4) < J(5) and J(4),J(5) will 
have the same elements in L. This is a contradiction. The 
treatment in section 5.8 is fully detailed. See Lemma 
5.8.34.  
 
We now obtain a model of ZF of the required kind. See Lemma 
5.8.36. We can then relativize to L to obtain ZFC + V = L.  
 
Section 5.8 ends with the following.  
 
LEMMA 5.8.37. There exists a countable model M+ of ZFC + V = 
L + TR(Π0

1,L), with distinguished elements d1,d2,..., such 
that  
i) The d’s are strictly increasing ordinals in the sense of 
M+, without an upper bound; 
ii) Let r ≥ 1, and i1,...,i2r ≥ 1, where (i1,...,ir) and 
(ir+1,...,i2r) have the same order type and min. Let R be a 
2r-ary relation M+ definable without parameters. Let 
α1,...,αr ≤ min(di_1,...,di_r). Then R(di_1,...,di_r,α1,...,αr) 
↔ R(di_r+1,...,di_2r,α1,...,αr). 
 

5.9. ZFC + V = L + {(∃κ)(κ is strongly k-Mahlo)}k + 
TR(Π0

1,L), and 1-Con(SMAH). 
 
We first give a complete proof of a result in combinatorial 
set theory, of independent interest and not involving any 
developments in the book from sections 1.1 through 5.8. It 
is closely related to [Sc74] and the treatment is inspired 
by [HKS87]. The result is as follows.  
 
THEOREM 5.9.5. The following is provable in ZFC. Let k < ω 
and α be an ordinal. Then R(α\ω,k+3,k+5) if and only if 
there is a strongly k-Mahlo cardinal ≤ α. 
 
We then return to the model M+ of ZFC + V = L + the true Π0

1 
sentences, given by Lemma 5.8.37.  
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We show that the indiscernibles themselves (the d's of M+) 
essentially obey the relevant partition properties.  
 
LEMMA 5.9.6. Let k,r ≥ 1 be standard integers. Then 
R(dr+2+1\ω,k,r) holds in M+. 
 
This is proved by first assuming that it is false, and then 
taking the L least counterexample. We can do this since M+ 
obeys V = L. Then apply the indiscernibility in M+ from 
Lemma 5.8.37. 
 
We then easily obtain that M+ satisfies ZFC + V = L + {there 
exists a strongly k-Mahlo cardinal}k + the true Π0

1 
sentences. In fact, we conclude  
 
THEOREM 5.9.11. ACA’ proves the equivalence of each of 
Propositions A,B,C and 1-Con(MAH), 1-Con(SMAH). 
 
The above is shown by checking that all of the relevant 
steps in Chapter 5 can be carried out within ACA', and 
quoting Theorem 4.4.11.  
 
Chapter 5 ends with the following.  
 
THEOREM 5.9.12. None of Propositions A,B,C are provable in 
any set of consequences of SMAH that is consistent with 
ACA’. The preceding claim is provable in RCA0. For finite 
sets of consequences, the first claim is provable in EFA. 
 

Chapter 6 Further Results 
6.1. Propositions D-H 

 
In section 6.1, we establish Theorem 5.9.11 for several 
variants of Propositions A,B,C. This requires various 
adaptations of Chapters 4 and 5. 
 
The strongest proposition considered in this book that is 
proved from large cardinals is the following.  
 
PROPOSITION D. Let f ∈ LB ∩ EVSD, g ∈ EXPN, E ⊆ N be 
infinite, and n ≥ 1. There exist infinite A1 ⊆ ... ⊆ An ⊆ N 
such that  
i) for all 1 ≤ i < n, fAi ⊆ Ai+1 ∪. gAi+1; 
ii) A1 ∩ fAn = ∅;  
iii) A1 ⊆ E. 
 



 216 

Proposition D immediately implies Proposition B. We then 
adapt Chapter 4 to derive Proposition D in ACA' + 1-
Con(SMAH).  
 
We then consider the remaining main variants of 
Propositions A,B,C in section 6.1.  
 
PROPOSITION E. For all f,g ∈ ELG ∩ SD ∩ BAF there exist A ⊆ 
B ⊆ C ⊆ N, each containing infinitely many powers of 2, 
such that  

fA ⊆ B ∪. gB 
 fB ⊆ C ∪. gC. 

 
PROPOSITION F. For all f,g ∈ ELG ∩ SD ∩ BAF there exist A ⊆ 
B ⊆ C ⊆ N, each containing infinitely many powers of 2, 
such that  

fA ⊆ C ∪. gB 
 fB ⊆ C ∪. gC. 

 
PROPOSITION G. For all f,g ∈ ELG ∩ SD ∩ BAF there exist 
A,B,C ⊆ N, whose intersection contains infinitely many 
powers of 2, such that  

fA ⊆ C ∪. gB 
 fB ⊆ C ∪. gC. 

 
PROPOSITION H. For all f,g ∈ ELG ∩ SD ∩ BAF there exist 
A,B,C ⊆ N, where A ∩ B contains infinitely many powers of 
2, such that  

fA ⊆ C ∪. gB 
 fB ⊆ C ∪. gC. 

 
We first observe that in RCA0, D → E → F → G → H. See 
Lemma 6.1.5.  
 
Section 6.1 ends with an adaptation of part of Chapter 5 in 
order to resolve the status of Propositions E-H. I.e., ACA' 
proves Propositions E-H are equivalent to Con(SMAH). See 
Theorem 6.1.10.  
 

6.2. Effectivity 
 
Section 6.2 begins with a straightforward proof that 
Propositions A-H hold in the arithmetic sets. The proof is 
conducted in ACA+. See Definition 6.2.1.  
 
Next in section 6.2, we show that Propositions C,E-H hold 
in the recursive sets (and even in the sets with primitive 
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recursive enumeration functions). We also show that this 
result is provably equivalent to 1-Con(SMAH) over ACA'. 
 
We don't know if any or all of Propositions A,B,D hold in 
the recursive sets. We conjecture that they do not. 
 
Recall that in the proofs of Propositions C,E-H coming out 
of Chapter 4, we rely on an infinite set of indiscernibles 
for functions in BAF. These sets of indiscernibles are 
given by applying the infinite Ramsey theorem, and so go up 
the arithmetic hierarchy, and are far from being recursive.  
 
A key idea of section 6.2 is the development of appropriate 
infinite sets of indiscernibles for functions in BAF that 
are recursive - and even primitive recursive or better. 
 
This relies on properties of the structure (N,+,↑), or base 
2 exponential Presburger arithmetic. It has a primitive 
recursive decision procedure going back to [Se80], [Se83]. 
A modern treatment of quantifier elimination for this 
structure (with additional predicates) appears in [CP85], 
and also a more recent version appears as Appendix B in 
this book, authored by F. Point.  
 
The required infinite sets of indiscernibles are given by 
Lemma 6.2.17.  
 
Section 6.2 continues with an adaptation of sections 4.3 
and 4.4 primitive recursively. This culminates with Theorem 
6.2.20. 
 

6.3. A Refutation 
 
Section 6.3 is devoted to a refutation of the following.  
 
PROPOSITION α. For all f,g ∈ SD ∩ BAF there exist A,B,C ∈ 
INF such that 

A ∪. fA ⊆ C ∪. gB 
 A ∪. fB ⊆ C ∪. gC. 

   
Note that this shows the need for using ELG in Propositions 
A,B,C. In fact, section 6.3 contains a refutation of the 
following. 
 
PROPOSITION β. Let f,g ∈ SD ∩ BAF. There exist A,B,C ⊆ N, 
|A| ≥ 4, such that  

A ∪. fA ⊆ C ∪. gB 
 A ∪. fB ⊆ C ∪. gC. 
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The proof proceeds by assuming Proposition β, and first 
adapting Lemma 5.1.8. See Lemma 5.1.8'. This is followed by 
a combinatorial construction that provides the required 
contradiction.  
 
0.16. Some Open Problems. 
 
1. Is the set of all true instances of EBRT (or IBRT) in 
A1,...,Ak,f1A1,...,f1Am,...,fnA1,...,fnAm on (MF,INF) (or 
(SD,INF), (ELG,INF), (EVSD,INF)) recursive? Here n,m are 
not fixed. We expect a positive result to be hugely 
intractable, and so we are raising the possibility of a 
negative result.  
 
2. PBRT was introduced in section 1.1, but not investigated 
in this book. It is spectacularly more complex than EBRT 
and IBRT. See Definition 1.1.26, and the brief discussion 
of PBRT right after the proof of Theorem 1.1.2. What can we 
say about PBRT in A,fA on (MF,INF) (or (SD,INF), (ELG,INF), 
(EVSD,INF))? What about question 1 for PBRT? 
 
3. Does the behavior of BRT fragments in the various BRT 
settings presented in section 1.2 depend very delicately on 
the choice of BRT setting, as we believe? Give some precise 
formulations of this question and determine whether they 
hold. 
 
4. This concerns the Upper Complementation Theorem of 
section 1.3. Is there a decision procedure for determining 
whether, given two affine functions f:Nk → Z, whether their 
unique upper complementations are equal? What if the two 
functions are quadratics? Polynomials? For any given affine 
f, what can we say about the computational complexity of 
its unique upper complementation? 
 
5. Every instance of EBRT in A,B,fA,fB,⊆ on (SD,INF), 
(ELG,INF), (EVSD,INF) is provable or refutable in RCA0. This 
is shown in sections 2.4, 2.5. Is every instance of EBRT in 
A,B,fA,fB on (SD,INF), (ELG ∩ SD,INF), (ELG,INF), 
(EVSD,INF) provable or refutable in RCA0? As a presumably 
smaller step, what about using A,B,fA,fB,fU,⊆? 
 
6. Every instance of EBRT in A1,...,Ak,fA1,...,fAk,⊆ on 
(MF,INF) is provable or refutable in RCA0. This is shown in 
section 2.6. Is every instance of EBRT in 
A1,...,Ak,fA1,...,fAk on (MF,INF) provable or refutable in 
RCA0? What if k = 2? 
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7. What about question 5 for IBRT in light of section 2.7? 
 
Recall the Template of Chapter 3: 
 
TEMPLATE. For all f,g ∈ ELG there exist A,B,C ∈ INF such 
that  

X ∪. fY ⊆ V ∪. gW 
 P ∪. fR ⊆ S ∪. gT. 

 
Consider two richer Templates. 
 
TEMPLATE'. For all f,g ∈ ELG there exist A,B,C ∈ INF such 
that  

X ∪. fY ⊆ V ∪. gW 
 P ∪. fR ⊆ S ∪. gT. 
 D ∪. fE ⊆ J ∪. gK. 

 
 
TEMPLATE ''. For all f,g ∈ ELG there exist A,B,C ∈ INF such 
that  

X ∪. αY ⊆ V ∪. βW 
 P ∪. γR ⊆ S ∪. δT. 

 
where α,β,γ,δ are among the letters f,g.  
 
8. Every instance of the above Template is provable or 
refutable in SMAH+. This is shown in Chapter 3. Is this true 
for Template'? Is this true for Template''?  
 
9. The Principal Exotic Case (Proposition A) universally 
quantifies over eight numerical parameters. The upper and 
lower rational constant factors for f ∈ ELG, the lower and 
upper rational constant factors for g ∈ ELG, constants for 
sufficiently large associated with each of these four 
rational constant factors, the arity of f, and the arity of 
g. In the case of Proposition B, there is an additional 
parameter, namely the length of the tower. In section 4.2, 
we proved Proposition B by fixing p,n ≥ 1, where p is the 
arity of f, and n is the length of the tower. We used a 
strongly pn-1-Mahlo cardinal. This amounts to using a 
strongly p2-Mahlo cardinal to prove the Principal Exotic 
Case (Proposition A). What is the least order of strong 
Mahloness needed here? Also, what is the metamathematical 
status of Propositions A (B) if we fix various combinations 
of the eight (nine) parameters and let the others vary? For 
some combinations, we expect to get independent statements, 
and for other combinations we expect to get Σ01 statements, 
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which are, of course provable. But do we get length of 
proof results corresponding to the provably recursive 
functions of SMAH? 
 
10. The Principal Exotic Case, is an instance of EBRT in 
A,C,fA,fB,gB,gC on (ELG,INF). The Principal Exotic Case 
with A ⊆ B ⊆ C is an instance of EBRT in A,C,fA,fB,gB,gC,⊆ 
on (ELG,INF). They are both provable in SMAH+ but not in 
SMAH. This is shown in section 4.2 and in Chapter 5. Is 
every instance of EBRT in A,B,C,fA,fB,fC,gA,gB,gC on 
(ELG,INF) provable or refutable in SMAH+? What about in 
A,B,C,fA,fB,fC,gA,gB,gC,⊆, A,C,fA,fB,gB,gC, or 
A,C,fA,fB,gB,gC,⊆?  
 
11. ACA' proves that Propositions A-H are each equivalent 
to 1-Con(SMAH). This is shown in section 6.1. For which of 
these Propositions, can ACA' be replaced by RCA0, or by WKL0 
in either the forward or the reverse direction of the 
equivalence?  
 
12. Propositions A-H hold in the arithmetic sets. This is 
shown in section 6.2. Does the Principal Exotic Case 
(Proposition A) hold in the recursive sets? What about 
Propositions B,D?  
 
13. Propositions C,E-H hold in the recursive sets, and even 
in the sets with primitive recursive enumeration functions. 
This is shown in section 6.2. Do Propositions C,E-H hold in 
the sets with superexponential enumeration functions as 
discussed at the end of section 6.2?  
 
14. What is the status of Proposition D[5] presented in 
section 6.1? What is the status of Proposition G[1], also 
presented in section 6.1?  
 
0.17. Concreteness in the Hilbert Problem List. 
 
We now discuss the levels of Concreteness associated with 
Hilbert's famous list of 23 problems, 1900. See [Br76], and 
http://en.wikipedia.org/wiki/Hilbert's_problems#Table_of_pr
oblems 
 
[Br76] includes a reprint of Hilbert's article. For ready 
web access, see  
 
http://aleph0.clarku.edu/~djoyce/hilbert/toc.html 
http://aleph0.clarku.edu/~djoyce/hilbert/problems.html 
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It is important to distinguish between two quite different 
but overlapping projects. We use HP for "Hilbert's 
Problems".  
 
HP PROOF THEORY. An analysis of levels of Concreteness in 
the proofs of theorems surrounding the Hilbert problem 
list. 
 
HP STATEMENT THEORY. An analysis of levels of Concreteness 
in the statements of propositions surrounding the Hilbert 
problem list.  
 
In this section, we focus entirely on HP Statement Theory. 
We view it as preliminary to a systematic development of HP 
Proof Theory. 
 
There is a very limited amount of work in HP Proof Theory. 
We view HP Proof Theory as part of a wider Mathematical 
Proof Theory limited to theorems surrounding the Hilbert 
problem list. Here Mathematical Proof Theory is the 
systematic study of Concreteness in mathematical proofs, 
generally in the sense of Reverse Mathematics and Strict 
Reverse Mathematics as discussed in section 0.4.  
 
We view HP Statement Theory as part of a wider Mathematical 
Statement Theory limited to propositions (which may or may 
not be theorems) surrounding the Hilbert problem list. HP 
Mathematical Statement Theory is the systematic study of 
Concreteness in mathematical statements. We make full use 
of the basic framework laid out in section 0.3, consisting 
of the categories of sentences 
 

Π0
n, Σ0n, Π1

n, Σ1n, 0 ≤ n ≤ ∞ 
 
discussed there. In Mathematical Statement Theory, we begin 
with a mathematical proposition P, and proceed as follows.  
 
a. We first examine a fully detailed statement of P and 
find the lowest category in which it resides, without 
significant reformulation of P. We say that P is literally 
Πi

j (or Σij). 
 
b. We then find a reformulation P' of P, so that we can 
prove the equivalence P ↔ P', where P' is in the lowest 
category of sentences above that we can find. We say that P 
is essentially Πi

j (or Σij). 
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c. If P has already been proved (or refuted), then b) is 
not to be taken literally, because we can always take P' to 
be 0 = 0 (or 1 = 0), and declare any P to be essentially 
Π0

0. In other words, if we just follow b) uncritically, then 
Mathematical Statement Theory does not apply to theorems - 
only to propositions of unknown status.  
 
d. In case P has already been proved (or refuted), we 
demand that the proof of the equivalence P ↔ P' be based on 
generally applicable principles, and not involve 
substantial ideas from the proof (or refutation) of P. 
 
e. Of special note in the theory are implications P' → P, 
where P' is in the lowest category we can find, and P' is 
interesting. I.e., P' is a strengthening of P. If P is not 
(yet) a theorem, then we want P' to represent a reasonable 
path toward proving P. If P is a theorem, then we want the 
proof of the implication P' → P to not involve substantial 
ideas from the proof of P, and ideally, P' should also be a 
theorem. This often occurs when one discovers the 
"combinatorial essence" of a proof. P' is based on the 
combinatorial essence of P.   
 
We acknowledge the informal nature of d), but submit that 
in practice, d) is rather objective. To a lesser extent, 
there are fuzzy issues regarding a) as well. In fact, a) 
and d) appear to be sufficiently objective in practice to 
support the viability of Mathematical Statement Theory.  
 
Coming back to HP Proof Theory, the principal tool used for 
analyzing levels of Concreteness in proofs is our Reverse 
Mathematics program (RM). The RM program was discussed in 
detail in section 0.3.  
 
However, not much of the work surrounding the Hilbert 
problems falls under the scope of RM.  One reason is that 
so much of the work on these problems falls below the radar 
screen of RM - the proof is already carried out (or easily 
seen to be carried out) in the base theory, RCA0, of RM.  
 
As discussed in section 0.3, our Strict Reverse Mathematics 
program (SRM), which was conceived of even before RM, has a 
far more ambitious scope than RM. However, SRM is at a very 
early stage of development, having been effectively 
launched only with the recent [Fr09], [Fr09a] - and only 
there in certain limited directions. Yet more substantial 
work needs to be done in order to bring SRM to anything 
like the level of development RM even decades ago.  
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It would seem premature to apply SRM to HP Proof Theory at 
this point, although such a venture will be a great test 
for the SRM program.  
 
It would be of great interest to investigate Smale Problems 
Statement Theory, and Clay Problems Statement Theory, based 
on the 18 Smale problems, 1998, and the 7 Clay Millennium 
Prize Problems, 2000. See [Sm00] and 
[http://www.claymath.org]. 
 
There are many gaps in our limited discussion of HP 
Statement Theory. We view the treatment below as a good 
starting point for an intensive and systematic 
investigation. This, in turn, should serve as a prototype 
for Mathematical Statement Theory.  
 
However, it must be said that it is not yet clear just what 
the most fruitful and illuminating frameworks are for a 
suitable discussion of Concreteness and Abstraction in 
mathematics. Even though the framework of Mathematical 
Statement Theory needs to be solidified and amplified, we 
expect it will remain an integral part of subsequent 
formulations.  
 
H1. Cantor's problem of the cardinal number of the 
continuum  
 
This well known problem of Cantor in abstract set theory - 
called the continuum hypothesis - can be conveniently 
stated as follows. Every infinite set of real numbers is in 
one-one correspondence with the integers of the real 
numbers. Assuming ZFC is consistent, this statement is not 
provable in ZFC ([Co63,64]), and not refutable in ZFC 
([Go38], [Go86-03]). The use of all sets of real numbers 
(and functions onto the reals) means that it is a statement 
of Abstract Mathematics as opposed to Concrete Mathematics.  
 
Furthermore, it is well known that the Continuum Hypothesis 
is not provably equivalent, over ZFC, to any Π1

n sentence, n 
≥ 1, and hence lies essentially ouside of Concrete 
Mathematics. 
 
The easiest way to prove this claim is to start with a 
countable model M of ZFC + 2ω = ω2. Let M' be a generic 
extension of M obtained by collapsing ω2 to ω1 using 
countable functions from ω1 into ω2. Then 2ω = ω1 holds in 
M', yet M and M' have the same real numbers.   
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The continuum hypothesis has well known specializations to 
(more) concrete mathematical objects. For instance, it is 
provable in ZFC that every infinite Borel set of real 
numbers is in one-one correspondence with the integers or 
the real numbers.  
 
To be fully coherent, we also need to treat the maps. It is 
also provable in ZFC that every infinite Borel set of real 
numbers is in Borel one-one correspondence with the 
integers or the real numbers. In fact, we can replace Borel 
by "Borel of finite rank".  
 
This Borel form of the continuum hypothesis follows easily 
from the classic theorem of Alexandrov and Hausdorff that 
every Borel set of real numbers is either countable or 
contains a Cantor set, and the obvious Borel form of the 
Cantor-Bernstein theorem. See [Ke95], p. 83, and [Je78,06].   
 
H2. The compatibility of the arithmetical axioms    
 
This is properly viewed as a metamathematical problem as 
opposed to a mathematical problem. However, it did generate 
a considerable amount of work on formal systems and their 
relationships, beginning, most notably, with [Pr29] and 
[Go31].  
 
These formal investigations generally give rise to formal 
problems in classes Π0

1, Σ01, Π0
2, and Σ02, and theorems in 

classes Π0
1, Π0

2.  
 
For instance, consistency of an effectively presented 
formal system is a Π0

1 sentence; interpretability of one 
finitely axiomatized system in another is a Σ01 sentence; 1-
consistency of an effectively presented formal system is a 
Π0

2 sentence; interpretability of one effectively presented 
formal system in another is a Σ03 sentence. In each specific 
example, the relevant theorems witness the outermost 
existential quantifiers with particular interpretations.   
 
H3. The equality of two volumes of two tetrahedra of equal 
bases and equal altitudes 
 
Hilbert asks whether there exists 
 
two tetrahedra of equal bases and equal altitudes which can 
in no way be split up into congruent tetrahedra, and which 
cannot be combined with congruent tetrahedra to form two 
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polyhedra which themselves could be split up into congruent 
tetrahedral. 
  
The dissections are normally required to be polyhedra, in 
the sense of a 3 dimensional solid consisting of a 
collection of polygons, joined at their edges.  
 
The problem is literally Σ12 as stated. This is a rather 
high complexity class, given that so much mathematics is 
Π0

∞. 
 
Suppose two tetrahedra are given, as well as an integer 
bound on the number of complementary tetrahedra allowed, 
the number of pieces in the dissections allowed, and the 
number of points in the polyhedra allowed. Then the 
statement of impossibility can be expressed as a first 
order formula in the ordered field of reals. Thus the 
formula is subject to Tarski's elimination of quantifiers 
for real closed fields, [Ta51], and is quantifier free in 
the language of ordered fields.   
 
These considerations show that H3 is essentially Σ11. The 
outermost second order existential quantifiers correspond 
to the tetrahedral, which are followed by a universal 
quantifier(s) over integers, corresponding to the bound.  
 
Can further uses of Tarski's elimination and some general 
principles further reduce the essentially complexity? E.g., 
from Σ11 to Π0

2 or even Π0
1?  

 
As is widely known, the problem was solved negatively in 
[Dehn01] using Dehn invariants. The counterexample given by 
Dehn provides  many specific natural examples α,β.  
 
For any of these specific natural examples (using algebraic 
points), the Tarski elimination yields a Π0

1 sentence, since 
the outermost second order quantifiers are replaced by 
specific algebraic numbers.  
 
Thus H3 is immediately implied by a Π0

1 sentence. The proof 
of this implication does not involve [Dehn01]. 
 
H4. Problem of the straight line as the shortest distance 
between two points 
 
It would be very interesting to have clear formulations of 
this problem, and subject them to logical analysis.  
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H5. Lie's concept of a continuous group of transformations 
without the assumption of the differentiability of the 
functions defining the group 
 
The modern formulation of this problem is: 
 
Are continuous groups automatically differentiable groups? 

 
A topological group (continuous group) G is a topological 
space and group such that the group operations of product 
and inverse are continuous. 
 
A continuous group is a topological group where the 
topological space is locally Euclidean.  
 
The problem asks whether it follows that the group 
operations of product and inverse are (continuously) 
differentiable.  
 
It is clear that we can assume without loss of generality 
that the space is separable.  
 
Additional considerations show that the problem is 
essentially in class Π1

1. Do the positive solutions by 
Gleason, Montgomery, Zippin provide a stronger assertion 
that is essentially Π0

2, or even essentially Π0
1? 

 
H6. Mathematical Treatment of the Axioms of Physics  
 
The investigations on the foundations of geometry suggest 
the problem: To treat in the same manner, by means of 
axioms, those physical sciences in which already today 
mathematics plays an important part; in the first rank are 
the theory of probabilities and mechanics. 
  
Although very substantial mathematics is needed to begin 
seriously treating this problem, the problem itself is not 
a mathematical problem in the sense meant here. 
 
H7. Irrationality and transcendence of certain numbers 
 
Hilbert's seventh problem is answered by the Gelfond-
Schneider theorem, which states that  
 
If α and β are algebraic numbers with α ≠ 0,1 and if β is 
not a rational number, then any value of αβ = exp(β log α) 
is a transcendental number. 
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There are three main types of such problems. The first is 
where we present a particular interesting number, and ask 
if it is irrational or if it is transcendental. In this 
case, invariably we have an effective means of 
approximating the number, α.  
 
It follows that "α is irrational" is a Π0

2 sentence, and 
that "α is transcendental" is also a Π0

2 sentence.  
 
A particularly famous example is e + π. It is not known if e 
+ π is rational or if e + π is transcendental. The 
transcendence, or irrationality, is in Π0

2. 
 
Many expect that not only is e + π irrational, but there is 
a reasonable function f such that  
 

(∀a,b ≥ 1)(|e + π - a/b| > 1/f(a,b)) 
 
thereby creating a stronger form of the assertion, that is 
Π0

1.  
 
The second is statements that all interesting combinations 
of a countable family of numbers - typically algebraic 
numbers - are irrational, or transcendental. Such 
statements are also generally Π0

2. The Gelfond-Schneider 
theorem is obviously of this second type.   
 
Does the proof of the Gelfond-Schneider theorem give a 
stronger theorem that is much more concrete? E.g., Π0

2 or 
even Π0

1? 
 
The third type concerns relationships between interesting 
combinations of arbitrary real or complex numbers. Such 
statements are generally Π1

1. We expect that they are 
generally implied by interesting statements of far lower 
complexity - e.g., Π0

2 or even Π0
1. 

 
Schanuel's Conjecture is in the third type, and is wide 
open. So Schanuel's Conjecture is literally Π1

1. Is there a 
reasonable stronger conjecture that is much more concrete? 
E.g., Π0

2, or even Π0
1? 

 
H8. Problems of prime numbers 
 
Here Hilbert poses the following problems. 
 
The Riemann hypothesis (the real part of any non-trivial 
zero of the Riemann zeta function is 1/2), Goldbach's 



 228 

conjecture (every even number greater than 2 can be written 
as the sum of two prime numbers), and the Twin Prime 
conjecture (there are infinitely many primes p such that 
p+2 is prime). 
 
Let  
 

δ(x) = ∏n<x∏j≤n η(j) 
 
where η(j) = 1 unless j is a prime power, and η(pk) = p. 
 
LEMMA. RH is equivalent to the following. For all integers 
n ≥ 1, (∑k≤δ(n)1/k - n

2/2)2 < 36 n3. 
 
Proof: See [DMR76]], p. 335. QED 
 
The above equivalence to RH can be straightforwardly 
expressed in Π0

1 form, and so RH is essentially Π0
1. 

 
It is obvious that Goldbach's conjecture and Fermat's Last 
Theorem are Π0

1. The latter was proved by Wiles.  
 
The Twin Prime conjecture asserts that for all n ≥ 0 there 
exists p > n such that p and p+2 are prime. Hence the Twin 
Prime conjecture is Π0

2. 
 
It is expected that the Twin Prime conjecture is true and a 
stronger result will be obtained in the form  
 

(∀n)(∃p)(p,p+2 are prime and p ≤ f(n)) 
 
for some reasonable function f. This strong form will 
obviously be Π0

1.  
 
Mordell's conjecture (proved by Faltings) is Π0

3. It asserts 
that certain Diophantine equations have at most finitely 
many solutions. I.e., this takes the form  
 

(∀n)(∃m)(∀r)(h(n,m,r) is not a solution) 
 
which is Π0

3. (Here h is a specific primitive recursive 
function required in the classification scheme.)  
 
Many expect this result to be improved with an upper bound 
for m as a reasonable function of n: 
 

(∀n)(∃m ≤ f(n))(∀r)(h(n,m,r) is not a solution) 
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which is Π0
1 (after some quantifier manipulation).   

 
H9. Proof of the most general law of reciprocity in any 
number field 
 
A number field is a finite degree field extension of the 
field of rational numbers. The residue fields are all 
finite, and so these kinds of problems about solving 
equations mod primes are all Π0

1.  
 
This problem led to far reaching developments in algebraic 
number theory, and ultimately to the Langlands program. It 
would be interesting to see what these developments mean 
from the point of view of Mathematical Statement Theory.  
 
H10. Determination of the solvability of a diophantine 
equation 
 
The most commonly cited interpretation of Hilbert's tenth 
problem is the following. 
 
Is there an algorithm for determining whether a given 
polynomial of several variables with integer coefficients 
has a zero in the integers? 
 
This has the form  
 
(∃ algorithm α)(∀ integral polynomials P)(P has a zero → 

α(P) = 1 ∧ P does not have a zero → α(P) = 0) 
 
which is Σ03 (after some quantifier manipulation). The 
negation  
 
(∀ algorithm α)(∃ integral polynomial P)(¬(P has a zero ∧ 

α(P) = 1 ∧ P does not have a zero → α(P) = 0)) 
 
is therefore Π0

3, and was proved in [Mat70] building on 
earlier work of M. Davis, H. Putnam, and J. Robinson. See 
[Da73], [DMR76]], [Mat93].  
 
Actually, what is proved is stronger, and results in a Σ02 
sentence. A rather complicated algorithm γ is provided with 
the following Π0

1 property.  
 

Given any algorithm α, γ(α) quickly produces  
an integral polynomial P 

and an integral vector x such that either 
P(x) = 0 and α(x) does not compute 1, or 
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P(x) has no integral zero and α(x) does not compute 0. 
 
If we ask for real or complex zeros, then there is an 
algorithm by [Ta51]. The problem is open for rational 
zeros.  
 
There has been considerable interest in this problem over 
number fields. It is known that if the Shafarevich-Tate 
conjecture holds, then Hilbert's Tenth Problem has a 
negative answer over the ring of integers of every number 
field. See [MR10].  
 
We use the solution to H10 in section 5.6 as a technical 
tool. 
 
H11. Quadratic forms with any algebraic numerical 
coefficients 
 
A quadratic form over a number field F is a quadratic in 
several variables over F, all of whose terms have degree 2. 
Two quadratic forms over F are considered equivalent over F 
if and only if one form can be transformed to the other by 
a linear transformation with coefficients from F. 
 
The Hasse Minkowski theorem is most often cited in 
connection with H11. It asserts that two quadratic forms 
over a number field are equivalent if and only if they are 
equivalent over every completion of the field (which may be 
real, complex, or p-adic). 
 
This theorem takes the form  
 

(∀ number fields F)(∀ quadratic forms α,β over F) 
(α,β are equivalent over F ↔ (∀ completions F' of F) 

(α,β are equivalent over F')). 
 
It would appear that using standard techniques, this can be 
put into Π0

∞ form. Can it be put into Π
0
2 or even Π0

1? If 
there a stronger theorem that is in Π0

1?  
 
H12. Extension of Kronecker's theorem on Abelian fields to 
any algebraic realm of rationality 
 
The modern interpretation of this problem is to extend the 
Kronecker–Weber theorem on Abelian extensions of the 
rational numbers to any base number field. 
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The Kronecker-Weber theorem states that every finite 
extension of Q whose Galois group over Q is Abelian, is a 
subfield of a cyclotomic field; i.e., a field obtained by 
adjoining a root of unity to Q. This takes the form 
 

(∀ finite extensions F of Q)(Gal(F/Q) is Abelian → 
(∃ cyclotomic G over Q)(F is a subfield of G)) 

 
which is Π0

3. It would appear that this can be put into Π0
2 

form. If there a stronger form that is Π0
1? 

 
The same issues occur with related statements over any base 
number field.   
 
H13. Impossibility of the solution of the general equation 
of the 7-th degree by means of functions of only two 
arguments 
 
In modern terms, Hilbert considered the general seventh-
degree equation 
 

x7 + ax3 + bx2 + cx + 1 = 0 
 
and asked whether its solution, x, a function of the three 
coefficients a,b,c, can be expressed using a finite number 
of two variable functions.  
 
A more general question is: can every continuous function 
of three variables be expressed as a composition of 
finitely many continuous functions of two variables? 
 
V.I. Arnold proved a much stronger statement: every 
continuous function of three variables be expressed as a 
composition of finitely many continuous functions of two 
variables? See [Ar59,62]. 
 
Arnold's statement is in Π1

2 form, using standard coding 
techniques from mathematical logic. Is there a yet stronger 
version that is much more concrete? E.g., Π0

2 or Π0
1? 

 
H14. Proof of the finiteness of certain complete systems of 
functions 
 
In modern terms, Hilbert asks the following question.  
 
Let F be a field, and K be a subfield of F(x1,...,xn). Is 
the ring K ∩ F[x1,...,xn] finitely generated over F?  
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Here F(x1,...,xn) and F[x1,...,xn] are the ring of rational 
functions over F and the ring of polynomial functions over 
F, in n variables.  
 
On the face of it, this question is even less concrete than 
H1, the continuum hypothesis! This is because the question 
involves absolutely all fields F.  
 
Is there a way of separating the abstract set theory from 
the intended mathematical content? More specifically, is 
there a way of showing, e.g., that if the statement holds 
for all countable fields, then it holds for all fields?  
 
The answer is yes by a simple construction. Let F,K be a 
counterexample. Build an appropriate infinite sequence from 
F and from K, and use the subfield of F generated by the 
infinite sequence from F.  
 
Consequently, we consider the following statement. 
 
Let F be a countable field, and K be a subfield of 
F(x1,...,xn). Is the ring K ∩ F[x1,...,xn] finitely generated 
over F?  
 
This is a Π1

1 sentence. Can we put it in Π0
∞ form using 

basic algebraic principles? What about Π0
2 or even Π0

1? 
 
Nagata gave a negative answer to H14 in [Na59].  
 
[CT06] gives the following formulation of Hilbert's 14th 
problem:  
 
If an algebraic group G acts linearly on a polynomial 
algebra S, is the algebra of invariants SG finitely 
generated? 
 
According to [CT06], this has been proved for reductive G 
in [Hil1890], and for certain nonreductive groups in 
[Wei32]. Can this theorems, and related open questions, be 
put into Π0

∞, or even Π
0
2 or Π0

1 form? Are they implied by 
Π0

1 statements? 
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H15. Rigorous foundation of Schubert's enumerative calculus 
 
Hermann Schubert claimed some spectacular counts on the 
number of geometric objects satisfying certain conditions, 
using methods that were not rigorous even by 1900 
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standards. Many of his claims have not been confirmed or 
denied.  
 
Hilbert asked for a rigorous foundation for Schubert's 
enumerative calculus. Independently of the search for 
foundations here, many, if not all, of his counts, when 
given rigorous treatments, fit into the framework of 
Tarski's decision procedure for the field of real numbers, 
[Ta51].  
 
As an example, it follows (based on work subsequent to 
Tarski), that there is an algorithm that takes any S ⊆ ℜn × 
ℜm presented with rational coefficients, and produces a 
number 0,1,...,∞, which counts the number of distinct cross 
sections of S (obtained by fixing the first argument, from 
ℜn). This can be applied in the many situations where one 
wants to count the number of nice objects satisfying some 
nice condition.  
 
This can be used to put various statements in Π0

1 form, or 
even in quantifier free form.   
 
H16. Problem of the topology of algebraic curves and 
surfaces 
 
In modern terms: describe relative positions of ovals 
originating from a real algebraic curve and as limit cycles 
of a polynomial vector field on the plane.  
 
Here a limit cycle of a polynomial vector field in the 
plane is a periodic orbit which can be separated from all 
other periodic orbits by placing a tube around it. Here it 
is understood that periodic orbits consist of more than one 
point.  
 
It has been shown in [Il91] and [Ec92] (or at least 
claimed) that every polynomial vector field in the plane 
has at most finitely many limit cycles.  
 
We can put this in the form  
 

(∀P)(∃n)(∀x1,...,xn)(x1,...,xn do not  
generate different limit cycles) 

 
which, unless some interesting mathematics comes to bear, 
is going to be Π1

3 and maybe a lot higher. Can we use 
perhaps even some elementary mathematics to reduce this 
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very sharply? Does the proof yield a stronger statement 
that is far more concrete? Perhaps Π0

2 or even Π0
1? 

 
A principal open question is whether there is a uniform 
bound on the number of limit cycles of a polynomial vector 
field in the plane that depends only on the degree of the 
polynomial. This takes the form  
 

(∀d)(∃n)(∀P of degree ≤ d)(∃x1,...,xn) 
(∀y)(if y is not on a limit cycle then x1,...,xn are on it) 
 
which also looks Π1

3 and maybe a lot higher, unless some 
interesting (perhaps elementary) mathematics is used to 
reduce the complexity.  
 
H17. Expression of definite forms by squares 
 
In modern terms, is every polynomial of several variables 
over the reals that assumes no negative values a sum of 
squares of rational functions?  
 
Emil Artin proved the assertion in [Art27]. The theorem 
takes the form  
 

(∀ polynomials P)(if P assumes no negative value then  
(∃ rational functions R1,...,Rk)(P = R12 + ... + Rk2 holds 

everywhere)) 
 
which is Π1

3 with no mathematical considerations. However, 
much sharper results have been proved which are much more 
concrete.  
 
Specifically, it is known that for each d,n, there exists r 
such that  
 

for all polynomials of degree ≤ d in n variables,  
if P assumes no negative value then  

P is the sum of at most r rational functions  
of degrees at most r. 

 
See [Day61], [Kre60], [Rob55], [Rob56], [DGL92]. In fact, a 
primitive recursive bound on r as a function of d,n is 
given in the first two references.  
 
Note that the displayed statement above is a sentence in 
the language of the field of real numbers, primitive 
recursively obtained from d,n. Using Tarski's decision 
procedure for the field of real numbers, [Ta51], we now see 
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that this stronger result is Π0
2. In fact, given the above 

mentioned upper bound on r, we see that the strong form of 
this stronger result is in fact Π0

1.  
 
H18. Building up of space from congruent polyhedra 
 
In modern terms, there are three parts to the problem. 
 
The first part asks whether there are only finitely many 
essentially different space groups in n-dimensional 
Euclidean space.  
 
More formally, let E(n) be the group of all isometries of 
ℜn. We look for discrete subgroups Γ ⊆ E(n) such that there 
is a compact region D ⊆ ℜn where the various congruent 
copies of D cover ℜn and have only boundary points in 
common.  
 
Ludwig Bieberbach answered this question affirmatively by 
showing that there are only finitely many such Γ up to 
isomorphism. See [Bi11], [Bi12].  
 
The theorem takes the form: for some t, if  
 

if G1,...,Gt are discrete in E(n), and   
D1,...,Dt ⊆ ℜn are compact and congruent copies of Di under 

Gi  
that cover ℜn and have only boundary points in common,  

then there exists i ≠ j such that Gi and Gj are isomorphic. 
 
Using quantifier manipulations and a small dose of 
mathematics, we see that this is Π1

3. We expect that with 
some additional mathematics, this can be reduced to Π1

1. We 
also expect that from Bieberbach's work, we can find a 
stronger statement which is considerably more concrete. 
Possibly Π0

2 or even Π0
1.  

 
The second part of the problem asks whether there exists a 
polyhedron which tiles 3-dimensional Euclidean space but is 
not the fundamental region of any space group. Such tiles 
are called anisohedral.  
 
It is now known that there is an anisohedral tiling of even 
2-dimensional Euclidean space. See Heinrich Heesch's 
Tiling, http://www.spsu.edu/math/tiling/17.html 
 
The problem is in the form  
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(∃ polyhedon P)(P is not the fundamental region of any space 
group ∧ P tiles the plane) 

 
which appears to be around Σ12 with only simple mathematical 
considerations. But consider the stronger statement  
 

(∃ polyhedron P)(P is not the fundamental region of any 
space group ∧ P tiles the plane periodically). 

 
We can put this in the form: there exists r such that  
 
∃ polyhedron P with r sides)(P is not the fundamental region 

of any space group ∧ P tiles the plane periodically). 
 
We expect that the displayed property of r can be viewed as 
a sentence in the theory of the field of reals, so that we 
can apply Tarski's decision procedure [Ta51]. This results 
in a Σ01 sentence. 
 
The third part of the problem asks for the best way to pack 
congruent solids of a given form. In particular, spheres of 
equal radius in ℜ3. 
 
The Kepler Conjecture is the case of sphere packing: the 
usual way of packing spheres of equal size in ℜ3 is the 
best.  
 
Appropriate use of Tarski's decision procedure for the 
field of real numbers will show that the Kepler Conjecture 
- in various fully rigorous forms - is essentially Π0

1.  
 
Of course, Hales has reduced Kepler's Conjecture to a 
specific large computation, which is Π0

0. But that involves 
deep insights into the problem itself, and is not a generic 
reduction in the sense of using the decision procedure for 
the real numbers. 
 
H19. Are solutions of regular problems in the calculus of 
variations always necessarily analytic? 
 
H20. The general problem of boundary values 
 
H21. Proof of the existence of linear differential 
equations having a prescribed monodromic group 
 
H22. Uniformization of analytic relations by means of 
automorphic functions 
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H23. Further development of the methods of the calculus of 
variations  
 
H19-H23 involve statements of the following rough form (and 
sometimes simpler): 
 
(∀ continuous objects α)(if there exist continuous objects 

β  
such that P(α,β), then there exist continuous objects γ  

such that Q(α,γ), which is unique with respect to  
some equivalence relation R). 

 
Generally speaking, it is clear that statements of this 
kind are Π1

2. There is the opportunity for reduction from 
Π1

2 using some significant mathematics not presupposing the 
proof or refutation, if any exist at this time. But far 
more likely is that if such a statement is proved or 
refuted, then an interesting stronger statement is really 
what is proved or refuted, and that the interesting 
stronger statement is considerably more concrete - perhaps 
even Π0

2 or Π0
1.  

 
We may encounter statements with an additional logical 
complication: 
 
(∀ continuous objects α)(if there exist continuous objects 

β  
such that P(α,β), then there exist continuous objects γ  

such that Q(α,γ), which is related to all continuous objects 
γ' such that Q(α,γ) by some relation R). 

 
Because R may not be an equivalence relation (it may, for 
example, be a maximality condition), such a statement may 
be only Π1

3 or higher. Again, there are opportunities for 
reduction from Π1

3 (or higher), and particularly so in terms 
of finding an interesting stronger statement that is far 
more concrete.  
 
The many issues that arise in terms of a logical analysis 
of H19 - H23 are too varied and delicate to be 
appropriately dealt with here. 
 
 
 
 
 
 
 


