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5.8. ZFC + V = L, indiscernibles, and Π0
1 

correct arithmetic. 
 
We fix M^ = (C,<,0,1,+,-,•,↑,log,ω,c1,c2,...,Y1,Y2,...) as 
given by Lemma 5.7.30. We work entirely within M^. E.g., we 
treat C as the universe of points, and regard the elements 
of the Yk as the internal relations. 
 
In particular, if we say that R is an internal relation, 
then we mean that R is an element of some Yk. If we say that 
R is an M^ definable relation (first and second order 
parameters allowed), then we do not necessarily mean that R 
is an internal relation. However, by Lemma 5.7.30, vii), if 
R is an M^ definable relation which is bounded, then R is 
an internal relation; i.e., R is an element of some Yk. In 
fact, Yk is the set of all bounded M^ definable relations on 
C. 
 
DEFINITION 5.8.1. Functions are always identified with 
their graphs. We refer to the elements of Y1 as the internal 
sets. 
 
An important obstacle is that there is no way of showing, 
in M^, that the family of all internal subsets of an 
internal set is in any sense internal. E.g., no way of 
showing that they are all cross sections of some fixed 
internal binary relation.  
 
It would appear that this obstacle is fatal, as it 
indicates an inability to interpret the power set axiom, 
despite bounded comprehension, indiscernibility, and 
infinity.  
 
However, in this section, we argue carefully that we can 
still construct the constructible universe. Because of the 
explicitness of this construction, we can use 
indiscernibility to overcome this obstacle within the 
constructible universe.  
 
We first have to develop a pairing function. By an 
interval, we mean a set [x,y), where x,y ∈ C.  
 
LEMMA 5.8.1. Let k ≥ 1 and F be a k-ary M^ definable 
function, defined without second order parameters. For all 
x, {F(y1,...,yk): y1,...,yk < x} is bounded above. For all x, 
the restriction of F to [0,x)k is an internal function.  
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Proof: Let k,F be as given, and let x ∈ C. Let n ≥ 1 be 
such that x and all parameters used in the definition of F 
are < cn. Let y1,...,yk < x. Let m > n be such that 
F(y1,...,yk) < cm. Consider the true statement  
 

F(y1,...,yk) < cm. 
 
This is a statement involving cm and certain parameters < 
cn. By Lemma 5.7.30 ix), 
 

F(y1,...,yk) < cn+1. 
 
The second claim follows immediately by Lemma 5.7.30 vii). 
QED 
 
DEFINITION 5.8.2. For all x ∈ C, we write x+1 for the 
immediate successor of x in <.  
 
The above exists by Lemma 5.7.30 v),viii). This is a slight 
abuse of notation since x+1 already has a meaning, as + is 
a primitive of M^. However, note that by Lemma 5.7.30 
ii),iii), if x < ω then x+1 is also the immediate successor 
of x in <. 
 
LEMMA 5.8.2. Let x,y ∈ C, x > 0. There is a unique strictly 
increasing internal f with dom(f) = [0,x), rng(f) an 
interval, and f(0) = y.   
 
Proof: We first prove a strong form of uniqueness. Suppose 
x,x’,y ∈ C, x,x’ > 0, and let f,g be strictly increasing 
internal functions, where dom(f) = [0,x), dom(g) = [0,x’), 
and rng(f),rng(g) are intervals, and f(0) = g(0) = y. Then 
f,g agree on their common domain. To see this, suppose this 
is false. By Lemma 5.7.30 viii), let b be < least such that 
f(b) ≠ g(b). Obviously f(b) is the strict sup of the f(c), c 
< b, and g(b) is the strict sup of the g(c), c < b. Hence 
f(b) = g(b), which is a contradiction. Hence f,g agree on 
their common domain.  
 
For existence, fix x,y ∈ C. We prove that for all 0 < u ≤ 
x, there exists strictly increasing internal f such that 
dom(f) = [0,u), rng(f) is an interval, and f(0) = y.  
 
Suppose this is false. By Lemma 5.7.30 viii), let 0 < u ≤ x 
be < least such that this is false. For each 0 < v < u, let 
fv be the unique internal function which is strictly 
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increasing with dom(fv) = [0,v), rng(fv) an interval, and 
f(0) = y.  
 
First suppose u is a limit. By the comparability, the 
union, f, of the fv, v < u, is a function M^ definable 
without second order parameters (but with second order 
quantifiers). Hence f is strictly increasing, with dom(f) = 
[0,u), f(0) = y. By Lemma 5.7.30 viii), rng(f) must be an 
interval. We have now contradicted the choice of u. 
 
Now suppose u = v+1. If v = 0 then fu obviously exists. 
Hence v > 0. Let fv have range [y,z). Extend fv to f by 
setting f(v) = z. Again we have contradicted the choice of 
u. QED 
 
DEFINITION 5.8.3. We now define (x,y) <* (z,w) if and only 
if  
 
i) max(x,y) < max(z,w); or 
ii) max(x,y) = max(z,w) and (x,y) lexicographically 
precedes (z,w). 
 
LEMMA 5.8.3. Every M^ definable binary relation R that 
holds of some (x,y), x,y ∈ C, holds of a <* least (x,y). 
 
Proof: Let R be as given. The set of all max’s of pairs at 
which R holds is obviously a nonempty M^ definable subset 
of C. By Lemma 5.7.30 viii), let u be its < least element. 
By Lemma 5.7.30 viii), let x be the < least first term of a 
pair at which R holds, whose maximum is u. By Lemma 5.7.30 
viii), let y be the < least second term of a pair at which 
R holds, whose maximum is u, and whose first term is x. 
Then (x,y) is as required. QED 
 
LEMMA 5.8.4. There is an M^ definable binary function F:C2 
→ C, defined without parameters, such that for all x,y ∈ C, 
F(x,y) is the strict sup of all F(z,w) with (z,w) <* (x,y). 
F is unique.  
 
Proof: Define Q(u,G) if and only if  
 
1) G:{x: x < u}2 → C is internal, such that for all x,y < 
u, G(x,y) is the strict sup of all G(z,w), (z,w) <* (x,y).  
 
We claim that for all v,w < u, if Q(v,G) and Q(w,H), then 
G,H agree on their common domain. This is proved in the 
obvious way using Lemma 5.8.3. 
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Define R(u) ↔ (∃G)(Q(u,G)). Suppose (∃u)(¬R(u)). 
 
By Lemma 5.7.30 viii), let u be < least such that ¬R(u). 
Then for all v < u, there exists G with Q(v,G).  
 
We thus see that for all v < u, there is a unique Gv with 
Q(v,Gv), and these various Gv, v < u, are comparable.  
 
Obviously R(0), and so u > 0.  
 
Suppose u is a limit. By comparability, the union of the Gv, 
v < u, is an internal function G according to Lemma 5.8.1. 
It is obvious that Q(u,G). This contradicts the choice of 
u. 
 
Now suppose u = v+1. We will extend Gv to G as follows. 
Since Gv is internal, by Lemma 5.7.30 viii), let u1 be the 
strict sup of the values of Gv. By Lemma 5.8.2, let H be a 
strictly increasing internal function that maps [0,v) onto 
[u1,u2), and J be a strictly increasing internal function 
that maps [0,v] onto [u2,u3]. Now extend Gv to G by defining 
G(w,v) = H(w) and G(v,w) = J(w), where w ≤ v. Clearly 
Q(u,G). This contradicts the choice of u. 
 
We have thus established that for all u, R(u) holds.  
 
We now define F as follows. Let x,y ∈ C. Let G be the 
unique internal function given by R(u), with u = 
max(x,y)+1. Set F(x,y) = G(x,y). It is clear that F is as 
required. F is unique by Lemma 5.8.3. QED  
 
DEFINITION 5.8.4. We write P for the F constructed in the 
proof of  Lemma 5.8.4.  
 
LEMMA 5.8.5. For all x ∈ C, x ≤ P(0,x). Let x,y ∈ C. x > 0 
→ x,y < P(x,y). x,y ≤ P(x,y). P:C2 → C is a bijection.  
 
Proof: Suppose the first claim is false. By Lemma 5.7.30 
viii), let x be < least such that P(0,x) < x. Then for all 
z < x, z ≤ P(0,z). Hence x ≤ P(0,x), which is a 
contradiction. 
 
For the second claim, let x > 0. We have y ≤ P(0,y) < 
P(x,y), and x ≤ P(0,x) < P(x,0) ≤ P(x,y).  
 
The third claim follows from the first two claims.  
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To see that P is one-one, let P(x,y) = P(x',y'). If (x,y) 
<* (x',y') then P(x,y) < P(x',y'). If (x',y') <* (x,y) then 
P(x',y') < P(x,y). Hence (x,y) = (x',y').  
 
To see that P is onto, let x be the least element of C that 
is not a value of P. By the first claim, if P(y,z) < x then 
(y,z) <* (0,x). It is easy to see that the strict sup of 
the (y,z) with P(y,z) < x exists. Then the value of P at 
this strict sup must be x. Hence x is a value of P. This is 
a contradiction. QED   
 
DEFINITION 5.8.5. We inductively define P(x1,...,xk+1) = 
P(P(x1,x2),x3,...,xk+1), for k ≥ 1. Also define P(x) = x. This 
is our mechanism for coding sequences of points of standard 
finite length as points.  
 
LEMMA 5.8.6. In each arity k ≥ 1, P is a bijection. For all 
k ≥ 1, (∀x1,...,xk)(x1,...,xk ≤ P(x1,...,xk)). For all k,n ≥ 
1, (∀x1,...,xk)(x1,...,xk ≤ cn → P(x1,...,xk) < cn+1).   
 
Proof: The first claim is proved by external induction on 
the arity, using that P:C → C and P:C2 → C are bijections.  
 
The second claim is proved by external induction on k ≥ 1, 
using Lemma 5.8.5.  
 
For the third claim, let k,n ≥ 1 and x1,...,xk ≤ cn. By Lemma 
5.7.30 v), let m > n be such that P(x1,...,xk) < cm. By 
Lemma 5.7.30 ix), P(x1,...,xk) < cn+1. QED 
 
LEMMA 5.8.7. Let k ≥ 1 and R ⊆ Ck. Then R is an internal 
relation if and only if {P(x1,...,xk): R(x1,...,xk)} is an 
internal set. 
 
Proof: Let k,R be as given. In the interest of caution, 
rewrite this set as  
 

A = {y: (∃x1,...,xk)(y = P(x1,...,xk) ∧ R(x1,...,xk))}. 
 
Suppose R is an internal relation; i.e., R ∈ Yk. Then R is 
bounded. Hence by Lemma 5.8.1, A is bounded. By Lemma 
5.7.30 vii), A is an internal set; i.e., A ∈ Y1.  
 
Now suppose A is an internal set. Then A is bounded. Hence 
by Lemma 5.8.6, R is bounded.  
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We claim that for all x1,...,xk ∈ C, 
 

R(x1,...,xk) ↔ P(x1,...,xk) ∈ A. 
 
To see this, suppose R(x1,...,xk). Then P(x1,...,xk) ∈ A. 
Suppose P(x1,...,xk) ∈ A. Let x1',...,xk' be such that 
P(x1,...,xk) = P(x1',...,xk') ∧ R(x1',...,xk'). Since P is 
one-one, we have x1 = x1',...,xk = xk', and R(x1,...,xk). 
Hence R is an internal relation, by Lemma 5.7.30 vii). QED 
 
LEMMA 5.8.8. Any definable subset of C that contains 0 and 
is closed under +1, contains all x < ω. 
 
Proof: Let B ⊆ C be definable, contain 0, and be closed 
under +1. Let x < ω, x ∉ B. By Lemma 5.7.30 viii), let x be 
least such that x < ω, x ∉ B. Then x > 0. By Lemma 5.7.30 
iii), we have x-1 < x, and hence x-1 ∈ B. Therefore x ∈ B, 
which is a contradiction. QED 
 
Lemma 5.8.8 supports proof by internal induction on x < ω. 
 
DEFINITION 5.8.6. An internal finite sequence is an 
internal function whose domain is some [1,x], x < ω.  
 
We can use P to code internal finite sequences (from C) of 
indefinite length, as a single element of C.  
 
LEMMA 5.8.9. Let f:[1,x] → C, x < ω, be internal. There 
exists a unique internal g:[1,x] → C such that for all 1 ≤ 
u < x,  
i) g(1) = f(1); 
ii) g(u+1) = P(g(u),f(u+1)). 
For this g, we have g(x) ≥ max(f).  
 
Proof: Let f,x be as given. We prove by internal induction 
on z ≤ x, that there is an internal g:[1,z] → C such that 
for all 1 ≤ u < z, clauses i) and ii) hold. Internal 
induction below ω is supported by Lemma 5.8.8. The 
uniqueness of g can also be obtained using internal 
induction.  
 
Clearly max(f) exists by induction. Also by induction, for 
all 1 ≤ u ≤ v ≤ x, g(v) ≥ f(u). Hence g(x) ≥ max(f). QED 
 
We use Lemma 5.8.9 to code finite sequences. Let f:[1,x] → 
C, x < ω.  
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DEFINITION 5.8.7. Define #(f) = P(x,g(x))+1, where g is 
given by Lemma 5.8.9. For empty f, define #(f) = 0. 
 
LEMMA 5.8.10. For all internal finite sequences f,f', if 
#(f) = #(f') then f = f'.  
 
Proof: Let f,f' be internal finite sequences. Let f:[1,x) → 
C, f':[1,y) → C. Suppose #(f) = #(f'). If x = 0 ∨ y = 0 
then #(f) = #(f') = 0, and hence x = y = 0. So we assume 
that x,y > 0.  
 
Let g,g' be given by Lemma 5.8.9, for f,f', respectively. 
Then #(f) = #(f') = P(x,g(x))+1 = P(y,g'(y))+1. Hence 
P(x,g(x)) = P(y,g'(y)), x = y, g(x) = g'(y). Hence g(x) = 
g'(x).  
 
We now prove that f = f'. The case x = 1 is immediate, so 
we assume x > 1.  
 
We first prove by reverse induction that for all 1 < x’ ≤ x, 
f(x’) = f'(x’) ∧ g(x’) = g'(x’). The basis case is x’ = x. 
By Lemma 5.8.9, we have g(x) = P(g(x-1),f(x)), g'(x) = 
P(g'(x-1),f'(x)). Hence f(x) = f'(x) ∧ g(x) = g'(x).  
 
Suppose 2 < x' ≤ x, f(x') = f'(x'), g(x') = g'(x'). By Lemma 
5.8.9, g(x') = P(g(x'-1),f(x')), g'(x') = P(g'(x'-
1),f'(x')). Then g(x'-1) = g'(x'-1). By Lemma 5.8.9, g(x'-
1) = P(g(x'-2),f(x'-1)), g'(x'-1) = P(g'(x'-2),f'(x'-1)). 
Hence f(x'-1) = f'(x'-1). This establishes the induction 
step. 
 
So we have shown that for all 1 < x’ ≤ x, f(x’) = f'(x’) ∧ 
g(x’) = g'(x’). Hence f(2) = f'(2), g(2) = g'(2). By Lemma 
5.8.9, g(1) = g'(1) = f(1) = f'(1). Hence f = f'. QED 
 
LEMMA 5.8.11. (∀x)(∃y > x,ω)(∀z,w ≤ x)(P(z,w) < y).  
 
Proof: Let x ∈ C. By Lemma 5.7.30 v), ω < c1, and we can 
let x ≤ cn. By Lemma 5.8.6, for all k ≥ 1 and z1,...,zk ≤ cn, 
P(z1,...,zk) < cn+1 and ω < cn+1. QED 
 
LEMMA 5.8.12. (∀x)(∃y > x,ω)(∀z,w < y)(P(z,w) < y).  
 
Proof: Let x be given. Let u = max(x,ω). Informally, we 
want to construct u < P(u,u) < P(P(u),P(u)) < ... and take 
the sup. We can obviously prove by internal induction 
(Lemma 5.8.8) that for all n < ω, there exists unique 
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internal fn:[1,n] → C such that fn(1) = u, and for all 1 ≤ m 
< n, fn(m+1) = P(fn(m),fn(m)). By internal induction, these 
fn are comparable, and so we can form their union F as an M^ 
definable function F with domain {n: 0 < n < ω}.  
 
By Lemma 5.8.1, F is an internal function. Also by internal 
induction, for all 0 < n < ω, 
 

F(0) = u, F(n+1) = P(F(n),F(n)). 
 
By Lemma 5.7.30 viii), let the strict sup of the values of 
F be y. We claim that  
 

(∀z,w < y)(P(z,w) < y). 
 
Let z,w < y. Let z,w ≤ F(n). Then  
 

P(z,w) ≤ P(F(n),F(n)) = F(n+1) < y. 
 
QED 
 
According to Lemma 5.8.12, for x ∈ C, we let P*(x) be the 
least y > x,ω such that for all z,w < y, P(z,w) < y.  
 
LEMMA 5.8.13. Let f be an internal finite sequence, rng(f) 
⊆ [0,x]. Then max(f) < #(f) < P*(x). 
 
Proof: Let f be as given. If f is empty then #(f) = 0 and 
we are done. We can assume that f:[1,n] → [0,x], where 1 ≤ 
n < ω. Then ω < P*(x). Let g be given by Lemma 5.8.9. By 
internal induction, for all 1 ≤ i ≤ n, g(i) < P*(x). Hence 
P(n,g(n)) < P(ω,g(n)) < P*(x). Therefore #(f) = P(n,g(n))+1 
≤ P(ω,g(n)) < P*(x). By Lemma 5.8.9, max(f) ≤ g(n) < #(f) < 
P*(x). QED 
 
We will need a notation for reverse finite sequence coding.  
 
DEFINITION 5.8.8. Let y ∈ C and 1 ≤ i,n < ω. We define 
y[i:n] to be the i-th term in the finite sequence of length 
n coded by y, if this exists; undefined otherwise. I.e., 
y[i:n] is f(i), 
 

where i ≤ n and f is such that  
f:[1,n] → C, #(f) = y,  

provided f exists; 
undefined otherwise. 
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By Lemma 5.8.10, the choice of f here, if it exists, is 
unique. 
 
LEMMA 5.8.14. x[i:n] forms an M^ definable partial function 
from C × [0,ω)2 into C without parameters. Let f:[1,n] → C 
be internal, 1 ≤ n < ω. The maximum value max(f) of f 
exists. There exists a unique x such that for all i ≤ n, 
f(i) = x[i:n]. max(f) < x < P*(max(f)). 
 
Proof: The first claim is obvious from the internal 
definition of x[i:n] above.  
 
Now let f:[1,n] → C. For the second claim, an easy 
induction, using Lemma 5.7.30 i)-iii), shows that for all 1 
≤ i ≤ n, the maximum value of f on [0,i] exists.  
 
By definition, #(f) = P(n,u)+1, for some u. Obviously u is 
unique, and we set x = #(f). Since rng(f) ⊆ [0,max(f)], we 
have max(f) < x = #(f) < P*(max(f) by Lemma 5.8.13.  QED 
 
M^, with its internal well foundedness (Lemma 5.7.30 viii)) 
and bounded comprehension (Lemma 5.7.30 vii)), is a 
relatively familiar context in which to work, compared with 
the earlier contexts in this chapter.  
 
In order to construct the constructible hierarchy, we will 
use the usual language of set theory, L(∈,=).  
 
DEFINITION 5.8.9. We take L(∈,=) to be based on ∈,=, 
variables vn, n ≥ 1, and ¬,∧,∀.  
 
By the internal induction in Lemma 5.8.8, and Lemma 5.7.30 
iii), we take internal arithmetic for granted, formulated 
on [0,ω).  
 
In particular, we have access to the internal set GN of all 
Gödel numbers of formulas of L(∈,=).   
 
DEFINITION 5.8.10. Let R be an internal binary relation. We 
let R# = P*(y), where y is least such that (∀x ∈ fld(R))(x 
< y).  
 
The idea is that R# is large enough to accommodate all of 
the internal finite sequence codes that we need, in the 
sense of Lemma 5.8.14.  
 
We wish to formally define the notion SAT(R,n,x,m).  
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DEFINITION 5.8.11. The intended meaning of SAT(R,n,x,m) is 
that  
 
i) R is a binary relation; 
ii) n ∈ GN, x < R#; 
iii) the subscript of every free variable in the formula ϕ 
of L(∈,=) with Gödel number n is ≤ m < ω; 
iv) (fld(R),R) satisfies ϕ at the partial assignment 
x[1:m],x[2:m],...,x[m:m]. 
 
Note that we allow R to be empty.  
 
In order for clause iv) to hold, we require that 
x[1:m],x[2:m],...,x[m:m] ∈ fld(R).  
 
Note that if m = 0 then the partial assignment in clause 
iv) is empty.  
 
In order to make this definition over M^, we first need the 
following. 
 
LEMMA 5.8.15. Let R be an internal binary relation. There 
exists a unique internal ternary relation SATR ⊆ GN × [0,R#) 
× [0,ω) satisfying the usual Tarski satisfaction 
conditions.  
 
Proof: Let R be as given. Note that in M^, the code of 
every finite length sequence form fld(R) is < R#, by Lemma 
5.8.14. The uniqueness of SATR(n,x,m) is proved by internal 
induction on n. For existence, prove by internal induction 
on r < ω that there is a ternary relation Tr ⊆ GN|r × [0,R#) 
× [0,ω), that satisfies the usual Tarski satisfaction 
conditions for all n ∈ GN|r. Here GN|r is the set of all n 
∈ GN which is at most r. Also prove by internal induction 
on r < ω that each Tr is unique, and the Tr’s are 
compatible, in the sense that they agree on their common 
domain. Furthermore, each Tr ⊆ [0,R#]3. By Lemma 5.7.30, we 
can take SATR to be the union of the Tr’s. Finally, an 
internal induction shows that SATR is unique. QED 
 
DEFINITION 5.8.12. We now define SAT(R,n,x,m) if and only 
if R is a binary relation, and SATR(n,x,m) holds, where 
SATR(n,x,m) is given by Lemma 5.8.15.  
 
DEFINITION 5.8.13. Let R be an internal binary relation. We 
say that n,x,m is a code over R if and only if  
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i) n ∈ GN; 
ii) 1 ≤ m < ω; 
iii) x < R# is greater than all elements of fld(R). 
 
We remark that condition iii) is convenient because x does 
not interfere with the elements of fld(R). 
 
DEFINITION 5.8.14. If n,x,m is a code over R then we write 
H(R,n,x,m) for  
 

{y: (∃z)(z[1:m] = y ∧ z[2:m] = x[2:m] ∧ ... ∧ z[m:m] = 
x[m:m] ∧ SAT(R,n,z,m))}. 

 
Note that in the above definition, we use x[2:m],...,x[m:m] 
but not x[1:m]. This means that we can easily modify x 
without changing H(R,n,x,m). We will exploit this freedom 
below.   
 
We think of H(R,n,x,m) as the internal subset of fld(R) 
that is coded by the code n,x,m. Informally, the 
H(R,n,x,m), where n,x,m is a code over R, code exactly the 
“subsets of fld(R) that are first order definable over R”. 
The case R = ∅ is handled appropriately with this notation.  
 
DEFINITION 5.8.15. We say that n,x,m is a minimal code over 
R if and only if n,x,m is a code over R such that  
 
i) for all codes n’,x’,m’ over R, if H(R,n’,x’,m’) = 
H(R,n,x,m) then P(n,x,m) ≤ P(n’,x’,m’); 
ii) for all y ∈ fld(R), H(R,n,x,m) ≠ {z: R(z,y)}.   
 
Thus the minimal codes over R code exactly the R definable 
subsets of fld(R) that are not already of the form {z: 
R(z,y)}, y ∈ fld(R). Also, by minimality, no two distinct 
minimal codes over R code the same subset of fld(R). 
 
Minimal codes are preferred codes used in order to ensure 
the propagation of extensionality as we construct the 
constructible hierarchy.  
 
LEMMA 5.8.16. Let ϕ(v1,...,vm), m ≥ 1, be a formula of 
L(∈,=) with Gödel number n. Let R be an internal binary 
relation. Then SAT(R,n,x,m) holds if and only if 
ϕ(x[1:m],...,x[m:m]) holds in (fld(R),R). H(R,n,x,m) = {y: 
ϕ(y,x[2:m],...,x[m:m]) holds in (fld(R),R)}.   
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Proof: Left to the reader. Note that ϕ,m,n are standard. 
QED 
 
LEMMA 5.8.17. Let ϕ(v1,...,vm), m ≥ 1, be a formula of 
L(∈,=). Let R be an internal binary relation, and z1,...,zm-1 
∈ fld(R). Then {y: ϕ(y,z1,...,zm-1) holds in (fld(R),R)} is 
either of the form {y: R(y,x)}, x ∈ fld(R), or of the form 
H(R,n’,x',m’), for some unique minimal code n’,x',m’ over 
R, but not both.  
 
Proof: Use Lemma 5.8.16. Note that ϕ,m,n are standard. 
Assume that  
 

{y: ϕ(y,z1,...,zm-1) holds in (fld(R),R)} 
is not of the form {y: R(y,x)}, x ∈ fld(R). 

 
Let f:[1,m] → C, where f(2) = z1,...,f(m) = zm-1, and where 
f(1) is the least point greater than all elements of 
fld(R). Let x = #f. Then x < R# = P*(f(1)), is greater than 
all elements of fld(R), and  
 

H(R,n,x,m) = {y: ϕ(y,z1,...,zm-1) holds in (fld(R),R)}. 
 
So we can minimize over the relevant n,x,m in order to 
obtain the required minimal code n’,x,m’ over R. By the 
definition of minimal codes over R, the or is exclusive. 
QED  
 
We are now ready to construct the binary relation FODO(R), 
for internal R, obtained by “adjoining” all sets first 
order definable over (fld(R),R) to R.  
 
DEFINITION 5.8.16. We say that a binary relation R is 
adequate if and only if  
 

R(0,1) ∧ (∀x)(¬R(x,0)). 
 
In particular, for adequate R, we have 0,1 ∈ fld(R).  
 
For internal adequate binary relations R, we construct 
FODO(R) as follows. 
 
DEFINITION 5.8.17. We define FODO(R)(u,v) if and only if 
either R(u,v), or  
 
i) there exists a minimal code n,x,m over R such that v = 
P(n,x,m); 
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ii) u ∈ H(R,n,x,m). 
 
The reason that we need the adequacy of R is that ∅ = {x: 
R(x,0)}, and so there is no minimal code n,x,m over R with 
H(R,n,x,m) = ∅. It will be convenient to have the sets with 
minimal codes over R be nonempty. 
 
DEFINITION 5.8.18. Let R be an internal binary relation. We 
say that R is extensional if and only if for all x,y ∈ 
fld(R), (∀z)(R(z,x) ↔ R(z,y)) → x = y.  
 
DEFINITION 5.8.19. We say that a binary relation R is 
sharply extended by a binary relation S if and only if  
 
i) (∀x ∈ fld(S)\fld(R))(∀y ∈ fld(R))(y < x); 
ii) (∀x,y ∈ fld(R))(R(x,y) ↔ S(x,y)). 
iii) S(x,y) ∧ y ∈ fld(R) → x ∈ fld(R). 
iv) fld(R) is a proper subset of fld(S). 
 
LEMMA 5.8.18. Let R be an internal adequate binary 
relation. Then FODO(R) is an internal adequate binary 
relation. In addition, R extensional → FODO(R) extensional. 
FODO(R) sharply extends R. (∀x,y)(R(x,y) → x < y) → 
(∀x,y)(FODO(R)(x,y) → x < y).    
 
Proof: Let R be as given. Note that FODO(R) is bounded by 
R#. By Lemma 5.6.30 vii), FODO(R) is internal. We claim 
that  
 

1) v ∈ fld(R) → 
FODO(R)(u,v) ↔ R(u,v). 

 
2) FODO(R)(u,v) → 

u ∈ fld(R). 
 
For 1), let v ∈ fld(R). If R(u,v) then FODO(R)(u,v). 
Suppose FODO(R)(u,v). Assume ¬R(u,v). Let v = P(n,x,m), 
where n,x,m is a minimal code over R. Then x is greater 
than all elements of fld(R). Hence x > v, which is 
impossible.  
 
For 2), let FODO(R)(u,v). If R(u,v) then obviously u ∈ 
fld(R). So we can let v = P(n,x,m), n,x,m a minimal code 
over R. Then u ∈ H(R,n,x,m) ⊆ fld(R).  
 
FODO(R) is adequate since R ⊆ FODO(R) and by 1), 
FODO(R)(u,0) → R(u,0), which is impossible.  
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Assume R is extensional. We claim that FODO(R) is 
extensional. Suppose  
 

3) (∀x)(FODO(R)(x,y) ↔ FODO(R)(x,z)). 
 
case 1. y,z ∈ fld(R). Since R is extensional, y = z. 
 
case 2. y,z ∉ fld(R). Let y = P(n,x,m), z = P(n’,x’,m’), 
where n,x,m and n’,x’,m’ are minimal codes over R. By 
2),3), H(R,n,x,m) = H(R,n’,x’,m’). Hence P(n,x,m) ≤ 
P(n’,x’,m’) ≤ P(n,x,m). So P(n,x,m) = P(n’,x’,m’) = y = z.  
 
case 3. y ∈ fld(R), z ∉ fld(R). Let z = P(n,x,m), n,x,m a 
minimal code over R, H(R,n,x,m) ≠ {z: R(z,y)}, H(R,n,x,m), 
and {z: R(z,y)} ⊆ dom(R). This contradicts 3).  
 
case 4. y ∉ fld(R), z ∈ fld(R). This leads to a 
contradiction as in case 3.  
 
We have thus derived y = z from 3), and FODO(R) is 
extensional.  
 
We claim that FODO(R) sharply extends R. For i) of the 
definition of sharply extended, let x ∈ 
fld(FODO(R))\fld(R), y ∈ fld(R). Then x = P(n,u,m), where 
n,u,m is a minimal code over R. Hence u is greater than all 
elements of fld(R), and so x > y.  
 
For ii), use 1). 
 
For iii), use 2).   
 
For iv), note that {x ∈ fld(R): ¬R(x,x)} cannot be of the 
form {y: R(y,x)}, x ∈ fld(R). Let n,x,m be a minimal code 
over R such that H(R,n,x,m) = {x ∈ fld(R): ¬R(x,x)}. THen 
P(n,x,m) ∈ fld(FODO(R))\fld(R).  
 
Hence by Lemma 5.8.17, fld(R) = H(R,n,x,m), for some 
minimal code n,x,m over R. Hence fld(R) = {y: 
FODO(R)(y,x)}. Therefore fld(R) ≠ fld(FODO(R)).  
 
For the last claim, assume (∀x,y)(R(x,y) → x < y). Let 
FODO(R)(x,y). By construction, either R(x,y) or  
 

x ∈ fld(R) ∧ y is some P(n,z,m), 
where z is greater than all elements of fld(R). 
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In either case, x < y. QED 
 
LEMMA 5.8.19. Let R be an internal adequate binary 
relation. Every set definable in (fld(R),R) is of the form 
{x: FODO(R)(x,y)}, where y ∈ fld(FODO(R)). 
 
Proof: By the construction of FODO(R), and Lemmas 5.8.17, 
5.8.18. QED  
 
Here we have interpreted Lemma 5.8.19 as a scheme of 
assertions about M^, where we take “definable” in the 
external sense. However, we also want to interpret Lemma 
5.8.19 in a stronger, internal sense - using SATR from Lemma 
5.8.15. This stronger form of Lemma 5.8.19 can also be 
proved with the help of internal inductions.  
 
We now wish to transfinitely iterate the FODO operation. 
The base of the transfinite iteration will be the adequate 
relation  
 

R0(x,y) ↔ 
x = 0 ∧ y = 1. 

 
In order to accomplish this, we must be a bit careful. 
Firstly, we must note that, conceptually, we are 
manipulating internal relations, and these internal 
relations are not points; they are elements of Y2. 
Furthermore, these internal relations are not even coded as 
points. In contrast, recall that internal finite sequences 
f of points are coded as points using f#.  
 
Secondly, note that the operation that sends appropriate R 
to FODO(R) is even further removed from being an object. It 
is merely a description of a relationship between objects 
(not even between points), given in a first order way, 
without parameters, over M^. 
 
Our strategy is to properly define what we mean by a 
transfinite iteration of the operation up through a point, 
as an object. The objects for this purpose are the elements 
of the Yk, k ≥ 1. These are components of M^.  
 
DEFINITION 5.8.20. Let T be a k+1-ary relation, k ≥ 1. For x 
∈ C, we write Tx for the cross section {(y1,...,yk): 
T(x,y1,...,yk)}.  
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Note that Tx is a k-ary relation.  
 
LEMMA 5.8.20. Let x ∈ C. There is a unique internal ternary 
relation T such that  
i) T0 = R0; 
ii) For all y < x, Ty+1 = FODO(Ty);  
iii) For all limits y ≤ x, Ty = ∪z<yTz;  
iv) For all y ≤ x, Ty is adequate; 
v) For all y > x, Ty = ∅. 
 
Proof: Define Γ(T,x) if and only if x ∈ C ∧ T is an 
internal ternary relation obeying i)-v).  
 
We first claim that for all x,T,T',  
 

Γ(T,x) ∧ Γ(T',x) → T = T'. 
 
Suppose this is false. Choose x to be least such that  
 

(∃T,T')(Γ(T,x) ∧ Γ(T',x) ∧ T ≠ T'. 
 
Clearly x ≠ 0, since T0 = T'0 = R0. Hence x > 0. 
 
Let x = z+1. Let  
 

Γ(T,z+1), Γ(T’,z+1),Tz+1 ≠ T’z+1. 
FODO(Tz) ≠ FODO(T’z). 

Tz ≠ T’z. 
 
This contradicts the choice of x.  
 
Finally, let x be a limit. We claim that  
 

(∀z < x)(Tz = T’z). 
 
To see this, let z < x. Let T* be the restriction of T to 
triples whose first argument is ≤ z, and T*' be the 
restriction of T* to triples whose first argument is ≤ z. 
Then Γ(T*,z), Γ(T*',z). Hence T* = T*'. This is a 
contradiction.  
 
The first claim has been established. In fact, it is now 
clear that the T's such that (∃x)(Γ(T,x)) are comparable in 
that any two agree on their common domain.  
 
To prove existence, let u > 0, and suppose  
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(∀x < u)(∃T)(Γ(T,x)). 
 
We now show  
 

(∃T)(Γ(T,u)). 
 
The case u = 0 is obvious, by defining  
 

T(a,b,c) ↔ a = 0 ∧ R0(b,c). 
 
Assume u is a successor, u = v+1. Let Γ(T,v). Define  
 

T’(a,b,c) ↔ 
T(a,b,c) ∨ (a = v+1 ∧ FODO(Tv)(b,c)). 

 
To see that T’ is internal, it suffices to show that T’ is 
bounded. This follows from the boundedness of T and 
FODO(Tv).  
 
Note that by Lemma 5.8.18, FODO(Tv) = T’v+1 is adequate. 
Also,  
 

x ≤ v → T’x = Tx. 
T’v+1 = FODO(Tv) = FODO(T’v). 

Γ(T’,v+1), Γ(T’,u). 
 
Assume u is a limit. Define  
 

T*(a,b,c) ↔ 
a < u ∧ (∃T)(Γ(T,a) ∧ T(a,b,c)). 

 
To see that T* is internal, it suffices to show that T* is 
bounded. We have (∀a < u)(∃!T)(Γ(T,a)), by the first claim 
(uniqueness). 
 
Let a < u < cn, n ≥ 1. By Lemma 5.7.30 ix), we have 
 

(∃w)(∃T)(Γ(T,a) ∧ T lies entirely below w). 
(∃w < cn+1)(∃T)(Γ(T,a) ∧ T lies entirely below w). 

(∃T)(Γ(T,a) ∧ T lies entirely below cn+1). 
T* lies entirely below cn+1. 

T* is internal. 
 
Let a < u. Let  
 

Γ(T,0), Γ(T,a), Γ(T’,a+1). 
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From the definition of T* and the uniqueness/comparability 
(first claim),   
 

T*0 = T0, T*a = Ta = T’a, T*a+1 = T’a+1. 
T0 = R0, T*a+1 = FODO(T’a) = FODO(T*a). 
All of these relations are adequate. 

 
Now let z < u be a limit. Let Γ(z,T’’). Then  
 

T’’z = T*z. 
T’’z = ∪a<zT’’a = ∪a<zT*a. 

 
Hence T* obeys i)-v) for Γ(T*,u), except clause iii) holds 
only for y < u. To fix this, define  
 

T**(a,b,c) ↔ 
T*(a,b,c) ∨ (a = u ∧ (∃a < u)(T*(a,b,c))). 

 
It is easy to see that T**u is adequate. Then Γ(T**,u). QED 
 
DEFINITION 5.8.21. For each x ∈ C, we let L(x) = Tx, where T 
is the ternary relation given by Lemma 5.8.20. I.e., where 
Γ(T,x) as defined in the proof of Lemma 5.8.20. Thus each 
L(x) ∈ Y2. 
 
DEFINITION 5.8.22. For each x ∈ C, we define L[x] = 
fld(L(x)). Note that L[0] = {0,1}, and that L[x] ⊆ C. 
 
DEFINITION 5.8.23. We define L[∞] as the union of the L[x].  
 
We caution the reader that L[∞] ⊆ C is not internal, 
because it is not bounded. It is, however, M^ definable 
without any parameters.  
 
DEFINITION 5.8.24. We define L(∞) be the union of the L(x).  
 
Thus L(∞)(x,y) if and only if there exists z ∈ C such that 
L(z)(x,y). Obviously L(∞) ⊆ C2. 
 
The various L[x] correspond to the initial segments of the 
constructible hierarchy. The various L(x) correspond to the 
epsilon relations on the initial segments of the 
constructible hierarchy. L[∞] corresponds to the class of 
constructible sets. L(∞) corresponds to the epsilon 
relation on the class of constructible sets.  
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Clearly L(∞) is the version of the epsilon relation on the 
constructible sets in M^, and is a binary relation. Its 
field is L[∞].  
 
We caution the reader that L[x] may not be an initial 
segment of points, and may not be a subset of [0,x). It may 
have elements that are greater than x.  
 
LEMMA 5.8.21. L(0) = R0. For all x ∈ C, L(x+1) = FODO(L(x)). 
For all limits x ∈ C, L(x) is the union of the L(y), y < x. 
For all x < y, L(x) is sharply extended by L(y). Each L(x) 
is extensional. Each L(x) has L(x)(y,z) → y < z.   
 
Proof: L(0) = T, where Γ(T,0). Hence L(0) = R0. L(x+1) = 
Tx+1, where Γ(T,x+1). Hence L(x+1) = FODO(Tx). Let T’ be the 
restriction of T to triples whose first argument is ≤ x. 
Then Γ(T’,x), T’x = Tx, L(x+1) = FODO(T’x) = FODO(L(x)).  
 
Let x be a limit. L(x) = Tx, where Γ(T,x). Now Tx = ∪y<xTy. 
By using restrictions as in the previous paragraph, we see 
that for all y < x, Ty = L(y). Hence L(x) = Tx = ∪y<xTy.    
 
For the fourth claim, fix x. We prove by transfinite 
induction on y that  
 

x < y → L(x) is sharply extended by L(y). 
 
This is obvious for y = x.  
 
Suppose y > x, and L(x) is sharply extended by L(y). By 
Lemma 5.8.18, L(y) is sharply extended by L(y+1). Since 
L(x) is sharply extended by L(y), clearly L(x) is sharply 
extended by L(y+1). 
 
Suppose y > x, where y is a limit, and L(x) is sharply 
extended by every L(z), x ≤ z < y. We claim that L(x) is 
sharply extended by L(y). To see this, first let u ∈ 
fld(L(y))\fld(L(x)), v ∈ fld(L(x)). Let u ∈ 
fld(L(z))\fld(L(x)), x < z < y. Since L(z) is sharply 
extended by L(x), we have u < v.  
 
Next let u,v ∈ fld(L(x)). If L(x)(u,v) then obviously 
L(y)(u,v). If L(y)(u,v) then let x < z < y, L(z)(u,v). 
Since L(x) is sharply extended by L(z), we have L(x)(u,v).  
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Now let L(y)(u,v), v ∈ fld(L(x)). Let u ∈ L(z), where x < z 
< y. Since L(z) is sharply extended by L(y), L(z)(u,v). 
Since L(x) is sharply extended by L(z), we have u ∈ L(x).  
 
Finally, fld(L(x)) is a proper subset of fld(L(y)) since 
fld(L(x)) is a proper subset of fld(L(x+1)) ⊆ fld(L(y)), by 
Lemma 5.8.18.  
 
For the fifth claim, we argue by transfinite induction on 
x. L(0) = R0 is extensional. Suppose L(x) is extensional. By 
Lemma 5.8.18, L(x+1) = FODO(L(x)) is extensional. Suppose x 
is a limit, where for all y < x, L(y) is extensional. Let 
a,b ∈ fld(L(x)), (∀z)(L(x)(z,a) ↔ L(x)(z,b)). Let a,b ∈ 
fld(L(y)), y < x. Since L(x) is a sharp extension of L(y), 
we have (∀z)(L(y)(z,a) ↔ L(y)(z,b)). Since L(y) is 
extensional, a = b. 
 
For the sixth claim, we argue by transfinite induction on 
x. Obviously L(0)(y,z) → y < z since L(0) = R0. Suppose  
 

(∀y,z)(L(x)(y,z) → y < z). 
 
By Lemma 5.8.18,  
 

(∀y,z)(L(x+1)(y,z) → y < z). 
 
Let x be a limit, where  
 

(∀y < x)(∀u,v)(L(y)(u,v) → u < v). 
 
Let L(x)(u,v). Let L(y)(u,v), y < x. Then u < v. QED 
 
DEFINITION 5.8.25. Let x ∈ L[∞]. We write lrk(x) for the 
least y such that x ∈ L[y+1]. This is the L rank of x. Note 
that lrk is a function from C into C that is M^ definable 
without parameters. 
 
LEMMA 5.8.22. Let x,y ∈ C. L(∞)(x,y) → (lrk(x) < lrk(y) ∧ 
x < y). L(∞)(x,y) ↔ L(lrk(y)+1)(x,y). L[∞] ∩ [0,x) ⊆ L[x]. 
 
Proof: Let L(∞)(x,y). Let L(z)(x,y). By Lemma 5.8.21, x < 
y. Also, let y ∈ L[u+1]\L[u]. Then lrk(y) = u, u+1 ≤ z. By 
Lemma 5.8.21, z = u+1 ∨ L(u+1) is sharply extended by L(z). 
Therefore x ∈ L(u+1), L(u+1)(x,y), x ∈ L(u). Hence lrk(x) < 
lrk(y) = u. This also establishes the second claim.  
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We prove the final claim by transfinite induction on x. We 
have L[∞] ∩ [0,0) ⊆ L[0], vacuously.  
 
Suppose L[∞] ∩ [0,x) ⊆ L[x]. We want L[∞] ∩ [0,x] ⊆ 
L[x+1]. It suffices to prove x ∈ L[∞] → x ∈ L[x+1]. Assume 
x ∈ L[∞]\L[x+1]. Let x ∈ L[y]. Then y > x+1. Since L[y] 
sharply extends L[x+1], x is greater than all elements of 
L[x+1]. Since L[x+1] sharply extends L[x], there is an 
element of L[x+1] that is greater than all elements of 
L[x], and L[x] ⊇ [0,x). Hence there is an element of L[x+1] 
that is ≥ x. This is a contradiction.  
 
Suppose x is a limit, where for all y < x, 
 

L[∞] ∩ [0,y) ⊆ L[y]. 
 
We claim that  
 

L[∞] ∩ [0,x) ⊆ L[x]. 
 
To see this, let z ∈ L[∞], z < x. Let z < y < x. Then z ∈ 
L[y], z ∈ L[x]. QED  
 
DEFINITION 2.8.26. A Δ0 formula of L(∈,=) is a formula of 
L(∈,=) in which all quantifiers are ∈ bounded; i.e.,  
 

(∃x ∈ y) 
(∀x ∈ y) 

 
where x,y are distinct variables.  
 
LEMMA 5.8.23. Let ϕ(x1,...,xk) be a Δ0 formula of L(∈,=). 
Let y1,...,yk,z,w be such that y1,...,yk ∈ L[z],L[w]. Then 
ϕ(y1,...,yk) holds in (L[z],L(z)) if and only if ϕ(y1,...,yk) 
holds in (L[w],L(w)) if and only if ϕ(y1,...,yk) holds in 
(L[∞],L(∞)).  
 
Proof: Here k,ϕ are standard. The first claim is by 
external induction on the number of occurrences of 
variables in ϕ. Use Lemma 5.8.21 (sharp extensions). QED 
 
LEMMA 5.8.24. Extensionality, pairing, and union hold in 
(L[∞],L(∞)). 
 
Proof: For extensionality, let x,y ∈ L[u], where (∀z)(z ∈ x 
↔ z ∈ y) holds in (L[∞],L(∞)). By Lemma 5.8.23, (∀z)(z ∈ x 
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↔ z ∈ y) holds in (L[u],L(u)). By Lemma 5.8.21, x = y. 
Since u is arbitrary, extensionality holds in (L[∞],L(∞)). 
 
For pairing, let x,y ∈ L[u]. By Lemma 5.8.19, let z ∈ 
L[u+1] be such that (∀w)(w ∈ z ↔ (w = x ∨ w = y)) holds in 
L[u+1]. By Lemma 5.8.21 (sharp extensions), (∀w)(w ∈ z ↔ 
(w = x ∨ w = y)) holds in (L[∞],L(∞)). Since u is 
arbitrarily, pairing holds in (L[∞],L(∞)). 
 
For union, let x ∈ L[u]. By Lemma 5.8.19, let y in L[u+1] 
be such that  
(∀z)(z ∈ y ↔ (∃w)(z ∈ w ∧ w ∈ x)) holds in 
(L[u+1],L(u+1)). By Lemmas 5.8.21 (sharp extensions) and 
5.8.23, (∀z)(z ∈ y ↔ (∃w)(z ∈ w ∧ w ∈ x)) holds in 
(L[∞],L(∞)). Since u is arbitrary, union holds in 
(L[∞],L(∞)). QED 
 
LEMMA 5.8.25. Infinity holds in (L[ω+1],L(ω+1)). Infinity 
holds in (L[∞],L(∞)).  
 
Proof: Infinity has the form  
 

(∃x)(∅ ∈ x ∧ (∀y ∈ x)(y ∪ {y} ∈ x)) 
 
which makes perfectly good sense in the presence of 
extensionality, union, and pairing. It is clear that 0 
serves as the ∅ in (L[∞],L(∞)). 
 
We say that a set is epsilon connected if and only if any 
two elements are either equal, or one is an element of the 
other.  
 
Prove by internal induction on n < ω that “the epsilon 
connected transitive sets are linearly ordered by epsilon, 
and there is a largest epsilon connected transitive set” 
holds in (L[n],L(n)). For each n < ω, let h(n) be the 
witness to this statement in (L[n+1],L(n+1)). Prove by 
internal induction on n < ω that h(0) = ∅, and “h(n+1) = 
h(n) ∪ {h(n)}” holds in (L[n+2],L(n+2)). Prove that for all 
u ∈ L(ω), (∃n < ω)(u = h(n)) if and only if “u is epsilon 
connected and transitive” holds in (L[ω],L(ω)). By Lemma 
5.8.19, let x ∈ L(ω+1), where (∀y)(L(ω+1)(y,x) ↔ (∃n < 
ω)(y = h(n)). Then in (L[ω+1],L(ω+1)), x is a witness for 
Infinity.  
 
To see that Infinity holds in (L[∞],L(∞)), apply Lemma 
5.8.21, with parameters x,0. QED 
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LEMMA 5.8.26. Every L(x) is internally well founded. L(∞) 
is internally well founded. Foundation holds in every 
(L[x],L(x)). Foundation holds in (L[∞],L(∞)).  
 
Proof: The first claim follows from the internal well 
foundedness of < by Lemma 5.8.21. The internal well 
foundedness of < is by Lemma 5.7.30 viii). The remaining 
claims follow easily from the first claim, using Lemma 
5.8.23. QED 
 
LEMMA 5.8.27. Let n ≥ 1 and ϕ1,...,ϕn be formulas of L(∈,=) 
that begin with, respectively, existential quantifiers 
(∃y1),...,(∃yn). For all z there exists w > z such that the 
following holds. Let 1 ≤ i ≤ n. Let the free variables of ϕi 
be assigned elements of L[z]. If ϕi holds in (L[∞],L(∞)) 
then (∃yi ∈ L[w])(ϕi(yi)) holds in (L[∞],L(∞)).  
 
Proof: By Lemma 5.8.1, we can choose internal witness 
functions f1,...,fk, whose domains are Cartesian powers of 
L[z]. By applying the lrk function to the values of the 
f's, we see that the set A of values of lrk(z), z a value 
of the f's, must be internal - again using Lemma 5.8.1. 
Take w to be the strict sup of A. QED 
 
LEMMA 5.8.28. Let ϕ(v1,...,vk) be a formula of L(∈,=). For 
all z there exists w > z such that the following holds. Let 
y1,...,yk ∈ L[w]. Then ϕ(y1,...,yk) holds in (L[∞],L(∞)) if 
and only if ϕ(y1,...,yk) holds in (L[w],L(w)). 
 
Proof: Without loss of generality, we can assume that 
ϕ(v1,...,vk) is in prenex normal form. Let ϕ1,...,ϕn be a 
listing of all direct subformulas of ϕ, and duals of 
subformulas of ϕ, which begin with an existential 
quantifier.  
 
Informally, we define, internally, an infinite sequence z < 
w1 < w2 < ... as follows. w1 is the least w > z given by 
Lemma 5.8.27 for ϕ1,...,ϕn. Suppose wj has been defined, j ≥ 
1. wj+1 is the least w > wj given by Lemma 5.8.27 with z set 
to wj.  
 
We convert this to a construction within M^ as follows. 
First prove that for all n < ω, there is a unique finite 
sequence f:[1,n] → C, where f(1) = w1 and each f(i+1) is 
obtained from f(i) according to the previous paragraph. 
This yields a function g:[1,ω) → C by taking the  union of 
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these f's. Now apply Lemma 5.8.1 to show that g is 
internal. In particular, g is bounded, and so we let w be 
the strict sup of the values of g.  
 
An external induction argument shows that for all y1,...,yk 
∈ L[w] and 1 ≤ i ≤ n,  
 

ϕi(y1,...,yk) holds in (L[∞],L(∞)) ↔ 
ϕi(y1,...,yk) holds in (L[w],L(w)). 

 
The induction is on the number of quantifiers present in ϕi. 
Since ϕ is among the ϕ1,...,ϕn, we are done. QED 
 
DEFINITION 2.8.27. Collection is the scheme 
 

(∀x ∈ y)(∃z)(ϕ) → (∃w)(∀x ∈ y)(∃z ∈ w)(ϕ) 
 
where ϕ is a formula of L(∈,=), x,y,z,w are distinct 
variables, and w is not free in ϕ. 
 
LEMMA 5.8.29. Every instance of Separation holds in 
(L[∞],L(∞)). Every instance of Collection holds in 
(L[∞],L(∞)).  
 
Proof: Consider (∃x)(∀y)(y ∈ x ↔ (y ∈ z ∧ ϕ)), where x,y,z 
are distinct variables and x is not free in ϕ. Let z ∈ 
L[∞]. Let u be such that z and all parameters in ϕ lie in 
L[u].  
 
By Lemma 5.8.28, let v > u be such that for all y ∈ L[v],  
 

ϕ(y) holds in (L[∞],L(∞)) ↔ 
ϕ(y) holds in (L[v],L(v)). 

 
Let b ∈ L[v+1], where  
 

(∀y)(L(∞)(y,b) ↔  
((y ∈ z ∧ ϕ(y)) holds in (L[v],L(v))). 

 
Then 
 

(∀y)(y ∈ b ↔ (y ∈ z ∧ ϕ)) 
 
holds in (L[∞],L(∞)).  
 
Now consider  
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(∀x ∈ y)(∃z)(ϕ) → (∃w)(∀x ∈ y)(∃z ∈ w)(ϕ), 
 
where x,y,z,w are distinct variables and w is not free in 
ϕ. Let y ∈ L[∞]. Let u be such that y and all parameters in 
ϕ lie in L[u]. Assume (∀x ∈ y)(∃z)(ϕ) holds in (L[∞],L(∞)). 
 
By Lemma 5.8.22, L(∞)(x,y) → x < y. For each x such that 
L(∞)(x,y), we can consider the < least u such that (∃z ∈ 
L[u])(ϕ holds in (L[∞],L(∞))). This gives us an M^ 
definable function to which we can apply Lemma 5.8.1, and 
then take its strict sup, v, using Lemma 5.7.30 viii). By 
Lemma 5.8.19, set w ∈ L[v+1], where (∀v)(L(∞)(v,w) ↔ v ∈ 
L[u]). QED 
 
DEFINITION 5.8.28. Let ZF\P be all axioms of ZF less Power 
Set, using Collection. 
 
LEMMA 5.8.30. Every axiom of ZF\P with Collection holds in 
(L[∞],L(∞)). 
 
Proof: From Lemmas 5.8.24, 5.8.25, 5.8.26, 5.8.29, 5.8.30. 
QED  
 
Note that we have shown that all axioms of ZFC hold in 
(L[∞],L(∞)), with the exceptions of Power Set and Choice. 
In fact, we have verified Collection, which implies 
Replacement (in the presence of separation).  
 
We now show that the power set axiom holds in (L[∞],L(∞)) 
using indiscernibility.  
 
LEMMA 5.8.31. For all n ≥ 2, L[cn] ⊆ [0,cn+1). 
 
Proof: Let n ≥ 2. Now L[cn] is internal, and in particular, 
bounded. By Lemma 5.7.30 v), let m > n be such that L[cn] ⊆ 
[0,cm). We can view this as a true statement about cn,cm. By 
Lemma 5.7.30 ix), the statement is true of cn,cn+1. I.e., 
L[cn] ⊆ [0,cn+1). QED  
 
DEFINITION 5.8.29. It is very convenient to define x ⊆* y 
if and only if  
 

x ∈ L[∞] ∧ (∀z ∈ L[∞])(L(∞)(z,x) → L(∞)(z,y)). 
 
Also, x ⊆** y if and only if  
 

x ∈ L[∞] ∧ (∀z ∈ L[∞])(L(∞)(z,x) → z ∈ L[y]). 
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LEMMA 5.8.32. Let x ⊆** c2. Then x < c3.  
 
Proof: Suppose  
 

1) (∃x ≥ c3)(x ⊆** c2).  
 
By Lemma 5.7.30 ix), for every n ≥ 3,  
 

2) (∃x ≥ cn)(x ⊆** c2).  
 
For each n ≥ 3, let J(n) be the < least x ≥ cn such that x 
⊆** c2.  
 
Note that the J(n), n ≥ 3, are uniformly defined from c2,cn 
without parameters. 
 
Fix n ≥ 3. By Lemma 5.7.30 v), let m > n, and J(n) < cm. By 
Lemma 5.7.30 ix), J(n) < cn+1.  
 
We have established that for all n ≥ 3,  
 

cn ≤ J(n) < cn+1 ∧  
“J(n) ⊆ L[c2]” holds in (L[∞],L(∞)). 

 
In particular, for all n ≥ 3, J(n) < J(n+1). 
 
Let y ∈ L[c2]. By Lemma 5.8.32, y < c3. By Lemma 5.7.30 ix),  
 

L(∞)(y,J(4)) ↔ L(∞)(y,J(5)). 
 
This is because J(4),J(5) are defined the same way from 
c2,c4 and from c2,c5, respectively, without parameters. I.e.,  
 

3) (∀y ∈ L[c2])(L(∞)(y,J(4)) ↔ L(∞)(y,J(5))). 
 
By the construction of J, we have  
 

4) J(4) ⊆** c2. 
J(5) ⊆** c2. 

(∀y ∈ L[∞])(L(∞)(z,J(4)) → y ∈ L[c2]). 
(∀y ∈ L[∞])(L(∞)(z,J(5)) → y ∈ L[c2]). 

 
By 3),4), and extensionality in (L[∞],L(∞)), we have J(4) = 
J(5). This contradicts J(4) < J(5).  
 
We have thus refuted 1). Hence  
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(∀x)(x ⊆** c2 → x < c3).  

 
QED 
 
LEMMA 5.8.33. Let n ≥ 2 and x ⊆** cn. Then x < cn+1.  
 
Proof: By Lemmas 5.8.32 and 5.7.30 ix). QED   
 
LEMMA 5.8.34. Power Set holds in (L[∞],L(∞)). 
 
Proof: Let x ∈ L[∞]. By Lemma 5.7.30 v), let x ∈ L[cn], n ≥ 
2. Let y ⊆* x. Then y ⊆** cn. By Lemma 5.8.33, y < cn+1.  
 
By Lemma 5.7.30 v), let y ∈ L[cm], m ≥ n+2. By Lemma 5.7.30 
ix), y ∈ L[cn+2]. We have thus shown that for all y, 
 

1) y ⊆* x → y ∈ L[cn+2]. 
 

Clearly {y ∈ L[cn+2]: y ⊆* x} is definable in 
(L[cn+2],L(cn+2)). Hence by Lemma 5.8.19, there exists z ∈ 
L[cn+2+1] such that  
 

2) (∀y)(y ⊆* x ↔ (L(cn+2+1)(y,z))). 
 
It follows that in (L[∞],L(∞)), z is the power set of x, 
using Lemma 5.8.21 (sharp extensions). Since x ∈ L[∞] is 
arbitrary, power set holds in (L[∞],L(∞)). QED 
 
LEMMA 5.8.35. ZF holds in (L[∞],L(∞)). All sentences in 
TR(Π0

1,L) hold in (L[∞],L(∞)).  
 
Proof: The first claim follows from Lemmas 5.8.30 and 
5.8.34. For the second claim, from the proof of Lemma 
5.8.25, we see that the finite von Neumann ordinals of 
(L[∞],L(∞)) are in order preserving one-one correspondence 
with {x: x < ω}. Therefore the 0,1,+,-,•,↑,log of 
(L[∞],L(∞)) is isomorphic to the 0,1,+,-,•,↑,log of M^, by 
M^ induction, given the one-one correspondence and the 
operations are all internal to M^. The second claim now 
follows from Lemma 5.7.30 iii). QED  
 
LEMMA 5.8.36. There exists a countable model M+ of ZF + 
TR(Π0

1,L), with distinguished elements d1,d2,..., such that  
i) The d’s are strictly increasing ordinals in the sense of 
M+, without an upper bound; 
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ii) Let r ≥ 1, and i1,...,i2r ≥ 1, where (i1,...,ir) and 
(ir+1,...,i2r) have the same order type and min. Let R be a 
2r-ary relation M+ definable without parameters. Let 
α1,...,αr ≤ min(di_1,...,di_r). Then R(di_1,...,di_r,α1,...,αr) 
↔ R(di_r+1,...,di_2r,α1,...,αr). 
 
Proof: Take M+ to be (L[∞],L(∞)). By Lemma 5.8.35, we have 
ZF + TR(Π0

1,L) in M+.  
 
For all n ≥ 1, take dn to be the minimum ordinal of 
(L[∞],L(∞)) lying outside L[c2n]. In fact, dn ∈ L[c2n+1] is 
the set of all ordinals in L[c2n], in the sense of 
(L[∞],L(∞)).  
 
Note that dn ≥ c2n by Lemma 5.8.22. Also, since dn is defined 
without parameters from c2n, we have dn < c2n+1. I.e., for all 
n, c2n ≤ dn < c2n+1. Hence claim i) holds.   
 
Let R be a 2r-ary relation M+ definable without parameters. 
Then R is a 2r-ary relation on L[∞] that is M^ definable 
without parameters. Let (i1,...,ir) and (ir+1,...,i2r) have 
the same order type and min. Let the min be j. Let α1,...,αr 
≤ dj, where the α’s are ordinals in the sense of M+. In 
particular, α1,...,αr are ordinals of (L[∞],L(∞)). It 
follows that α1,...,αr < c2j+1.  
 
We claim that  
 

1) R(di_1,...,di_r,α1,...,αr) ↔  
R(di_r+1,...,di_2r,α1,...,αr) 

 
holds in M+. To see this, replace each di_p by its definition 
in M^ from c2i_p. Then 1) can be viewed as an assertion in M^ 
involving the parameters  
 

2) c2i_1,...,c2i_r on the left. 
c2i_r+1,...c2i_2r on the right. 

α1,...,αr ≤ c2j+1. 
j = min(i1,...,i2r). 

 
We can treat c2j as an additional parameter. So we have the 
parameters  
 

3) c2i_1,...,c2i_r on the left, without c2j. 
c2i_r+1,...c2i_2r on the right, without c2j. 

α1,...,αr,c2j ≤ c2j+1. 
j = min(i1,...,i2r). 
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The 2j must occupy the same positions in i1,...,ir as they 
do in ir+1,...,i2r. Therefore, in 3), the remaining c's on 
the left have the same order type as the remaining c's on 
the right. But they do not necessarily have the same min. 
So we can insert a dummy variable at the end for c2j+1. Thus 
we have  
 

4) c2i_1,...,c2i_r,c2j+1 on the left, without c2j. 
c2i_r+1,...c2i_2r,c2j+1 on the right, without c2j. 

α1,...,αr,c2j ≤ c2j+1. 
j = min(i1,...,i2r). 

 
We now see that the equivalence holds because of Lemma 
5.7.30 ix). QED  
 
LEMMA 5.8.37. There exists a countable model M+ of ZFC + V = 
L + TR(Π0

1,L), with distinguished elements d1,d2,..., such 
that  
i) The d’s are strictly increasing ordinals in the sense of 
M+, without an upper bound; 
ii) Let r ≥ 1, and i1,...,i2r ≥ 1, where (i1,...,ir) and 
(ir+1,...,i2r) have the same order type and min. Let R be a 
2r-ary relation M+ definable without parameters. Let 
α1,...,αr ≤ min(di_1,...,di_r). Then R(di_1,...,di_r,α1,...,αr) 
↔ R(di_r+1,...,di_2r,α1,...,αr). 
 
Proof: We could have proved the stronger form of Lemma 
5.8.36, with ZFC + V = L instead of ZF. However, this would 
require a bit more than the usual hand waving with regards 
to internalized constructibility. So we have choose to wait 
until we have Lemma 5.8.36, with its honest to goodness 
model of ZF.  
 
Start with the structure given by Lemma 5.8.36. Take the 
usual inner model of L. Ordinals are preserved. So we take 
the same d's, and i) is immediate. We still have TR(Π0

1,L), 
and since this inner model is definable without parameters, 
we preserve ii). QED  
  


