APPLICATIONS OF LARGE CARDINALS TO BOREL FUNCTIONS

by
Harvey M. Friedman
Department of Mathematics
Ohio State University
friedman@math.ohio-state.edu
www.math.ohio-state.edu/~friedman
November 25, 1997

NOTE: This is work in progress. No proofs are presented. Results are still being checked.

Let R be the set of all real numbers, and let $CS(R)$ be the space of all nonempty countable subsets of R.

The space $CS(R)$ has a unique “Borel structure” in the following sense. Note that there is a natural mapping from R^ω onto $CS(R)$; namely, taking ranges. We can combine this with any Borel bijection from R onto R^ω in order to get a “preferred” surjection $F:R \to CS(R)$.

In what sense is this preferred? Consider the following property $*$ on $F:R \to CS(R)$:

i) F is onto;
ii) $\{(x,y_1,y_2,...): F(x) = F(y_1)U F(y_2)U ...\}$ is a Borel measurable subset of R^ω.

By way of background, we have the following:

THEOREM 1. Let $F,G:R \to CS(R)$ have property $*$. Then G is the result of composing F with a Borel permutation of R.

In light of Theorem 1, we fix a preferred $\varphi:R \to CS(R)$.

There are two reasonable ways to define the Borel functions F from $CS(R)$ into $CS(R)$.

1. There exists Borel $G:R \to R$ such that $F(\varphi(x)) = \varphi(G(x))$.
2. $\{(x,y): F(\varphi(x)) = \varphi(y)\}$ is Borel measurable subset of R^2.

THEOREM 2. Both of these definitions of Borel $F:CS(R) \to CS(R)$ are equivalent.
The following basic result indicates the likelihood of a substantial theory of the structure of Borel functions on \(\text{CS}(R) \).

THEOREM 3. Let \(F: \text{CS}(R) \to \text{CS}(R) \) be Borel. Then there exists \(A \) such that \(F(A) \subseteq A \).

We proved this around 1977. We actually showed that this can be proved in third order arithmetic but not in second order arithmetic. See [Fr].

We now want to talk about a new theorem of this rough form (Borel diagonalization) which is independent of ZFC.

Let \(X \) be an uncountable complete separable metric space. Then we can discuss Borel functions on \(\text{CS}(X) \) in the same manner.

More generally, let \(Y \) be an uncountable Borel measurable subset of \(X \). We can also consider \(\text{CS}(Y) \). Using any Borel measurable bijection between \(X \) and \(Y \), we can define the Borel functions on \(\text{CS}(Y) \).

We say that \(x, y \in R^\infty \) are finitely equivalent if and only if \(y \) is obtained from \(x \) by a permutation of the indices that leaves all but finitely many indices fixed.

We say that \(A \subseteq R^\infty \) is finitely invariant if and only if \(x \in A \) and \(E(x, y) \) implies \(y \in A \). We write \(\text{FICS}(R^\infty) \) for the space of all nonempty finitely invariant countable subsets of \(R^\infty \). This is obviously an uncountable Borel subset of \(\text{CS}(R^\infty) \), and therefore we can consider Borel functions on \(\text{FICS}(R^\infty) \) in the usual way.

Let \(x, y \in R^\infty \). We say that \(x \) is a subsequence of \(y \) if and only if there is a strictly increasing function \(f:N \to N \) such that each \(x_i = y_{f(i)} \).

Here is a warmup exercise.

THEOREM 4. Let \(G:\text{FICS}(R^\infty) \to \text{FICS}(R^\infty) \) be Borel. Then there exists \(A \) such that every element of \(G(A) \) is a subsequence of an element of \(A \).

Theorem 4 has a proof that is closely related to Theorem 3, and so is provable in third order arithmetic but not in second order arithmetic.
We say that $A \in \text{FICS}(\mathbb{R}^\omega)$ is a chain if and only if for all $x, y \in A$, x is a subsequence of y or y is a subsequence of x.

THEOREM 5. Let $G: \text{FICS}(\mathbb{R}^\omega) \to \text{FICS}(\mathbb{R}^\omega)$ be Borel. Then there exists a chain A such that every element of $G(A)$ is a subsequence of an element of A.

It is necessary and sufficient to use infinitely many uncountable cardinals to prove Theorem 5. Theorem 5 cannot be proved in Zermelo set theory, but can be proved in $\text{ZF}\setminus\text{P} + V(\omega+\omega)$ exists.

Now for the big stuff.

THEOREM 6. Let $G: \text{FICS}(\mathbb{R}^\omega) \to \text{FICS}(\mathbb{R}^\omega)$ be Borel. Then there exists A such that all elements of values of G at subsets of A are subsequences of elements of A.

Theorem 6 can be proved from a measurable cardinal, yet not with "every subset of \mathbb{N} has a sharp." Presumably, $\text{ZFC} + \text{Ramsey cardinal}$ should also not suffice.

Again, in light of Theorems 4, 5, 6, there should be a substantial structure theory for the Borel functions on the space $\text{FICS}(\mathbb{R}^\omega)$.

We are working on getting a clean extension of Theorem 6 that would require many measurable cardinals to prove.