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1. PRELIMINARIES 
 
The definitions made in this section support the entire 
development in section 2, which is entirely in the contexts 
of (Q,<,0,1,...) and the (Q[0,n],<,0,1,...,n). Section 3 is 
in the same contexts, whereas sections 4,5 are in other 
contexts. Sections 3-6 require some mostly straightforward 
adaptations of the definitions given here. 
 
DEFINITION 1.1. Z,Z+,N,Q are, respectively, the sets of 
integers, positive integers, nonnegative integers, and 
rationals. For sets X, X* is the set of all nonempty finite 
sequences from X. lth(x) is the length of the nonempty 
finite sequence x. We use k,n,m,r,s,t for positive 
integers, with or without subscripts, unless indicated 
otherwise. We use p,q for rationals, with or without 
subscripts, unless indicated otherwise. Q[(α,β)] is the 
interval of rationals from α to β, with endpoint status 
indicated by [,). Here α,β ∈ Q ∪ {-∞,∞), where [-∞, and 
,∞] are not used, since -∞,∞ are not rationals. For x ∈ Qk, 
max(x) is the greatest coordinate of x, and min(x) is the 
least coordinate of x. Let S ⊆ Qk. S|≤p = {x ∈ S: max(x) ≤ 
p}. S# is the least Ek ⊇ S ∪ {0}k.  
 
DEFINITION 1.2. Let S,S' ⊆ Qk and R ⊆ Q2k. R(x,y) ↔ x R y ↔ 
(x,y) ∈ R. R is upwards if and only if for all x1 R x2 R .. 
R xn, some coordinate of x1 is less than the corresponding 
coordinate of xn. ush(S) ⊆ Qk is the result of adding 1 to 
all nonnegative coordinates of all elements of S.   
 
DEFINITION 1.3. OE (read order equivalent) is the 
equivalence relation on Q* given by x OE y ↔ lth(x) = 
lth(y) ∧ (∀i,j)(1 ≤ i,j ≤ lth(x) → (xi < xj ↔ yi < yj)). The 
upper part of x ∈ Q* consists of the xi such that every xj ≥ 
xi lies in N. The lower part of x ∈ Q* is the part of x not 
in the upper part of x. (Here the positions in x are 
incorporated in the upper and lower parts of x). OE↑ is the 
equivalence relation on Q* given by x OE↑ y ↔ lth(x) = 
lth(y) ∧ x,y have the same upper part. OE↓ is the 
equivalence relation on Q* given by x OE↓ y ↔ lth(x) = 
lth(y) ∧ x,y have the same lower part.  
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DEFINITION 1.4. Let E be an equivalence relation. D ⊆ X is 
E invariant if and only if (∀x,y ∈ X)(x E y → (x ∈ D ↔ y 
∈ D)). Let X ⊆ Q*. D ⊆ X is order invariant if and only if 
D ⊆ X is OE invariant. Let S ⊆ Qk and R ⊆ Q2k. R[S] = {y: 
(∃x ∈ S)(x R y). R<max[S] = {y: (∃x ∈ S)(max(x) < max(y) ∧ x 
R y}. R<min[S] = {y: (∃x ∈ S)(min(x) < min(y) ∧ x R y)}.  
 
Clearly D ⊆ X is E invariant if and only if D is the union 
of equivalence classes of E ∩ X2.  
 
DEFINITION 1.5. S is an emulation of E ⊆ Q[0,n]k if and only 
if S ⊆ Q[0,n]k, and every element of S2 is order equivalent 
to an element of E2. S is a maximal emulation of E ⊆ Q[0,n]k 
if and only if S is an emulation of E ⊆ Q[0,n]k, where no 
proper superset of S is an emulation of E ⊆ Q[0,n]k.  
 
Note that the ambient space of the given E ⊆ Q[0,n]k, namely 
Q[0,n]k, is important here and this determines the ambient 
space of all of the emulations of E (the same ambient 
space).  
 
DEFINITION 1.6. Let S,S' ⊆ Qk. The 2-sections of S are the 
sets Sp,q = {x: S(p,q,x)} ⊆ Qk-2. If k ≤ 2 then all 2-
sections of S are ∅. The limited 2-sections of S are the 
sets Sp,q|≤r. S ⊇* S' if and only if S ⊇ S' and every 
limited 2-section of S' is a limited 2-section of S.  
  
⊇* is read "strongly contains". ush is read "upper shift".  
 
2. IMPLICITLY FINITE  
 
DEFINITION 2.1. A sentence ϕ in the language of set theory 
is implicitly Π0

1 if and only if there is a Π0
1 sentence ψ 

such that ϕ ↔ ψ is provable in ZFC. More generally, a 
sentence ϕ in the language of set theory is implicitly Π0

1 
over a theory T if and only if there is a Π0

1 sentence ψ 
such that ϕ ↔ ψ is provable in T.  
 
The infinitary sentences in CMI are usually Σ11 (essentially 
Σ11 if one is sensitive to outermost universal arithmetic 
quantifiers), and involve only the usual linear ordering of 
the rationals. Typically, the CMI statements are implicitly 
Π0

1 over WKL0.  
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Note that implicitly Π0

1 statements are demonstrably 
falsifiable - i.e., a priori, we know if they are false 
then there are in principal refutable. This illustrates, in 
general terms, their concreteness. Demonstrable 
Falsifiability is a key concept in the philosophy of 
science.  
 
2.1. MAXIMAL EMULATION SHIFT 
 
MAXIMAL EMULATION SHIFT. MES. For (finite) subsets of 
Q[0,k]k, some maximal emulation has for all p < 1, 
S(p,1,...,k-1) ↔ S(p,2,...,k).  
 
INVARIANT MAXIMAL EMULATION. IME. Every (finite) subset of 
Q[0,n]k has an OE↓ invariant maximal emulation.  
 
THEOREM 2.1.1. In MES and IME, the statements with and 
without "finite" are provably equivalent in RCA0. MES and 
IME are implicitly Π0

1 over WKL0 via the Gödel Completeness 
Theorem.  
 
THEOREM 2.1.2. MES and IME are provably equivalent to 
Con(SRP) over WKL0. The same results hold even if we add 
that the emulation is recursive in 0'.   
 
In addition, results from  
 
http://u.osu.edu/friedman.8/foundational-
adventures/downloadable-manuscripts/  
#92  
 
will be incorporated into the book in the part on Emulation 
Theory.  
 
2.2. INDUCTIVE UPPER SHIFT 
 
INDUCTIVE UPPER SHIFT/max. IUS/max. For all order invariant 
R ⊆ Q2k, there exists S = S#\R<max[S] ⊇ ush(S). 
 
INDUCTIVE UPPER SHIFT/min. IUS/min. For all order invariant 
R ⊆ Q2k, there exists S = S#\R<min[S] ⊇ ush(S). 
 
We now greatly generalize IUS/max,min. 
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THEOREM 2.2.1. Let R ⊆ Q2k. R is upwards if and only if its 
transitive closure is upwards. Assume R is order invariant. 
The transitive closure of R is order invariant. R is 
upwards if and only if the relevant statement in Definition 
1.2 holds for all 1 ≤ n ≤ (8k)!, and is therefore 
algorithmically determinable.  
 
THEOREM 2.2.2. Let R ⊆ Q2k be upwards and E ⊆ Q be well 
ordered. R ∩ E2k is well founded in the sense that every 
nonempty subset of Ek has an R minimal element. 
 
INDUCTIVE UPPER SHIFT/↑. IUS/↑. For all upwards order 
invariant R ⊆ Q2k, there exists S = S#\R[S] ⊇ ush(S). 
 
THEOREM 2.2.3. IUS/↑, IUS/max, IUS/min are provably 
equivalent to Con(SRP) over WKL0. The same results hold even 
if we add that the S and S# are recursive in 0'.   
 
2.3. INTERNAL INDUCTIVE UPPER SHIFT 
 
INTERNAL INDUCTIVE UPPER SHIFT/max. IIUS/max. For all order 
invariant R ⊆ Q2k, there exists S = S#\R<max[S] ⊇* ush(S).  
 
INTERNAL INDUCTIVE UPPER SHIFT/min. IIUS/min. For all order 
invariant R ⊆ Q2k, there exists S = S#\R<min[S] ⊇* ush(S).  
 
THEOREM 2.3.1. IIUS/min is provably equivalent to Con(HUGE) 
over WKL0. The same result holds even if we add that the S 
and S# are recursive in 0'. IIUS/max is refutable in RCA0.  
 
3. EXPLICITLY FINITE IN Q 
 
Here we stay in Q but use only finite subsets of Qk. In each 
case, the statements are explicitly Π0

2, and become 
explicitly Π0

1 when straightforward a priori upper bounds on 
the numerators and denominators are imposed. In sections 
4,5, we move into the context of finite initial segments of 
Z+, where the statements are explicitly Π0

1 at the outset.  
 
In section 3.1, we approximate the statements in section 2 
by towers of finite sets.  
 
In sections 3.2 - 3.4, we approximate the statements in 
section 2 by single finite sets.  
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3.1. TOWERS 
 
It is obvious that S is a maximal emulation of E ⊆ Q[0,n]k 
if and only if S is an emulation of E ⊆ Q[0,n]k, where if S 
∪ {x} is an emulation of E ⊆ Q[0,n]k, then x ∈ S.    
 
DEFINITION 3.1.1. Let S,S' ⊆ Qk. S =≤p S' ↔ S|≤p = S'|≤p. S 
is an S'-maximal emulation of E ⊆ Q[0,n]k if and only if S 
is an emulation of E ⊆ Q[0,n]k, where if S ∪ {x}, x ∈ S', 
is an emulation of E ⊆ Q[0,n]k, then x ∈ S.   
 
MAXIMAL EMULATION SHIFT TOWER. MEST. For all finite E ⊆ 
Q[0,n]k, there exist finite OE↓ invariant S1 ⊆ ... ⊆ Sk ⊆ 
Q[0,n]k, where each Si is an Si+1-maximal emulation of E. 
 
INDUCTIVE UPPER SHIFT TOWER/max. IUST/max. For all order 
invariant R ⊆ Q2k, there exist finite S1 ⊆ ... ⊆ Sk ⊆ Qk 
with all Si+1 = Si+1#\R<max[Si+2] ⊇ ush(Si). 
 
INDUCTIVE UPPER SHIFT TOWER/min. IUST/min. For all order 
invariant R ⊆ Q2k, there exist finite S1 ⊆ ... ⊆ Sk ⊆ Qk 
with all Si+1 = Si+1#\R<min[Si+2] ⊇ ush(Si). 
 
INDUCTIVE UPPER SHIFT TOWER/↑. IUST/↑. For all upwards 
order invariant R ⊆ Q2k, there exist finite S1 ⊆ ... ⊆ Sk ⊆ 
Qk with all Si+1 = Si+1#\R[Si+2] ⊇ ush(Si). 
 
INTERNAL INDUCTIVE UPPER SHIFT TOWER/min. IIUST/min. For 
all order invariant R ⊆ Q2k, there exist finite S1 ⊆ ... ⊆ 
Sk ⊆ Qk with all Si+1 = Si+1#\R<min[Si+2] ⊇ ush(Si), where 
ush(Sk)0,0 =≤k/2 (Sk)-1,(2k+1)/4.  
 
THEOREM 3.1.1. IUST/max, IUST/min, IUST/↑ are provably 
equivalent to Con(SRP) over EFA.  
 
THEOREM 3.1.2. IIUST/min is provably equivalent to 
Con(HUGE) over EFA. IIUST/<max is refutable in EFA.   
 
3.2. FINITE MAXIMAL EMULATION  
 
DEFINITION 3.2.1. S is a weakly maximal emulation of E ⊆ 
Q[0,n]k if and only if S is an emulation of E ⊆ Q[0,n]k, 
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where if S ∪ {x} is an emulation of E ⊆ Q[0,n]k, then x is 
OE↑ equivalent to an element of S. 
 
FINITE MAXIMAL EMULATION SHIFT. FMES. For finite subsets of 
Q[0,k]k, some finite weakly maximal emulation has for all p 
< 1, S(p,1,...,k-1) ↔ S(p,2,...,k).  
 
FINITE INVARIANT MAXIMAL EMULATION. FIME. Every finite 
subsets of Q[0,n]k has a finite OE↓ invariant weakly maximal 
emulation.    
 
THEOREM 3.2.1. FMES and FIME are provably equivalent to 
Con(SRP) over EFA. 
 
3.3. FINITE INDUCTIVE UPPER SHIFT 
 
DEFINITION 3.3.1. Let E be an equivalence relation. A =E B 
if and only if every element of A is E equivalent to an 
element of B and vice versa.  
 
FINITE INDUCTIVE UPPER SHIFT/max. FIUS/max. For all order 
invariant R ⊆ Q2k, there exists finite S =OE↑ S#\R<max[S] 
with S ⊇ ush(S)|≤k.    
 
FINITE INDUCTIVE UPPER SHIFT/min. FIUS/min. For all order 
invariant R ⊆ Q2k, there exists finite S =OE↑ S#\R<min[S] 
with S ⊇ ush(S)|≤k.    
 
FINITE INDUCTIVE UPPER SHIFT/↑. FIUS/↑. For all upwards 
order invariant R ⊆ Q2k, there exists finite S =OE↑ S#\R[S] 
with S ⊇ ush(S)|≤k.    
 
THEOREM 3.2.2. FIUS/max, FIUS/min, FIUS/↑ are provably 
equivalent to Con(SRP) over EFA.  
 
3.4. FINITE INTERNAL INDUCTIVE UPPER SHIFT  
 
DEFINITION 3.4.1. Let S ⊆ Qk. S' ⊇** S if and only if S ⊆ 
S' ⊆ Qk and S'0,0 =≤k/2 S-1,(2k+1)/4.   
 
FINITE INTERNAL INDUCTIVE UPPER SHIFT/min. FIIUS/min. For 
all order invariant R ⊆ Q2k, there exists finite S =OE↑ 
S#\R<min[S] with S ⊇** ush(S)|≤k.  
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THEOREM 3.4.1. FIIUS is provably equivalent to Con(HUGE) 
over EFA.  
 
4. TOWERS IN ([2r],<,1,2,4,...,2r) 
 
When we write S ⊆ [2r]k, we are declaring that we are in the 
context ([2r],<,1,2,4,...,2r). Note that up to now, we have 
always been in the contexts S ⊆ Q[0,n]k and S ⊆ Qk. This use 
of contexts allows us to reuse S# and other notation.  
 
DEFINITION 4.1. [n] = {1,...,n}. Let S ⊆ [2r]k. S# is the 
least Ek ⊇ S ∪ {1,2,4,...,2r}k. S is without n if and only 
if n is not a coordinate of any element of X.  
 
INDUCTIVE TOWER/max,2r. IT/max,2r. For all order invariant R 
⊆ [2r]2k, there exist S1 ⊆ ... ⊆ Sk ⊆ [2r]k, where each Si = 
Si#\R<max[Si+1] is without 2(8k)!-1.  
 
INDUCTIVE TOWER/min,2r. IT/min,2r. For all order invariant R 
⊆ [2r]2k, there exist S1 ⊆ ... ⊆ Sk ⊆ [2r]k, where each Si = 
Si#\R<max[Si+1] is without 2(8k)!-1.  
 
INDUCTIVE TOWER/↑,2r. IT/↑,2r. For all upwards order 
invariant R ⊆ [2r]2k, there exist S1 ⊆ ... ⊆ Sk ⊆ [2r]k, 
where each Si = Si#\R[Si+1] is without 2(8k)!-1. 
 
THEOREM 4.1. IT/max,2r. IT/min,2r, IT/↑,2r are provably 
equivalent to Con(MAH) over ACA'.   
 
5. IN ([k(8k)!],<,(8k)!,2(8k)!,...,k(8k)!) 
 
We now work in the context 
([k(8k)!],<,(8k)!,2(8k)!,...,k(8k)!). We use (8k)! in the 
statement headers to indicate this context.   
 
5.1. TOWERS 
 
DEFINITION 5.1.1. Let S ⊆ [k(8k)!]k. S# is the least Ek ⊇ S 
∪ {(8k)!}k. ush(S) is the result of adding (8k)! to all 
coordinates of elements of S that are in [(8k)!,(k-
1)(8k)!]. 
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INDUCTIVE TOWER/max,(8k)!. IT/max,(8k)!. For all order 
invariant R ⊆ [k(8k)!]2k, there exist S1 ⊆ ... ⊆ Sk ⊆ 
[k(8k)!]k, where each Si+1 = Si+1#\R<max[Si+2] ⊇ ush(Si). 
 
INDUCTIVE TOWER/(8k)!,min. IT/min,(8k)!. Every order 
invariant R ⊆ [k(8k)!]2k, there exist S1 ⊆ ... ⊆ Sk ⊆ 
[k(8k)!]k, where each Si+1 = Si+1#\R<min[Si+2] ⊇ ush(Si). 
 
INDUCTIVE TOWER/(8k)!,↑. IT/↑,(8k)!. Every upwards order 
invariant R ⊆ [k(8k)!]2k, there exist finite S1 ⊆ ... ⊆ Sk ⊆ 
[k(8k)!]k, where each Si+1 = Si+1#\R[Si+2] ⊇ ush(Si). 
 
INTERNAL INDUCTIVE TOWER/min,(8k)!. IIT/min,(8k)!. Every 
order invariant R ⊆ [k(8k)!]2k has some finite S1 ⊆ ... ⊆ Sk 
⊆ [k(8k)!]k, where each Si+1 = Si+1#\R<min[Si+2] ⊇ ush(Si), and 
ush(Sk)(8k)!,(8k)! =≤(k/2)(8k)! (Sk)1,(2k+1)/4)(8k)!.  
 
THEOREM 5.1.1. IT/max,(8k)!, IT/min,(8k)!, IT/↑,(8k)! are 
provably equivalent to Con(SRP) over EFA.  
 
THEOREM 5.1.2. IIT/min,(8k)! is provably equivalent to 
Con(HUGE) over EFA.  
 
5.2. MAXIMAL EMULATION  
 
DEFINITION 5.2.1. S is an emulation of E ⊆ [k(8k)!]k if and 
only if S ⊆ [k(8k)!]k and every element of S2 is order 
equivalent to some element of E2. The upper part of x ∈ 
[k(8k)!]k consists of the xi such that every xj ≥ xi lies in 
{(8k)!,2(8k)!,...,k(8k)!}. The lower part of x ∈ [k(8k)!]k 
is the part of x not in the upper part of x. OE↑ is the 
equivalence relation on [k(8k)!]k given by x OE↑ y ↔ x,y 
have the same upper part. OE↓ is the equivalence relation 
on [k(8k)!]k given by x OE↓ y ↔ x,y have the same lower 
part.   
  
DEFINITION 5.2.2. S is a weakly maximal emulation of E ⊆ 
[k(8k)!]k if and only if S is an emulation of E ⊆ [k(8k)!]k, 
where if S ∪ {x} is an emulation of E ⊆ [k(8k)!]k, then x 
is OE↑ equivalent to an element of S.  
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MAXIMAL EMULATION SHIFT/(8k)!. MES/(8k)!. For subsets of 
[k(8k)!]k, some weakly maximal emulation has for all p < 
(8k)!, S(p,(8k)!,...,(k-1)(8k)!) ↔ S(p,2(8k)!,...,k(8k)!).  
 
INVARIANT MAXIMAL EMULATION/(8k)!. IME/(8k)!. Every subset 
of [k(8k)!]k has a finite OE↓ invariant weakly maximal 
emulation.    
 
THEOREM 5.2.1. FMES and FIME are provably equivalent to 
Con(SRP) over EFA. 
 
5.3. INDUCTIVE UPPER SHIFT 
 
INDUCTIVE UPPER SHIFT/max.(8k)!. IUS/max,(8k)!. For all 
order invariant R ⊆ [k(8k)!]2k, there exists S =OE↑ 
S#\R<max[S], S ⊇ ush(S).    
 
INDUCTIVE UPPER SHIFT/min,(8k)!. IUS/min,(8k)!. For all 
order invariant R ⊆ [k(8k)!]2k, there exists S =OE↑ 
S#\R<min[S], S ⊇ ush(S).    
 
INDUCTIVE UPPER SHIFT/↑,(8k)!. IUS/↑,(8k)!. For all upwards 
order invariant R ⊆ [k(8k)!]2k, there exists S =OE↑ S#\R[S], 
S ⊇ ush(S).    
 
THEOREM 5.3.1. IUS/max,(8k)!, IUS/min,(8k)!, IUS/↑,(8k)! 
are provably equivalent to Con(SRP) over EFA.  
 
5.4. INTERNAL INDUCTIVE UPPER SHIFT  
 
DEFINITION 5.4.1. Let S ⊆ [k(8k)!]k. S' ⊇* S if and only if 
S ⊆ S' ⊆ [k(8k)!]k and S'(8k)!,(8k)! =≤(k/2)(8k)! S1,((2k+1)/4)(8k)!.   
 
INTERNAL INDUCTIVE UPPER SHIFT/min,(8k)!. IIUS/min,(8k)!. 
Every order invariant R ⊆ Q2k has some finite S =OE↑ 
S#\R<min[S], S ⊇* ush(S).  
 
THEOREM 5.4.1. IIUS/(8k)! is provably equivalent to 
Con(HUGE) over EFA.  
 
6. SOME TEMPLATES 
 
DEFINITION 6.1. A Template is an algorithmically presented 
set of mathematical sentences. A Template is resolved by a 
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pair of formal systems K,K' if and only if every instance 
of the Template is either provable in K or refutable in K'. 
A Template is polynomially resolved by a pair of formal 
systems K,K' if and only if every instance of the Template 
is either provable in K or refutable in K', where the 
number of symbols in the proofs and refutations are bounded 
by a polynomial in the size of the Template instance.  
 
In order to be practically usable, formal systems need to 
directly accommodate the introduction of new symbols by 
explicit definition, and other related devices. Most of the 
usual formalizations given in mathematical logic do not 
directly accommodate such devices. Nevertheless, the 
addition of these devices is polynomially eliminable, as 
seen in 
http://www.andrew.cmu.edu/user/avigad/Papers/definitions.pd
f Hence our notion above of polynomially resolvable is 
appropriate, at least from a theoretical standpoint. We 
naturally want to control the degree and ultimately 
coefficients, but that is a much more detailed matter 
beyond the scope of this abstract.  
 
THEOREM 6.1. If a Template is resolved by a pair of systems 
extending EFA then its set of true instances is recursive. 
If a Template is polynomially resolved by a pair of 
reasonable true systems extending EFA then its set of true 
sentences is in NP ∩ co-NP.  
 
DEFINITION 6.2. SRP = ZFC + {(∃λ)(λ has k-SRP): k ≥ 1}. SRP+ 
= ZFC + (∀k)(∃λ)(λ has k-SRP). SRP[n] = ZFC + (∃λ)(λ has n-
SRP).  
 
We present Templates involving the Implicitly Finite 
statements from section 2 only. We will take other 
Templates up at a later date. 
 
TEMPLATE 1. Let k and ϕ be a quantifier free sentence in k-
ary S and constants for every rational in Q[0,1] be given. 
For finite subsets of Q[0,1]k, some maximal emulation has ϕ 
holding universally over Q[0,1]. 
 
Obviously MES for any fixed k is a special case of Template 
1.  
 
CONJECTURE 1. Template 1 is polynomially resolved by 
SRP,RCA0.  
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Even for one variable, Template 1 is not resolved by any 
SRP[n],SRP, assuming SRP is 1-consistent. 
 
TEMPLATE 2. Let α(S,S#,R[S],ush(S)) be a formal Boolean 
combination of S,S#,R[S],ush(S) with formal universal set 
Qk. For all upwards order invariant R ⊆ Q2k, there exists S 
such that α(S,S#,R[S],ush(S)) holds.   
 
Obviously IUS/↑, which quantifies over k, is a special case 
of Template 2.  
 
CONJECTURE 2. Template 2 is polynomially resolved by 
SRP+,RCA0. 
 
There are 216 = 65,536 instances of Template 2. We know that 
Template 2 is not resolved by SRP,SRP, assuming SRP is 1-
consistent.  
 
We plan to first handle the far easier Template 3, with 256 
instances:  
 
TEMPALTE 3. Let α(S,S#,R[S]) be a formal Boolean 
combination of S,S#,R[S] with formal universal set Qk. For 
all upwards order invariant R ⊆ Q2k, there exists S such 
that α(S,S#,R[S]) holds. 
 
showing that it is polynomially resolved by EFA,EFA, with 
EFA viewed as a weak finite set theory.  
 
Stronger Templates than Template 2 arise from Templating 
ush. Note that ush:Q* → Q* is the lifting to Q* of the one 
dimensional ush:Q → Q. Note that ush:Q → Q is a rational 
piecewise linear function, of which there are countably 
many. Thus ush:Q* → Q* is what we call a rational piecewise 
linear lifting.  
 
TEMPLATE 4. Let H:Q* → Q* be a rational piecewise linear 
lifting. For all upwards order invariant R ⊆ Q2k, there 
exists S = S#\R[S] ⊇ H[S]. 
 
CONJECTURE 4. Template 4 is polynomially resolved by 
SRP+,RCA0.  
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We know that Template 4 is not resolved by SRP,SRP assuming 
SRP is 1-consistent.  
 
TEMPLATE 5. Let α(S,S#,R[S],H[S')) be a formal Boolean 
combination of S,S#,R[S],H[S'] with formal universal set Qk. 
Let H:Q* → Q* be a rational piecewise linear lifting. For 
all upwards order invariant R ⊆ Q2k, there exists S such 
that α(S,S#,R[S],H[S]) holds.    
      
CONJECTURE 5. Template 5 is polynomially resolved by 
SRP+,RCA0. 
 
We know that Template 5 is not resolved by SRP,SRP assuming 
SRP is 1-consistent.  
 
It also makes sense to template "upwards order invariant" 
at various levels of detail. However, we will not take this 
up here.  
 
TEMPLATE 6. Let p,q,r,p',q',r' be given. For all order 
invariant R ⊆ Q2k, there exists S = S#\R<min[S] ⊇ ush(S), 
where ush(S)p,q|≤r = Sp',q'|≤r'.  
 
CONJECTURE 6. Template 5 is polynomially resolved by 
HUGE+,RCA0. 
 
We know that Template 6 is not resolved by HUGE,HUGE, 
assuming HUGE is 1-consistent.  
 
7. FORMAL SYSTEMS USED 
 
EFA  Exponential function arithmetic.  
 
RCA0  Recursive comprehension axiom naught.   

WKL0  Weak Konig's Lemma naught.    

ACA0 Arithmetic comprehension axiom naught.   

ACA'  ACA0 + (∀k)(∀x ⊆ ω)(the k-th Turing jump of x 
exists).  

ZF(C)  Zermelo Frankel set theory (with the axiom of 
choice).  

SMAH[k]  ZFC + (∃λ)(λ is strongly k-Mahlo), k fixed.   

SMAH  ZFC + {(∃λ)(λ is strongly k-Mahlo): k ≥ 1}. 
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SMAH+  ZFC + (∀k)(∃λ)(λ is strongly k-Mahlo). 

SRP[k]  ZFC + (∃λ)(λ has the k-SRP), for fixed k.  

SRP  ZFC + {(∃λ)(λ has the k-SRP): k ≥ 1}.     

SRP+  ZFC + (∀k)(∃λ)(λ has the k-SRP).   

HUGE[k]  ZFC + (∃λ)(λ is k-HUGE), for fixed k.  

HUGE  ZFC + {(∃λ)(λ is k-huge): k ≥ 1}.  

HUGE+ ZFC + (∀k)(∃λ)(λ is k-huge).  

λ is k-huge if and only if there exists an elementary 
embedding j:V(α) → V(β) with critical point λ such that α = 
jk(λ). (This hierarchy differs in inessential ways from the 
more standard hierarchies in terms of global elementary 
embeddings). For more about huge cardinals, see [Ka94], p. 
331.  

 
 


