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3.11. ABBA. 
 
Recall the reduced AB table from section 3.5.  
 
REDUCED AB 
 
1. A ∪. fA ⊆ B ∪. gA.  INF. AL. ALF. FIN. NON. 
2. A ∪. fA ⊆ B ∪. gB.  INF. AL. ALF. FIN. NON. 
3. A ∪. fA ⊆ B ∪. gC.  INF. AL. ALF. FIN. NON. 
4. C ∪. fA ⊆ B ∪. gA.  INF. AL. ALF. FIN. NON. 
5. C ∪. fA ⊆ B ∪. gB.  INF. AL. ALF. FIN. NON. 
6. C ∪. fA ⊆ B ∪. gC.  INF. AL. ALF. FIN. NON. 
 
Recall the reduced BA table from section 3.6. 
 
REDUCED BA 
 
1’. B ∪. fB ⊆ A ∪. gB.  INF. AL. ALF. FIN. NON. 
2’. B ∪. fB ⊆ A ∪. gA.  INF. AL. ALF. FIN. NON. 
3’. B ∪. fB ⊆ A ∪. gC.  INF. AL. ALF. FIN. NON. 
4’. C ∪. fB ⊆ A ∪. gB.  INF. AL. ALF. FIN. NON. 
5’. C ∪. fB ⊆ A ∪. gA.  INF. AL. ALF. FIN. NON. 
6’. C ∪. fB ⊆ A ∪. gC.  INF. AL. ALF. FIN. NON. 
 
This results in 36 ordered pairs.  
 
We can take advantage of symmetry through interchanging A 
with B as follows. Clearly (i,j’) and (j,i’) are 
equivalent, since interchanging A and B takes us from p to 
p’ and back. So we can require that i ≤ j. Thus we have the 
following 21 ordered pairs to consider.   
 
We need to determine the status of all attributes INF, Al, 
ALF, FIN, NON, for each pair.  
 
1,1’. A ∪. fA ⊆ B ∪. gA, B ∪. fB ⊆ A ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
1,2’. A ∪. fA ⊆ B ∪. gA, B ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
1,3’. A ∪. fA ⊆ B ∪. gA, B ∪. fB ⊆ A ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
1,4’. A ∪. fA ⊆ B ∪. gA, C ∪. fB ⊆ A ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
1,5’. A ∪. fA ⊆ B ∪. gA, C ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
1,6’. A ∪. fA ⊆ B ∪. gA, C ∪. fB ⊆ A ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
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2,2’. A ∪. fA ⊆ B ∪. gB, B ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
2,3’. A ∪. fA ⊆ B ∪. gB, B ∪. fB ⊆ A ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
2,4’. A ∪. fA ⊆ B ∪. gB, C ∪. fB ⊆ A ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
2,5’. A ∪. fA ⊆ B ∪. gB, C ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
2,6’. A ∪. fA ⊆ B ∪. gB, C ∪. fB ⊆ A ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
3,3’. A ∪. fA ⊆ B ∪. gC, B ∪. fB ⊆ A ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
3,4’. A ∪. fA ⊆ B ∪. gC, C ∪. fB ⊆ A ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
3,5’. A ∪. fA ⊆ B ∪. gC, C ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
3,6’. A ∪. fA ⊆ B ∪. gC, C ∪. fB ⊆ A ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
4,4’. C ∪. fA ⊆ B ∪. gA, C ∪. fB ⊆ A ∪. gB. ¬INF. AL. 
¬ALF. ¬FIN. NON.  
4,5’. C ∪. fA ⊆ B ∪. gA, C ∪. fB ⊆ A ∪. gA. ¬INF. AL. 
¬ALF. ¬FIN. NON.  
4,6’. C ∪. fA ⊆ B ∪. gA, C ∪. fB ⊆ A ∪. gC. ¬INF. AL. 
¬ALF. ¬FIN. NON.  
5,5’. C ∪. fA ⊆ B ∪. gB, C ∪. fB ⊆ A ∪. gA. ¬INF. AL. 
¬ALF. ¬FIN. NON.  
5,6’. C ∪. fA ⊆ B ∪. gB, C ∪. fB ⊆ A ∪. gC. ¬INF. AL. 
¬ALF. ¬FIN. NON.  
6,6’. C ∪. fA ⊆ B ∪. gC, C ∪. fB ⊆ A ∪. gC. ¬INF. AL. 
¬ALF. ¬FIN. NON.  
 
LEMMA 3.11.1. 1,1’ - 6,6’ have ¬INF, ¬FIN. 
 
Proof: Let f be as given by Lemma 3.2.4. Let g ∈ ELG be 
defined by g(n) = 2n+1. Let  
 

X ∪. fA ⊆ B ∪. gY 
S ∪. fB ⊆ A ∪. gT 

 
where X,A,B,Y,S,T are nonempty subsets of N. Then fA ∩ 2N ⊆ 
B and fB ∩ 2N ⊆ A. Hence f(fA ∩ 2N) ∩ 2N ⊆ fB ∩ 2N ⊆ A. By 
Lemma 3.2.4, fA is cofinite. Thus A is infinite. This 
establishes ¬FIN. Also X is finite, since X ∩ fA = ∅. This 
establishes ¬INF. QED 
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Lemma 3.11.1 establishes that we have ¬INF, ¬ALF, ¬FIN for 
all of the pairs of clauses considered in this section. It 
remains to determine the status of AL and NON.  
 
LEMMA 3.11.2. fA ⊆ B ∪. gY, fB ⊆ A ∪. gZ, A ∩ fA = ∅ has 
¬NON.  
 
Proof: Define f,g ∈ ELG as follows. For all n < m, let 
f(n,n) = 2n+2, f(n,m) = 2m, f(m,n) = 4m, g(n) = 2n+1. Let 
fA ⊆ B ∪. gY, fB ⊆ A ∪. gZ, A ∩ fA = ∅, where A,B,Y,Z are 
nonempty subsets of N.  
 
Let n ∈ B. Then 2n+2 ∈ fB, 2n+2 ∈ A, 4n+6 ∈ fA, 4n+6 ∈ B. 
Since n < 4n+6 are from B, we have 8n+12 ∈ fB, 8n+12 ∈ A. 
Since 2n+2 < 8n+12 are from A, we have 16n+24 ∈ fA. Also 
since n < 4n+6 are from B, we have 16n+24 ∈ fB, 16n+24 ∈ A. 
This contradicts A ∩ fA = ∅. QED   
 
LEMMA 3.11.3. 1,1’ - 3,6’ have ¬NON. 
 
Proof: By Lemma 3.11.2. QED 
 
LEMMA 3.11.4. C ∪. fA ⊆ B ∪. gX, C ∪. fB ⊆ A ∪. gY has AL.  
 
Proof: Let f,g ∈ ELG and p ≥ 0. Let C = [n,n+p], where n is 
sufficiently large. Throw all elements of [n,n+p] into A,B. 
A,B will have no elements < n.  
 
We determine membership of all k > n+p in A,B by induction 
as follows. Suppose membership in A,B has been determined 
for all integers < k, where k > n+p is fixed. If k is not 
already in gX then put k in B. If k is not already in gY 
then put k in A.  
 
Note that C ⊆ A,B ⊆ [n,∞), C ∩ fA = C ∩ fB = B ∩ gX = A ∩ 
gY = ∅. Also we have fA ⊆ [n,∞) ⊆ B ∪ gX, fB ⊆ [n,∞) ⊆ A 
∪ gY. QED 
 
LEMMA 3.11.5. 4,4’ - 6,6’ have AL. 
 
Proof: By Lemma 3.11.4. QED 


