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CHAPTER 2 
CLASSIFICATIONS 
 
2.1. Methodology. 
2.2. EBRT, IBRT in A,fA. 
2.3. EBRT, IBRT in A,fA,fU. 
2.4. EBRT in A,B,fA,fB,⊆ on (SD,INF). 
2.5. EBRT in A,B,fA,fB,⊆ on (ELG,INF). 
2.6. EBRT in A1,...,Ak,fA1,...,fAk,⊆ on (MF,INF). 
2.7. IBRT in A1,...,Ak,fA1,...,fAk,⊆ on (SD,INF),(ELG,INF), 
(MF,INF). 
 
In this Chapter, we treat several significant BRT 
fragments. For most of these BRT fragments, we show that 
every statement is either provable or refutable in RCA0. 
 
For the remainder of these BRT fragments, we show that 
every statement is either provable in RCA0, refutable in 
RCA0, or provably equivalent to the Thin Set Theorem of 
section 1.4 over RCA0. 
 
Thus in this Chapter, we do not run into any independence 
results from ZFC. In the classification of Chapter 3, we do 
run into a statement independent of ZFC, called the 
Principal Exotic Case, which is the focus of the remainder 
of the book.  
 
In this Chapter, we focus on five BRT settings (see 
Definition 1.1.11). These fall naturally, in terms of their 
observed BRT behavior, into three groups (see Definitions 
1.1.2, and 2.1): 
 

(SD,INF), (ELG ∩ SD,INF). 
(ELG,INF), (EVSD,INF). 

(MF,INF). 
 
The inclusion diagram for these five sets of multivariate 
functions is  
 

ELG ∩ SD 
SD ELG 
EVSD 
MF 
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Here each item in any row is properly contained in any item 
in any lower row. Multiple items on any row are 
incomparable under inclusion.  
 
(SD,INF), (ELG,INF), and (MF,INF) are the most natural of 
these five BRT settings. The remaining two BRT settings are 
closely associated, and serve to round out the theory. 
 
MF (multivariate functions), SD (strictly dominating), and 
INF (infinite) were defined in section 1.1 in connection 
with the Complementation Theorem and the Thin Set Theorem. 
 
DEFINITION 2.1. Let f ∈ MF. We say that f is of expansive 
linear growth if and only if there exist rational constants 
c,d > 1 such that for all but finitely many x ∈ dom(f), 
 

c|x| ≤ f(x) ≤ d|x| 
 
where |x| is the maximum coordinate of the tuple x. Let ELG 
be the set of all f ∈ MF of expansive linear growth.  
 
DEFINITION 2.2. Let f ∈ MF. We say that f is eventually 
strictly dominating if and only if for all but finitely 
many x ∈ dom(f), f(x) > |x|. We write EVSD for the set of 
all f ∈ MF that are eventually strictly dominating.  
 
In this Chapter, the two asymptotic BRT settings (ELG,INF), 
(EVSD,INF), have the same behavior, whereas the two non 
asymptotic BRT settings (SD,INF), (ELG ∩ SD,INF), also have 
the same behavior. In this Chapter, the behavior of 
(ELG,INF), (EVSD,INF) differs from the behavior of 
(SD,INF), (ELG ∩ SD,INF). In this Chapter, (MF,INF) behaves 
differently from the other four settings.  
 
2.1. Methodology. 
 
In this section, we use notation and terminology that was 
introduced in section 1.1.  
 
Recall the definitions of  
 
BRT fragment. Definition 1.1.18. 
BRT environment. Definition 1.1.19. 
BRT signature. Definition 1.1.21. 
flat BRT fragment. Definition 1.1.34. 
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In Definition 1.1.39, the flat BRT fragments were divided 
into these four mutually disjoint categories:  
 
1) EBRT in σ on (V,K), where σ does not end with ⊆. 
2) EBRT in σ on (V,K), where σ ends with ⊆. 
3) IBRT in σ on (V,K), where σ does not end with ⊆. 
4) IBRT in σ on (V,K), where σ ends with ⊆. 
 
Let α be a flat BRT fragment, and let S be an α format; 
i.e., a set of α elementary inclusions. According to 
Definition 1.39, we say that S is α correct if and only if  
 
1’) (∀g1,...,gn ∈ V)(∃B1,...,Bm ∈ K)(S). 
2’) (∀g1,...,gn ∈ V)(∃B1 ⊆ ... ⊆ Bm ∈ K)(S). 
3’) (∃g1,...,gn ∈ V)(∀B1,...,Bm ∈ K)(S). 
4’) (∃g1,...,gn ∈ V)(∀B1 ⊆ ... ⊆ Bm ∈ K)(S). 
 
where we use 1’),2’),3’),4’) according to whether α is in 
category 1),2),3),4).  
 
For example, the Thin Set Theorem is the negation of a 
statement of the form 3').  
 
In the case of EBRT and IBRT in A,fA on any given setting, 
there are 16 formats, and hence 16 statements of forms 
1',3', respectively, that have to be considered. This is 
such a small number that we can profitably list all of 
these statements, and determine their truth values. We do 
this in section 2.2. 
 
In the case of EBRT and IBRT on A,fA,fU on any given 
setting, there are 256 formats, and hence at most 256 
statements that have to be considered. Actually, a closer 
look shows that there are only 6 elementary inclusions, 
generating only 26 = 64 formats. In section 2.3, we list 
these formats in order of increasing cardinality. This 
avoids considerable duplication of work. This method of 
compilation is seen to be perfectly manageable in section 
2.3.  
 
In the case of EBRT and IBRT on A,B,fA,fB, there are 216 = 
65,536 formats, and hence 65,536 statements that have to be 
considered. We do not attempt to work with A,B,fA,fB here. 
 
In sections 2.4 - 2.7, we instead work with A,B,fA,fB,⊆. 
There are 9 elementary inclusions, and so 29 = 512 formats 
need be considered. This is considerably less than 65,536. 
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Here a treelike methodology is preferable to the 
enumeration procedure used in section 2.3. We expect the 
treelike methodology to be the method of choice when 
analyzing richer BRT fragments.  
 
We treat EBRT in A,B,fA,fB,⊆ on (SD,INF), (ELG,INF) in 
sections 2.4, 2.5. We treat EBRT in A1,...,Ak,fA1,...,fAk,⊆ 
on (MF,INF) in section 2.6. We treat IBRT in 
A1,...,Ak,fA1,...,fAk,⊆ on (SD,INF), (ELG,INF), (MF,INF) in 
section 2.7.  
 
The most substantial uses of the treelike methodology are 
in sections 2.4 and 2.5. We believe that EBRT in A,B,fA,fB 
on (MF,INF), (SD,INF), (ELG,INF) can be treated using this 
treelike methodology, but with considerably more effort.  
 
In this section, we rigorously present this treelike 
methodology and establish some important facts about it. 
 
Fix a flat BRT fragment α. Let S be an α format. Let 1 ≤ i ≤ 
4 be such that α is in category i) above. We also fix a 
true formal system T that includes RCA0. We assume that α is 
given a description in T.   
 
According to Definition 1.1.42, we say that S is α,T 
correct if and only if T proves that S is α correct. We say 
that S is α,T incorrect if and only if T refutes that S is 
α correct.  
 
According to Definition 1.43, we say that α is T secure if 
and only if every α format is α,T correct or α,T incorrect.  
 
The goal of the treelike methodology is  
 
a) to show that α is T secure. 
b) to list all maximal α,T correct formats; i.e., α,T 
correct α formats that are not properly included in any α,T 
correct α format.  
 
Note the following obvious but crucial property of α,T 
correct/incorrect α formats: 
 

Every subset of an α,T correct α format is α,T correct.  
Every α format that contains an α,T incorrect format  

is α,T incorrect.  
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Goal b) is preferable to listing all α,T correct α formats, 
as the latter may be uncomfortably numerous, or even 
impractically enormous, whereas the former may be very 
manageable in size.  
 
The challenge is to show that our treelike methodology does 
in fact rigorously justify the claim that we have actually 
established a) and done b). In other words, we need to 
justify that  
 
i. The α formats listed under b) are indeed α,T correct, 
and are incomparable under inclusion. 
ii. Any α format not included in any of those listed under 
b) is α,T incorrect. 
 
Some readers may be content with examining the 
classifications made in sections 2.4, 2.5, and absorbing 
the methodology from the displays. When the significance of 
some features are not apparent, the reader can look at the 
formal treatment of the methodology presented below.  
 
Let α be a flat BRT fragment with BRT setting (V,K). Recall 
the definition of α formulas (Definition 1.1.25). 
 
DEFINITION 2.1.1. We say that an α formula is α,T valid if 
and only if, it is provable in T that it holds for all 
values of the function variables from V and all values of 
the set variables from K. In case the signature of α ends 
with ⊆, the values of the set variables, in increasing 
order of subscripts, are assumed to form a tower under 
inclusion.  
 
DEFINITION 2.1.2. An α worklist is a two part finite 
sequence  
 

(ϕ1,...,ϕr;ψ1,...,ψs) 
 
where r,s ≥ 0, and ϕ1,...,ϕr,ψ1,...,ψs are α inclusions.  
 
DEFINITION 2.1.3. The formats of an α worklist are the α 
formats that include {ϕ1,...,ϕr} and are included in 
{ϕ1,...,ϕr,ψ1,...,ψs).  
 
DEFINITION 2.1.4. We say that a worklist 
(ϕ1,...,ϕr;ψ1,...,ψs) is α,T secure if and only if for all 
{ϕ1,...,ϕr} ⊆ S ⊆ {ϕ1,...,ϕr,ψ1,...,ψs}, S is α,T correct or 
α,T incorrect.  
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Informally, the goal of an α worklist is to constructively 
verify that it is α,T secure, in the sense of determining 
the α,T correctness or α,T incorrectness of all α formats. 
 
Sometimes we want to replace one worklist with a simpler 
worklist, without altering its goal. Here are some 
reduction operations that are very useful.  
 
Let W = {ϕ1,...,ϕr;ψ1,...,ψs). 
 
i. We can replace ϕ1,...,ϕr with any ϕ1',...,ϕp' such that 
(ϕ1 ∧ ... ∧ ϕr) ↔ (ϕ1' ∧ ... ϕp') is α,T valid.   
 
ii. We can replace any ψi by ψi', where (ϕ1 ∧ ... ∧ ϕr) → 
(ψi ↔ ψi') is α,T valid.  
 
iii. We can remove any ψi such that (ϕ1 ∧ ... ∧ ϕr) → ψi is 
α,T valid. 
 
iv. We can remove any ψi such that (ϕ1,...,ϕr;ψi) is α,T-
incorrect. 
 
v. We can remove duplicates among ψ1,...,ψs. 
 
vi. We can permute the ψ1,...,ψs. 
 
DEFINITION 2.1.5. α,T reduction consists of performing any 
finite number of the above operations in succession.  
 
This notion of α,T reduction corresponds to what happens in 
the classifications in sections 2.4, 2.5. For instance, 
consider LIST 1.2.1 in section 2.4.  
 
Here the BRT fragment α is EBRT in A,B,fA,fB,⊆ on (SD,INF), 
and T is RCA0. This displays the worklist (A ∩ fA = ∅, A ∩ 
fB = ∅, fA ⊆ B; B ∪ fB = N, B ⊆ A ∪ fB, fB ⊆ B ∪ fA, B ∩ 
fB ⊆ A ∪ fA). This gets reduced to the worklist displayed 
by LIST 1.2.1.*, which is the worklist (A ∩ fA = ∅, A ∩ fB 
= ∅, fA ⊆ B; B ∪ fB = N, B ⊆ A ∪ fB, B ∩ fB ⊆ fA).   
 
Here we have merely eliminated fB ⊆ B ∪ fA from the second 
half of LIST 1.2.1, since Lemma 2.4.4 tells us that (A ∩ fB 
= ∅; fB ⊆ B ∪ fA) is α,T incorrect.   
 
LEMMA 2.1.1. Let α be a flat BRT fragment, and T be a true 
theory with a presentation of α. Suppose W = 
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(ϕ1,...,ϕr;ψ1,...,ψs) α,T reduces to W' = 
(ϕ1’,...,ϕp’;ψ1’,...,ψq’). Then W is α,T secure if and only 
if W' is α,T secure.  
 
Proof: It suffices to show that α,T security is preserved 
under each of the operations i-vi. Let one of the 
operations send worklist W to worklist W'. In cases 
i,ii,iii,v,vi, evidently every α format for W is α,T 
equivalent to some α format for W', and vice versa.  
 
It remains to consider operation iv. We have W = 
(ϕ1,...,ϕr;ψ1,...,ψs), W' = (ϕ1,...,ϕr;ψ1,...,ψi-

1,ψi+1,...,ψs), where W' is α,T secure. Let {ϕ1,...,ϕr} ⊆ S ⊆ 
{ϕ1,...,ϕr,ψ1,...,ψs}. If ψi ∈ S then S is α,T incorrect. If 
ψi ∉ S then S is a format for Wi', and so S is α,T correct 
or α,T incorrect. QED 
 
It is simpler to use sequences instead of sets. 
Accordingly, let W = (ϕ1,...,ϕr;ψ1,...,ψs) be an α worklist.  
 
DEFINITION 2.1.6. A subsequence for W is a subsequence of 
the sequence (ϕ1,...,ϕr,ψ1,...,ψs) that begins with 
ϕ1,...,ϕr, and which includes the underlying subsequence of 
positions 1,...,r,...,r+s. This is very useful for handling 
all sorts of repetitions in worklists.  
 
DEFINITION 2.1.7. A finite sequence of α elementary 
inclusions is said to be α,T correct (α,T incorrect) if and 
only if its set of terms is α,T-correct (α,T incorrect).    
 
LEMMA 2.1.2. Let α be a flat BRT fragment, and T be a true 
theory with a presentation of α. Let an α,T reduction of W 
= (ϕ1,...,ϕr;ψ1,...,ψs) to W' = (ϕ1',...,ϕp';ψ1,...,ψq') be 
given. Let the list of maximal α,T correct subsequences for 
W' be given (together with proofs in T). We can efficiently 
generate the list of maximal α,T correct subsequences for W 
(together with proofs in T). Furthermore, these two lists 
have the same number of sequences.  
 
Proof: We can assume that we have W = (ϕ1,...,ϕr;ψ1,...,ψs) 
that is α,T reduced to W' = (ϕ1',...,ϕp';ψ1',...,ψq') by any 
one of the reductions i-v. 
 
case i. Here we have W = (ϕ1,...,ϕr;ψ1,...,ψs) and W' = 
(ϕ1',...,ϕp';ψ1,...,ψs). Let f be the obvious one-one 
correspondence between subsequences for W and subsequences 
for W'. Then for every α sequence τ for W, τ and f(τ) are 
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α,T equivalent. It is now evident that τ is α,T correct if 
and only if f(τ) is α,T correct. It is then evident that τ 
is maximally α,T correct for W if and only if f(τ) is 
maximally α,T correct for W'.  
 
case ii. Here we have W = (ϕ1,...,ϕr;ψ1,...,ψs) and W' = 
(ϕ1,...,ϕr;ψ1,...,ψi-1,ψi',ψi+1,...,ψs). Let f be the obvious 
one-one correspondence between subsequences for W and 
subsequences for W', based on corresponding positions. Then 
for every α sequence τ for W, τ and f(τ) are α,T equivalent. 
As in case i, τ is maximally α,T correct for W if and only 
if f(τ) is maximally α,T correct for W'.  
 
case iii. Here we have W = (ϕ1,...,ϕr;ψ1,...,ψs), W' = 
(ϕ1,...,ϕr;ψ1,...,ψi-1,ψi+1,...,ψs). Let f be the obvious map 
from subsequences for W to subsequences for W' defined by 
ignoring ψi; i.e., as position r+i. Note that f is not one-
one. However, the restriction g of f to the τ with ψi (as 
position r+i) is one-one, and for all τ ∈ dom(g), τ and g(τ) 
are α,T equivalent. Since (ϕ1 ∧ ... ∧ ϕr) → ψi is α,T valid, 
all maximal α,T correct subsequences for W have ψi (as 
position r+i). It is now evident that g is a one-one 
correspondence between the maximal α,T correct subsequences 
for W and the maximal α,T correct subsequences for W'.  
 
case iv. Here we have W = (ϕ1,...,ϕr;ψ1,...,ψs), W' = 
(ϕ1,...,ϕr;ψ1,...,ψi-1,ψi+1,...,ψs). Note that the α,T correct 
subsequences for W are identical to the α,T correct 
subsequences for W', since ψi cannot be present.  
 
cases v-vi. Left to the reader.  
 
QED   
 
LEMMA 2.1.3. Let α be a flat BRT fragment, and T be a true 
theory with a presentation of α. Let an α,T reduction of W 
= (ϕ1,...,ϕr;ψ1,...,ψs) to W' = (ϕ1',...,ϕp';ψ1,...,ψq') be 
given. Let the list of maximal α,T correct formats for W' 
be given (together with proofs in T). We can efficiently 
generate the list of maximal α,T correct formats for W 
(together with proofs in T). Furthermore, these two lists 
have the same number of formats. W is α,T secure if and 
only if W' is α,T secure.  
 
Proof: This is the same as Lemma 2.1.2, except that we are 
using subsets (formats) instead of subsequences. It 
suffices to observe that the maximal α,T correct sequences 
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for W are exactly the subsequences for W whose set of terms 
is an α,T correct format for W. The last claim is by Lemma 
2.1.2. QED 
 

T CLASSIFICATIONS FOR BRT FRAGMENTS 
 
DEFINITION 2.1.8. The starred α worklists are the α 
worklists with a * appended at the end. 
 
DEFINITION 2.1.9. We say that TREE is a T classification 
for α if and only if α is a flat BRT fragment, T is a true 
theory extending RCA0 which adequately defines the BRT 
setting of α, and TREE is a finite labeled tree with the 
properties given below.   
 
1. The root of TREE is labeled by an α worklist 
(;δ1,...,δt), where the δ’s list all α elementary inclusions 
without repetition. 
 
2. Suppose a vertex v is labeled (ϕ1,...,ϕr;ψ1,...,ψs), where 
v is not terminal. Then v has exactly one son w. The label 
of w is some (ϕ1’,...,ϕp’;ψ1’,...,ψq’)*, where  
 

(ϕ1,...,ϕr;ψ1,...,ψs) is α,T reducible to 
(ϕ1’,...,ϕp’;ψ1’,...,ψq’). 

ϕ1',...,ϕp',ψ1',...,ψq' are distinct. 
 
In sections 2.4, 2.5, note that the worklists whose names 
don't end with * are immediately followed by those which 
do, and the succeeding worklists with * are obtained by α,T 
reduction.  
 
3. Suppose a vertex v is labeled (ϕ1,...,ϕr;ψ1,...,ψs)*, 
where v is not terminal. Then there exists 1 ≤ i ≤ s such 
that v has exactly i sons w1,...,wi, with labels  
 

(ϕ1,...,ϕr,ψ1;ψ2,...,ψs) 
(ϕ1,...,ϕr,ψ2;ψ3,...,ψs) 

... 
(ϕ1,...,ϕr,ψi;ψi+1,...,ψs) 

 
respectively, where wi is terminal, and w1,...,wi-1 are not 
terminal.  
 
4. Suppose the vertex v is terminal, with label 
(ϕ1,...,ϕr;ψ1,...,ψs) or (ϕ1,...,ϕr;ψ1,...,ψs)*. Then 
{ϕ1,...,ϕr,ψ1,...,ψs} is α,T correct. 
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This completes Definition 2.1.7.  
 
We want to show that if we have a T classification for α, 
then α is T secure.  
 
LEMMA 2.1.4. Let TREE be a T classification for α. Then α 
is T secure and the number of maximally α,T correct α 
formats is at most the number of terminal vertices of T.  
 
Proof: We prove the following by induction on TREE. Let v 
be a vertex of TREE whose label is the worklist W (or W*). 
Then W is α,T secure, and the number of maximal α,T correct 
formats for W is the number of terminal vertices from v; 
i.e., the number of terminal vertices that descend from v, 
including v.  
 
case 1. v is a terminal vertex of TREE. Let the label of v 
be (ϕ1,...,ϕr;ψ1,...,ψs) or (ϕ1,...,ϕr;ψ1,...,ψs)*. Then 
(ϕ1,...,ϕr,ψ1,...,ψs) is α,T correct. Hence 
{ϕ1,...,ϕr;ψ1,...,ψs) is α,T secure. The number of maximal 
α,T correct formats for (ϕ1,...,ϕr;ψ1,...,ψs) is 1.  
 
case 2. Suppose v has label (ϕ1,...,ϕr;ψ1,...,ψs), and is 
nonterminal. Then v has exactly one son, w, labeled 
(ϕ1’,...,ϕp’;ψ1’,...,ψq’)*. Suppose (ϕ1’,...,ϕp’;ψ1’,...,ψq’) 
is α,T secure. Suppose the number of maximal α,T correct 
formats for (ϕ1’,...,ϕp’;ψ1’,...,ψq’) is at most the number 
of terminal vertices from w. The label of w is some 
(ϕ1’,...,ϕp’;ψ1’,...,ψq’)*, where  
 

(ϕ1’,...,ϕp’;ψ1’,...,ψq’) is an α,T reduction of  
(ϕ1,...,ϕr;ϕ1,...,ϕs). 

 
By the induction hypothesis, (ϕ1’,...,ϕp’;ψ1’,...,ψq’) is 
α,T secure. Hence by Lemma 2.1.3, (ϕ1,...,ϕr;ψ1,...,ψs) is 
α,T secure. Also by Lemma 2.1.3, the number of maximal α,T 
correct formats is preserved.  
  
case 3. Suppose v has label (ϕ1,...,ϕr;ψ1,...,ψs)*, where v 
is not terminal. Let 1 ≤ i ≤ s, where v has exactly i sons, 
w1,...,wi, with labels  
 

(ϕ1,...,ϕr,ψ1;ψ2,...,ψs) 
(ϕ1,...,ϕr,ψ2;ψ3,...,ψs) 

... 
(ϕ1,...,ϕr,ψi;ψi+1,...,ψs) 
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respectively, where wi is terminal. Suppose each of these 
labels is α,T secure. Suppose for each 1 ≤ j ≤ i, the number 
of maximal α,T correct formats for (ϕ1,...,ϕr,ψj;ψj+1,...,ψs) 
is the number of terminal vertices from wj.  
 
Note that {ϕ1,...,ϕr,ψi;ψi+1,...,ψs} is α,T correct, and so 
automatically α,T secure. Also note that ϕ1,...,ϕr,ψ1,...,ψs 
are distinct.  
 
Let {ϕ1,...,ϕr} ⊆ S ⊆ {ϕ1,...,ϕr,ψ1,...,ψs}. Suppose first 
that S ∩ {ψ1,...,ψi} ≠ ∅. Let 1 ≤ j ≤ i be least such that 
ψj ∈ S. Then {ϕ1,...,ϕr,ψj} ⊆ S ⊆ {ϕ1,...,ϕr,ψj+1,...,ψs}. By 
the induction hypothesis, (ϕ1,...,ϕr,ψj;ψj+1,...,ψs) is α,T 
secure. Hence S is α,T correct or α,T incorrect.   
 
Now suppose that S ∩ {ψ1,...,ψi} = ∅. Then S ⊆ 
{ϕ1,...,ϕr,ψi+1,...,ψs}. Hence S is α,T correct.  
 
Now let S be maximal so that {ϕ1,...,ϕr} ⊆ S ⊆ 
{ϕ1,...,ϕr,ψ1,...,ψs} and S is α,T correct. Suppose first 
that S ∩ {ψ1,...,ψi} ≠ ∅. Let 1 ≤ j ≤ i be least such that 
ψj ∈ S. Then {ϕ1,...,ϕr,ψj} ⊆ S ⊆ {ϕ1,...,ϕr,ψj+1,...,ψs}. In 
fact, S is maximal such that {ϕ1,...,ϕr,ψj} ⊆ S ⊆ 
{ϕ1,...,ϕr,ψj+1,...,ψs}.  
 
Now suppose that S ∩ {ψ1,...,ψi} = ∅. Then S ⊆ 
{ϕ1,...,ϕr,ψi+1,...,ψs}. Hence S = {ϕ1,...,ϕr,ϕi+1,...,ψs}.  
 
Hence the number of maximal α,T correct formats for 
(ϕ1,...,ϕr;ψ1,...,ψs) is at most the sum over 1 ≤ j ≤ i of 
the number of maximal α,T correct formats for the label of 
wj. By the induction hypothesis, the number of maximal α,T 
correct formats for the label of wj is at most the number of 
terminal vertices from wj. Hence the number of maximal α,T 
correct formats for (ϕ1,...,ϕr;ψ1,...,ψs) is at most the 
number of terminal vertices from v.  
 
This concludes the induction argument. Now apply the result 
to the label of the root. QED 
 
THEOREM 2.1.5. Let α be a flat BRT fragment, and T be a 
true theory with a presentation of α. Then α is T secure if 
and only if there is a T classification for α. Let TREE be 
a T classification for α. The number of maximally α,T 
correct α formats is at most the number of terminal 
vertices of T.  
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Proof: Let α,T be as given. By Lemma 2.1.4, we need only 
show that if α is T secure, then there is a T 
classification for α.  
 
Assume α is T secure. We build TREE as follows. The 
construction will be such that any vertex whose label is 
starred is not terminal.  
 
Create the root of T, with label (;δ1,...,δr), where δ1,...,δr 
is a listing, without repetition, of the α elementary 
inclusions.  
 
Suppose we have constructed the vertex v of TREE with label 
W = (ϕ1,...,ϕr;ψ1,...,ψs). If {ϕ1,...,ϕr,ψ1,...,ψs} is α,T 
correct, then v is terminal. Otherwise, we apply α,T 
reductions iii,iv,v to W, as much as possible, as well as 
removing duplicates among ϕ1,...,ϕr. Let the result be the 
worklist W'. We create the single son w of v, with label 
W*. Clearly W' is not α,T correct.  
 
Suppose we have constructed the vertex v of TREE with label 
W* = (ϕ1,...,ϕr;ψ1,...,ψs)*. If {ϕ1,...,ϕr,ψ1,...,ψs} is α,T 
correct then v is terminal. Suppose {ϕ1,...,ϕr,ψ1,...,ψs} is 
not α,T correct. Then v is not α,T correct. Clearly 
{ϕ1,...,ϕr,ψs} is α,T correct, since otherwise we could 
apply reduction operation iv to (ϕ1,...,ϕr;ψ1,...,ψs), 
contrary to W* being a label of a vertex in TREE.  
 
Let 2 ≤ i ≤ s be smallest such that {ϕ1,...,ϕr,ψi,...,ψs} is 
α,T correct. Create i sons with labels  
 

(ϕ1,...,ϕr,ψ1;ψ2,...,ψs) 
(ϕ1,...,ϕr,ψ2;ψ3,...,ψs) 

... 
(ϕ1,...,ϕr,ψi;ψi+1,...,ψs) 

 
respectively, where wi is terminal. Vertices w1,...,wi-1 are 
not terminal.  
 
This construction must terminate since  
 
a. The clause applying to non starred vertices that are not 
terminal, creates a single son whose label has the same 
number of entries to the right of the semicolon. 
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b. The clause applying to starred vertices v that are not 
terminal, creates sons w1,...,wi, where for all j, the 
number of entries to the right of the label of wj is less 
than the number of entries to the right of the label of v. 
 
QED 
 
THEOREM 2.1.6. Let α be a flat BRT fragment, and T be a 
true theory with a presentation of α. Let TREE be a T 
classification for α. We can efficiency list all of the 
maximal α,T correct formats.  
 
Proof: Let α,T,TREE be as given. For each worklist for 
vertices in TREE, (ϕ1,...,ϕr;ψ1,...,ψs), we construct a list 
of the maximal α,T correct formats S with {ϕ1,...,ϕr} ⊆ S ⊆ 
{ϕ1,...,ϕr,ψ1,...,ψs}. We do this by recursion, starting at 
the terminal vertices, towards the root, ending at the 
root. At terminal vertices, there is exactly one maximal 
α,T correct S. At nonterminal non starred vertices, apply 
the procedure from Lemma 2.1.3.  
 
Now let (ϕ1,...,ϕr;ψ1,...,ψs) be the worklist at a 
nonterminal starred vertex. Let 1 ≤ i ≤ s be such that the 
vertex has the i sons with labels  
 

(ϕ1,...,ϕr,ψ1;ψ2,...,ψs) 
(ϕ1,...,ϕr,ψ2;ψ3,...,ψs) 

... 
(ϕ1,...,ϕr,ψi;ψi+1,...,ψs) 

 
respectively, where wi is terminal. Vertices w1,...,wi-1 are 
not terminal.  
 
We already have the i lists of maximal α formats associated 
with each of the above i worklists. Clearly every maximal 
α,T correct format S with {ϕ1,...,ϕr} ⊆ S ⊆ 
{ϕ1,...,ϕr,ψ1,...,ψs} must appear in at least one of these 
lists. So we can simply merge these lists of α formats, and 
take their maximal elements. QED 
    
The tree methodology we have presented here is applicable 
to situations that do not involve BRT.  
 
An important application of this tree methodology occurs in 
section 2.7 (see Witness Set List), where we start with a 
list of sets V1,V2,...,Vk, and we want to determine which 
subsets of {V1,...,Vk} have nonempty intersection. Thus the 
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notion of “correctness” of subsets of {V1,...,Vk} here is 
“having a nonempty intersection”.  
 
But what takes the place of the notion of reduction used in 
case 2? In the application in section 2.7, we only use the 
elimination of terms, from the second part of a worklist, 
that is disjoint from the intersection of the terms from 
the first part of that worklist.  
 
This rather pure form of our tree methodology is used to 
prove Theorems 2.7.25 – 2.7.27. 
 


