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Abstract. We present familiar principles involving objects 
and classes (of objects), pairing (on objects), choice 
(selecting elements from classes), positive classes 
(elements of an ultrafilter), and definable classes 
(definable using the preceding notions). We also postulate 
the existence of a divine object in the formalized sense 
that it lies in every definable positive class. ZFC (even 
extended with certain hypotheses just shy of the existence 
of a measurable cardinal) is interpretable in the resulting 
system. This establishes the consistency of mathematics 
relative to the consistency of these systems. Measurable 
cardinals are used to interpret and prove the consistency 
of the system. Positive classes and various kinds of divine 
objects have played significant roles in theology. 
 
1. T1: Objects, classes, pairing. 
2. T2: Extensionality, choice operator. 
3. T3: Positive classes. 
4. T4: Definable classes.  
5. T5: Divine objects.  
6. Interpreting ZFC in T5.  
7. Interpreting a strong extension of ZFC in T5. 
8. Without Extensionality.   
 

INTRODUCTION 
 
This work came about from our interactions at and 
reflection on two conferences hosted by the John Templeton 
Foundation. The first of these meetings was held in honor 
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of the 100th birthday of Kurt Gödel, in Vienna, in 2006. 
The second was held in honor of the 100th birthday of Sir 
John Templeton, in Heidelberg, in 2012.  
 
Interactions at the second of these meetings have 
previously led to [Fr12b], where a basic mathematical 
property of a mathematical object in a mathematical 
structure, immediately suggested by familiar ideas about 
God, is shown to hold within some artificially created 
mathematical structure. Specifically, there is a relational 
structure of finite relational type with a unique 
undefinable element, in the usual sense of first order 
predicate calculus with equality.  
 
At the Vienna meeting, there was discussion of Gödel's 
formalization of earlier ontological arguments for the 
existence of God. This relied heavily on modal logic, but 
what we found particularly striking was the use of 
"positive properties", which has a substantial history and 
goes back at least to Leibniz.  
 
From a theological standpoint, it is perhaps natural to 
view the attribute of positive as a facility that God has 
created and given the world access to, perhaps in order to 
help direct us into "positive behaviors". 
 
It is clear that Gödel was using "positive properties" as, 
mathematically speaking, an ultrafilter on properties. In 
fact, at least implicitly, he was using "positive 
properties" as an ultrafilter on extensions of properties. 
I.e., whether a property is positive depends only on what 
objects it holds of. For discussion of ultrafilters and 
positivity, see section 3 below.  
 
It occurred to us that perhaps this highly intriguing 
ultrafilter, viewed as an ultrafilter on classes of 
objects, can be used to prove the consistency of 
mathematics.  
 
At the time, we just didn't see how to get such ambitious 
mathematical mileage out of this "positivity ultrafilter", 
at least in any simple basic conceptual way. This goal 
seemed particularly remote since the positivity 
ultrafilter, as discussed by Gödel and implicitly by 
others, is what is called a "trivial ultrafilter". I.e., an 
ultrafilter consisting merely of the classes containing 
some given special point.  
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In particular, following Gödel, and going back at least to 
Leibniz (see [Go95], and also [An90], [Le23], [Le56], 
[L369], [Le96], [Lo06], [Op95], [Op96], [Op06], [Op12], 
[So87], [So04]), a class of objects is positive if and only 
if it contains God. And trivial ultrafilters are, as the 
name suggests, mathematically trivial. So it would appear 
that one cannot expect to do anything substantial, 
mathematically, with the positivity ultrafilter. 
 
Interactions with scholars from theology at the second 
meeting rekindled our interest in trying again to do 
something powerful with this mathematically trivial 
positivity ultrafilter.  
 
It occurred to us that if we take God out of the class of 
all objects, treating God as exceptional, but keeping the 
positivity ultrafilter, pruned to be over the class of 
objects excluding God, then the positivity ultrafilter is 
no longer trivial. In fact, it is a nontrivial ultrafilter 
over the class of all objects without God.  
 
It is well known that in the context of set theory, certain 
kinds of ultrafilters are enough to prove the consistency 
of mathematics, as formalized by the usual ZFC axioms. In 
particular, a nontrivial countably complete ultrafilter 
serves this purpose.  
 
However, to straightforwardly state that the positivity 
ultrafilter is a nontrivial countably complete ultrafilter, 
together with the mathematical infrastructure needed to 
state and make use of this, is far too technically brutal 
to be of fundamental philosophical or theological meaning.  
 
So we encountered the following challenge. To find 
fundamental properties of the positivity ultrafilter which, 
in the context of a conceptually very minimal mathematical 
infrastructure, has sufficient power to construct a model 
of ZFC, and perhaps more.  
 
This paper offers our response to this challenge. Here is a 
succinct six part description of our framework. 
 
1. Objects and classes of objects, linked by membership. 
This is arguably viewed as within our capacity to clearly 
imagine, as it is an accepted useful working component of 
modern mathematics. It should be noted that in modern 
mathematics, objects are usually restricted to objects with 
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a definite mathematical purpose, rather than a completely 
general notion of object. See section 1. 
 
2. Pairing of objects - a combining of any two objects into 
one. This is generally viewed as within our capacity to 
clearly imagine. E.g., the pair of two objects can be taken 
to be the idea of having the first followed by the second. 
In various guises, this is also an accepted useful working 
component of modern mathematics. See section 1.  
 
3. A choice operator CHO that picks an element out of each 
nonempty class of objects. Formally, x ∈ A → CHO(A) ∈ A, 
where CHO(A) is read "chosen element from A". This appears 
to be beyond our capacity to clearly imagine. I.e., we 
don't have an understanding of how to go about making the 
choices. However, this continues to be an accepted useful 
working component of modern mathematics. See section 2.  
 
4. The positivity attribute on classes of objects (the 
positivity ultrafilter). This seems definitely beyond our 
capacity to clearly imagine. I.e., we don't have an 
understanding of definite criteria for positivity. The 
notion of ultrafilter is also an accepted useful working 
component of modern mathematics. But a specific preferred 
ultrafilter, particularly on the entire universe of 
objects, has not appeared as a generally accepted component 
of modern mathematics. See section 3.   
 
5. The definability attribute on classes of objects, 
reflecting the standard notion of "class of objects 
definable from the preceding concepts 1-4 without 
parameters". We have a clear understanding of this notion, 
relative to the primitives to which it is being applied 
(here, in 1-4 above). This is an essential feature of 
modern mathematical logic, and also has useful interactions 
with several branches of mathematics - especially real and 
complex algebraic geometry. It is exemplified by Tarski's 
formal treatment of truth in formalized languages. See 
section 4. 
 
Thus the positivity attribute is the one feature above that 
has such a deep philosophical and theological meaning. The 
additional axiom that creates the vast logical power, is 
the Divine Object axiom.  
 
Recall that there does not exist an object which lies in 
all positive classes, as we treat God as exceptional and 
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outside the class of objects. This is reflected by the 
positivity ultrafilter being nontrivial.  
 
The crucial innovation is this: an object is divine if and 
only if it lies in all definable positive classes.  
 
6. The Divine Object axiom. There is a divine object. See 
section 5. 
 
We can give the following natural theological 
interpretation of this development. God created a certain 
structure, with several components, which he gave the world 
intellectual access to. This intellectual access is 
reflected by the system T5. Using T5, man creates a 
mathematical universe, or model of the mathematical 
universe, through set theory, as presented in sections 6 
and 7 in this paper. 
 
The axioms of T5 are so simple that a promising research 
project is suggested: to analyze all such simple 
systematizations, and determine what their mathematical 
ramifications are. As we prove in section 7, T5 corresponds, 
logically, to something close to ZFM = ZFC + "there exists 
a measurable cardinal". See section 5. 
 
In modern set theory, there are developments that have led 
far beyond the scope of normal modern mathematics. One of 
these is the detailed study of ultrafilters on arbitrary 
sets (or the closely related abstract measure theory). This 
has lead to a study of certain set theoretic hypotheses 
postulating the existence of ultrafilters with special 
properties. One of these set theoretic hypotheses is "there 
exists a measurable cardinal". The usual ZFC axioms 
augmented with this hypothesis is what we use to interpret 
our system with the Divine Object axiom. See section 5. 
 
We then show that we can interpret the usual ZFC axioms for 
mathematics in our system (section 6). In fact, we 
interpret ZFC augmented with a set theoretic hypothesis 
close to, but a little weaker, than "there exists a 
measurable cardinal" (section 7).  
 
In sections 1-5, we gently build up to T5 with a series of 
theories T1,T2,T3,T4. The impatient reader can safely begin 
with T5 in section 5.  
 
After writing this paper, we have seen how to incorporate 
God as an object, as part of a wider supernatural world. In 
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this second approach, we have both the "Real World" and the 
wider "Supernatural World". Thus we have a more complex 
framework in that we have two sorts of objects. But a 
number of axioms are simplified. In particular, in this 
second approach, we do not need the positivity ultrafilter.  
 
So a tradeoff is emerging, where we use one sort of object 
and the positivity ultrafilter (this is what we do here), 
or two sorts of objects without the positivity ultrafilter 
(this is what we will do in [Fr13]).  
 
We view [Fr11], [Fr12a], [Fr12b], [Fr13], as part of a 
wider program which we call Concept Calculus. In Concept 
Calculus, we aim to identify groups of informal concepts 
throughout the informal and semiformal intellectual 
landscape, and formulate fundamental transparent principles 
which are of sufficient power to interpret the usual 
formalizations for mathematics and beyond. These provide 
formal interpretations of mathematics, consistency proofs 
of mathematics, and relative consistency proofs of 
mathematics, as in Theorems 6.27 and 7.34.   
 
1. T1: Objects, classes, pairing.  
 
In sections 1-5, we present, in cumulative stages, the 
axioms of our theory T5 that we use to interpret ZFC in 
section 6. The reader can dispense with this background 
material and go directly to section 5. T1 - T4 admit 
familiar standard models constructed well within ZFC, but T5 
does not.  
 
In this section, we focus on a particularly simple system T1 
that provides the basic apparatus needed to support the 
substantial and flexible use of objects and classes of 
objects required for the interpretation of ZFC.  
 
The two sorted T1 is very similar to the two sorted system 
Z2 of second order arithmetic. The main difference is that 
in Z2, the objects are nonnegative integers, with arithmetic 
operations taken as primitives. In T1, the objects are not 
constrained in any way, and are meant to include all 
objects whatsoever, as reflected in type 0 of the usual 
Russell theory of simple types (in modern formulation). The 
classes of objects are reflected in type 1 of the usual 
Russell theory of simple types (in modern formulation).  
 
For presentations of Z2, see [Si99], p. 4, and 
http://en.wikipedia.org/wiki/Second-order_arithmetic. We 
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follow the treatment in [Si99] using the two sorted 
language for nonnegative integers and sets of nonnegative 
integers, with 0,1,+,•,<,= on nonnegative integers, ∈ 
between nonnegative integers and sets of nonnegative 
integers, set induction, and full comprehension.  
 
The crucial issue is to determine just what should take the 
place, in T1, of the arithmetic operations on the objects 
that are used in Z2.  
 
Our solution is to use a pairing function P. The Pairing 
axiom below is all that is required. We establish a 
detailed connection between T1 and Z2.   
 
We first introduce the language L1 of T1, which has two 
sorts: objects and classes of objects (classes). L1 has 
object variables vi, i ≥ 1, and class variables Ai, i ≥ 1. L1 
uses a binary relation symbol ∈ between objects and 
classes, a binary function symbol P on objects, and = 
between objects. (P is not used in the usual Russell theory 
of simple types, or in Z2).  
 
Here vi ∈ Aj means that the object vi is a member of the 
class Aj. P(vi,vj) is the object which is the ordered pair 
of vi and vj.  
 
The object terms of L1 are inductively defined by  
 
i. For all i ≥ 1, vi is an object terms of L1. 
ii. For all object terms s,t, P(s,t) is an object term of 
L1. 
 
The atomic formulas of L1 are given as follows.  
 
i. For all i,j ≥ 1, Ai = Aj is an atomic formula of L1. 
ii. For object terms s,t of L1, s = t is an atomic formula 
of L1.  
iii. For all i ≥ 1 and object terms t of L1, t ∈ Ai is an 
atomic formula of L1.  
 
where i,j ≥ 1 and s,t are terms of L1.   
 
The formulas of L1 are inductively defined as follows.  
 
i. Every atomic formula of L1 is a formula of L1. 
ii. For all formulas ϕ,ψ of L1, ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, ϕ → ψ 
are formulas of L1. 
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iii. For all i ≥ 1 and formulas ϕ of L1, (∀vi)(ϕ), (∃vi)(ϕ), 
(∀Ai)(ϕ), (∃Ai)(ϕ) are formulas of L1.  
 
We use ↔ as an abbreviation. I.e., ϕ ↔ ψ abbreviates (ϕ → 
ψ) ∧ (ψ → ϕ). 
 
There are standard axioms and rules of inference for L1, 
with a corresponding completeness theorem. The system T1, in 
language L1, has the following nonlogical axioms. 
 
NONLOGICAL AXIOMS FOR T1 
 
PAIRING 
 
(∃v1,v2)(v1 ≠ v2). 
P(v1,v2) = P(v3,v4) → v1 = v3 ∧ v2 = v4.  
 
L1 COMPREHENSION 
 
(∃A1)(∀v1)(v1 ∈ A1 ↔ ϕ), where ϕ is a formula of L1 in which 
A1 is not free.  
 
We make some remarks concerning the axioms of T1.  
 
1. As we shall see, T1 is mutually interpretable with Z2. In 
fact, we establish that fragments of T1 are mutually 
interpretable with fragments of Z2.  
 
T1 does not use Extensionality. Thus we can also think of 
the variables Ai as ranging over properties of objects, 
where vi ∈ Aj means that Aj holds at vi. The matter of 
Extensionality is taken up in sections 2 and 8. 
Specifically, we will be incorporating Extensionality in T2. 
In sections 8, we discuss the avoidance of Extensionality. 
 
2. Pairing. Given any two objects x,y, we can form the 
ordered pair P(x,y). We can raise the issue of just what 
P(x,y) really is. There is the conceptual idea of x 
followed by y. So we can define P(x,y) as the conceptual 
idea of x followed by y. Furthermore, P is definable, as we 
have just defined it. Also, the Pairing axiom, line 2, is 
immediate.  
 
There are of course many ways to justify the existence of 
at least two distinct objects. One way is to use the 
approach in the previous paragraph, where we take any 
object x, and consider the conceptual idea of x followed by 
x, and also the conceptual idea of x followed by x followed 
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by x. Obviously we can argue that x cannot be the same as x 
followed by x, but perhaps more convincing is that x 
followed by x, and x followed by x followed by x are of 
different lengths, and therefore are distinct. (The 
existence of at least one object x is normally considered 
to be a logical truth).  
 
3. L1 Comprehension. This is the standard class existence 
principle. The objects and classes of objects, with L1 
Comprehension, constitutes the first two stages of a common 
version of the Russell theory of simple types. L1 
Comprehension alone has the trivial model with exactly 1 
object and exactly 2 classes. The usual way of achieving 
strength is to add an axiom of infinity, involving the 
existence of an ordering on objects with a certain 
property. Or alternatively, to use the inclusion relation 
among classes as the ordering. Under these approaches, we 
need to use classes of classes of objects, or even classes 
of classes of classes of objects, or alternatively, binary 
relations on classes.  
 
In contrast, here we use only objects and classes of 
objects, with the Pairing axiom doing not only the work of 
the axiom of Infinity, but also enough work to avoid having 
to use higher types or binary relations. Also, Pairing has 
the explicit interpretation as discussed above. 
 
In sections 6 and 7 we will need only L5 Comprehension 
where ϕ has only a few class quantifiers. In this paper, we 
will not go into just how many quantifiers are needed, but 
preliminary indications are that two suffice. There is also 
the matter of how many quantifiers over objects are needed, 
which is also beyond the scope of this paper.  
 
We will consider fragments of L1 Comprehension, and compare 
them with corresponding fragments of Z2. These fragments of 
Comprehension are finitely axiomatizable.  
 
The following result goes back to Tarski, but we include a 
proof here. It is of independent interest, and allows us to 
avoid a number of details when establishing finite and non 
finite axiomatizability. However, in section 3 we cannot 
easily take this route, and use another method to establish 
Theorem 3.6.  
 
LEMMA 1.1. Let S1,S2 be two theories with commuting 
interpretations π1,π2. I.e., for all sentences ϕ of S1, ϕ ↔ 
π2(π1(ϕ)) is provable in S1. Then the interpretations π2,π1 
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are commuting for S2,S1. In addition, S1 is finitely 
axiomatizable if and only if S2 is finitely axiomatizable. 
If K is a finite axiomatization of S1 (S2) then π1(K) (π2(K)) 
is a finite axiomatization of S2 (S1). 
 
Proof: Let S1,S2,π1,π2 be as given. Let ψ be a sentence of 
S2. We want ψ ↔ π1(π2(ψ)) provable in S1. It suffices to 
show that π2(ψ ↔ π1(π2(ψ))) = π2(ψ) ↔ π2(π1(π2(ψ))) is 
provable in S2. This follows from the hypothesis applied to 
π2(ψ).  
 
Let K finitely axiomatized S1. Let S2 prove ψ. Then S1 
proves π2(ψ). Hence K proves π2(ψ). Therefore K → π2(ψ) is 
provable from nothing. Hence π1(K) → π1(π2(ψ)) is provable 
from nothing. Therefore π1(K) proves ψ. QED 
 
LEMMA 1.2. T1 is interpretable in Z2. 
 
Proof: We take the objects for T1 to be Gödel numbers of 
terms in 0 and the binary function symbol P. We take the 
classes for T1 to be the sets in Z2. QED 
 
THEOREM 1.3. T1 and Z2 have commuting interpretations. 
 
Proof: Let π1 be the interpretation of T1 in Z2 given by the 
proof of Lemma 1.2. We now give the interpretation π2 of Z2 
in T1.  
 
We have to develop arithmetic in T1. By the first line of 
Pairing, fix a ≠ b. Set 0 = P(a,b). By the second part of 
Pairing, 0 is not of the form P(v,v).  
 
We say that A is good if and only if 0 ∈ A ∧ (∀v ∈ 
A)(P(v,v) ∈ A). Let ω be any class consisting of the 
objects lying in every good A. Let 1 be P(0,0). Obviously 
v,w ∈ ω → P(v,v) ≠ 0 ∧ (P(v,v) = P(w,w) → v = w). Also if 
A ⊆ ω, 0 ∈ A, and (∀v ∈ A)(P(v,v) ∈ A), then ω,A have the 
same elements (because A is good). So P(v,v), v ∈ ω, serves 
as an inductive successor function on ω.  
 
Using P, we have full access to ternary relations on ω, and 
hence also binary functions on ω, including comprehension 
involving quantification over them. So we can develop +,•,< 
and their standard properties in the usual way.  
 
For Z2, the sets will be the subsets of ω in T1. Set 
induction in Z2 gets interpreted using the inductive 
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successor function P(v,v) on ω in T1. Set comprehension in 
Z2 gets interpreted using L1 Comprehension in T1.  
 
To check that π1,π2 are commuting interpretations, we can 
view them as model constructions, where it suffices to show 
that if we compose the two model constructions, first from 
models M of Z2 to models M' of T1 via π1, and second from 
models M' of T1 to models M'' of Z2 via π2, then we obtain a 
model M'' of Z2 that is isomorphic with M.  
 
So begin with a model M of Z2. We build a model M' of T1 
within M, according to π1. N hasn't really change, but has 
merely been reassembled in the form of closed terms. Now 
build a model M'' of Z2 within M', according to π2. The 
resulting (ω,0,S) can be determined from the point of view 
of M, and seen to be a second order successor system, 
according to M. Therefore, the resulting model M'' is 
isomorphic to M via an isomorphism that can be clearly 
defined in M. QED  
 
DEFINITION 1.1. Let n ≥ 0. T1n] is the subsystem of T2, 
where in L1 comprehension, the formula ϕ is required to 
start with at most n class quantifiers, followed by a 
formula without class quantifiers. Z2[n] is the subsystem of 
Z2, where in set comprehension, ϕ is required to start with 
at most n set quantifiers, followed by an arithmetic 
formula (i.e., a formula without set quantifiers). As in 
[Si99], p. 16, ACA0 is the fragment of Z2 where 
comprehension is for arithmetic formulas (i.e., without set 
quantifiers), and Π1

n-CA0 is the fragment of Z2 where 
comprehension is for Π1

n formulas. These start with a series 
of n alternating set quantifiers, starting with ∀, followed 
by an arithmetic formula.  
 
LEMMA 1.4. For n ≥ 0, Z2[n] is equivalent to Π1

n-CA0. 
 
Proof: Obviously Π1

n-CA0 is a fragment of Z2[n]. We show that 
Z2[n] is a logical consequence of Π1

n-CA0. 
 
Let ϕ be a formula for comprehension in Z2[n]. In the series 
of at most n set quantifiers in front, we can collapse 
blocks of like set quantifiers to one, using manipulations 
already supported in ACA0. We therefore obtain ≤ n 
alternating set quantifiers. We can obviously pad this with 
more alternating set quantifiers, if need be, to obtain 
exactly n alternating set quantifiers. If they begin with 
∀, then we are done. If they begin with ∃, then we can take 
the negation, and obtain the complement of the set we need. 
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But the existence of complements is obviously supported by 
ACA0. QED   
 
LEMMA 1.5. For n ≥ 0, T1[n] is interpretable in Z2[n]. 
 
Proof: Let n ≥ 0. We use the construction in Lemma 1.1. Each 
class quantifier in T1 is interpreted by a like set 
quantifier in Z2. QED    
 
THEOREM 1.6. For n ≥ 1, T1[n], Z2[n], Π1

n-CA0 have commuting 
interpretations.  
 
Proof: Let n ≥ 1. We interpret Z2[n] in T1[n]. We use the 
same interpretation of Z2 in T1 presented in the proof of 
Theorem 1.3. We can prove the existence of an ω in T1[1], 
and use ω as a set parameter.  
 
We need to show that T1[n] proves the interpretation of {m: 
(∀x1)(∃x2)...(Qxn)(ϕ(m))} exists. But this gets interpreted 
as {m ∈ ω: (∀A1 ⊆ ω)(∃A2 ⊆ ω)...(QAn ⊆ ω)(ϕ'(m))} exists, 
where in ϕ', all quantifiers are relativized to ω. This is 
provable in T1[n] by obvious quantifier manipulations.  
 
Also note that set induction gets interpreted as (∀A ⊆ ω)(0 
∈ A ∧ (∀n ∈ ω)(n ∈ A → n+1 ∈ A) → ω ⊆ A), which is 
provable in T1[1].  
 
We can now give the model operation isomorphism argument 
that we gave in the proof of Theorem 1.3. QED  
 
THEOREM 1.7. T1, Z2 are not finitely axiomatizable. For all 
n ≥ 1, T1[n], Z2[n] are finitely axiomatizable. Z2[0] = ACA0 
is finitely axiomatizable.  
 
Proof: Z2 is not finitely axiomatizable, since Z2 proves the 
consistency of each of its finite fragments (see [Si99], 
section VII.7). For n ≥ 1, Z2[n] is finitely axiomatizable, 
by standard normal form theorems. Also Z2[0] = ACA0 is 
finitely axiomatizable (see [Si99], Lemma VIII.1.5).  
 
Now observe that in the proof of Theorems 1.2 and 1.5, we 
have actually given commuting interpretations. Now apply 
Lemma 1.8. QED 
 
THEOREM 1.8. T1[0] is interpretable in RCA0. 
 
Proof: Let P be one of the standard pairing functions (N,P) 
treated in [Te72], [Te74]. The first order theory of these 
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(N,P) is shown to be just beyond elementary recursive (see 
[FR79], p. 163). We interpret the objects of T1[0] to be 
elements of N, and the classes of T1]0] to be the subsets of 
N first order definable over (N,P). L1 comprehension is 
immediate in RCA0. QED 
 
QUESTION 1.1. What is the interpretation power of T1[0]? Is 
T1[0] finitely axiomatizable? 
 
By [FR79], Chapter 8, the first order theory of any pairing 
function (N,P) is at least just beyond elementary 
recursive, and by [Te72], [Te74], for various standard 
pairing functions P, the theory of (N,P) is at most just 
beyond elementary recursive. These considerations should be 
at least close to enough to answer Question 1.1.  
 
DEFINITION 1.2. The standard models of T1 are of the form 
(D,℘(D),∈,P), where |D| ≥ 2, and P:D2 → D is one-one.  
 
2. T2: Extensionality, choice operator. 
 
In this section, we extend L1 and T1 to L2 and T2. T2 will 
also be mutually interpretable with Z2.  
 
The language L2 extends L1 with the unary function symbol 
CHO from classes to objects, and = between classes. Here 
CHO refers to a choice operator.  
 
The object terms, atomic formulas and formulas of L1 are 
extended in the obvious way to L2, incorporating the new 
function symbol CHO, and = on classes.  
 
The system T2, in language L2, has the following nonlogical 
axioms. 
 
NONLOGICAL AXIOMS FOR T2 
 
PAIRING 
 
(∃v1,v2)(v1 ≠ v2). 
P(v1,v2) = P(v3,v4) → v1 = v3 ∧ v2 = v4.  
 
L2 COMPREHENSION 
 
(∃A1)(∀v1)(v1 ∈ A1 ↔ ϕ), where ϕ is a formula of L2 in which 
A1 is not free.  
 
EXTENSIONAITY 
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(∀v1)(v1 ∈ A1 ↔ v1 ∈ A2) → A1 = A2.  
 
CHOICE OPERATOR 
 
v1 ∈ A1 → CHO(A1) ∈ A1. 
 
We make some remarks concerning the axioms of T2.  
 
1. L2 Comprehension. We again consider fragments of L2 
Comprehension here, and compare them with the corresponding 
fragments of Z2. These fragments of Comprehension are shown 
to be finitely axiomatizable.  
 
2. Extensionality. Classes (of objects) are normally 
considered identical if they have the same elements, 
whereas properties (of objects) are not considered 
identical just because they hold of the same objects. 
 
We could use properties (of objects) rather than classes 
(of objects), avoid the extensionality axiom, and define 
extensional equality as: holding of the same objects. We 
take this approach in section 8.  
 
Extensional equality arises because the power of the Choice 
Operator for section 6 rests on CHO(A) depending only on 
the objects in the class A, or only on the objects for 
which the property A holds.  
 
4. Choice Operator. A Choice Operator operating locally - 
i.e., at a single class - can be given immediately. If A 
has an element then CHO(A) is any element of A; otherwise 
CHO(A) is any object. We can view the (global) Choice 
Operator as an obvious extrapolation of the trivial local 
version achieved by an "infinite mind".  
 
In fact, we can invoke the omnipotence of God - that God 
can do anything "logically possible". The logical 
possibility here should be manifested by the triviality of 
what a Choice Operator does locally.  
 
In this connection, it is interesting to determine 
precisely what kind of simply described global tasks of 
this kind are "logically possible" as this can be viewed as 
achieving more understanding of the nature of God's 
omnipotence. 
 
LEMMA 2.1. T2 is interpretable in Z2. 
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Proof: We take the objects for T2 to be the Gödel numbers of 
terms in 0 and the binary function symbol P. We take the 
classes for T1 to be the sets in Z2. We interpret = between 
classes for T1 as extensional equality for sets in Z2. We 
interpret CHO in T2 by CHO(A) = min(A) if A ≠ ∅; 0 
otherwise. QED 
 
THEOREM 2.2. T2,Z2 have commuting interpretations. 
 
Proof: We use the interpretation from the proof of Lemma 
2.1 as π1. We reuse π2. We follow the argument given for 
Theorem 1.3. QED 
 
DEFINITION 2.1. For n ≥ 0, T2[n] is the subsystem of T2, 
where in L2 comprehension, the formula ϕ is required to 
start with at most n class quantifiers, followed by a 
formula without class quantifiers.  
 
LEMMA 2.3. For n ≥ 0, T2[n] is interpretable in Z2[n].  
 
Proof: Let n ≥ 0. We use the construction in Lemma 1.1. Each 
class quantifier in T1 is interpreted by a like set 
quantifier in Z2. QED 
 
THEOREM 2.4. For n ≥ 1, T2[n], Z2[n], Π1

n-CA0 have commuting 
interpretations. T2[0] is interpretable in RCA0.  
 
Proof: See Theorem 1.6. The interpretations given for Lemma 
1.5 easily extend to accommodate Extensionality and Choice 
Operator. QED 
 
THEOREM 2.5. T2 is not finitely axiomatizable. For all n ≥ 
1, T2[n] is finitely axiomatizable.  
 
Proof: By Lemma 1.1 and Theorem 2.4. QED  
 
QUESTION 2.1. What is the interpretation power of T2[0]? Is 
T2[0] finitely axiomatizable? 
 
DEFINITION 2.2. The standard models of T2 are of the form 
(D,℘(D),∈,P,CHO), where |D| ≥ 2, P:D2 → D is one-one, and 
CHO:℘(D) → D, where A ≠ ∅ → CHO(A) ∈ A.  
 
3. T3: Positive classes. 
 
The notion of "positive property (of objects)" is 
explicitly used in [Go95], p. 403-404. Gödel had an initial 
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version in 1941. The informal theological idea of "positive 
property" goes back at least to Leibniz, and plays a 
significant role in Theology. See [Go95], p. 388-402, and 
also [An90], [Le23], [Le56], [L369], [Le96], [Lo06], 
[Op95], [Op96], [Op06], [Op12], [So87], [So04]. 
 
In our framework, we can view the attribute of Positive as 
a facility that God has created and given the world access 
to, perhaps in order to direct us into "positive 
behaviors". In our context, we are not incorporating any 
direct access to God, but we do have access to various of 
God's creations that he has chosen to give us access to.  
 
The attribute of Positive can be viewed as such a 
fundamental facility.  
 
Gödel uses positive properties of objects, whereas we use 
positive classes of objects. Gödel rightly does not assume 
extensionality for properties of objects. This raises the 
possibility that our use of positive classes is a greater 
commitment than Gödel's use of positive properties. 
However, this is not the case, as we now show. In addition, 
this is reflected in the development in section 8.  
 
Gödel assumes that  
 
i. The conjunction of any two positive properties is a 
positive property.  
ii. Every property or its negation is positive, with 
exclusive or.  
iii. If God exists, then God possesses all positive 
properties.  
 
and does not assume extensionality for properties. Thus the 
conjunction of any two properties is a property (not 
necessarily the only property) that holds of exactly the 
objects that the two properties hold of. The negation of 
any property is a property (not necessarily the property) 
that holds of exactly the objects that the given property 
does not hold of.  
 
It is clear that "every positive property holds of some 
object" is at least implicit in [Go95], p. 403-404. It 
follows from i-iii and "God exists", which Gödel is 
claiming to prove (prove is necessarily true). 
 
It now follows that if properties P,Q hold of the same 
objects, then P is positive if and only if Q is positive. 
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For suppose P,Q hold of the same objects, and P is 
positive. Suppose Q is not positive. Then the negation of Q 
is positive, and its conjunction with P is therefore 
positive. But this conjunction does not hold of any object. 
Contradiction.  
 
This argument surfaces in the treatments that avoid 
extensionality in section 8.  
 
We now return to our context of classes of objects with 
extensionality, and the theory T3. Since positivity is so 
very closely related to the purely mathematical notion of 
ultrafilter, we make a brief mathematical digression.  
 
DEFINITION 3.1. An ultrafilter over a set X is a K ⊆ ℘(X) 
such that 
 
i. A,B ∈ K → A ∩ B ∈ K. 
ii. A ∈ K ↔ X\A ∈ K.  
iii. ∅ ∉ K.  
 
THEOREM 3.1. Let K be an ultrafilter over X. Then X ∈ K. If 
A ⊆ B and B ∈ K, then A ∈ K. There is an ultrafilter over X 
if and only if X is nonempty. 
 
Proof: Well known and straightforward. QED 
 
DEFINITION 3.2. A trivial ultrafilter over X is an 
ultrafilter of the form {A ⊆ X: x ∈ A}, for some x ∈ X. It 
is easy to see that there can be at most one such x. A 
nontrivial ultrafilter is an ultrafilter which is not 
trivial.  
 
THEOREM 3.2. Let K be an ultrafilter over X. The following 
are equivalent. 
i. K is nontrivial. 
ii. Every element of K has at least two elements. 
iii. Every element of K is infinite. 
There is a nontrivial ultrafilter over X if and only if X 
is infinite. 
 
Proof: The equivalences are well known and straightforward. 
The last claim is a well known application of Zorn's Lemma, 
and cannot be proved in ZF, even in the case X = N. QED 
 
We can simplify the definitions of ultrafilter and 
nontrivial ultrafilter in the following uniform way.   
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THEROEM 3.3. K is an ultrafilter over X if and only if  
i. X = A ∪ B → A ∈ K ∨ B ∈ K. 
ii. A,B ∈ K → |A ∩ B| ≥ 1.  
K is a nontrivial ultrafilter over X if and only if  
iii. X = A ∪ B → A ∈ K ∨ B ∈ K.  
iv. A,B ∈ K → |A ∩ B| ≥ 2.  
 
Proof: Let K ⊆ ℘(X). If K is an ultrafilter then i,ii 
follow immediately. If K is a nontrivial ultrafilter then 
iii,iv follow immediately by Theorem 3.2.  
 
Suppose i,ii hold. Suppose A,B ∈ K. Now X = (A ∩ B) ∪ (X\A 
∪ X\B). Hence A ∩ B ∈ K ∨ X\A ∪ X\B ∈ K. Hence A ∩ B ∈ K ∨ 
X\A ∈ K ∨ X\B ∈ K. By ii, A ∩ B ∈ K.  
 
Suppose A ∈ K. Then X\A ∉ K by ii. Suppose A ∉ K. Now X = A 
∪ X\A. Hence A ∈ K ∨ X\A ∈ K. Therefore X\A ∈ K.  
 
Clearly ∅ ∉ K, by ii. 
 
Now suppose iii,iv. By the preceding argument, K is an 
ultrafilter over X. By Theorem 3.2, we have only to show 
that A ∈ K → |A| ≥ 2. This follows from iv by setting B = 
A. QED  
 
In this section, we extend L2 and T2 to L3 and T3. T3 will 
also be mutually interpretable with Z2.  
 
L3 extends L2 by the unary relation symbol POS on classes. 
POS(A) is read "the class A is positive".  
 
The object terms, atomic formulas and formulas of L2 are 
extended in the obvious way to L3, incorporating the new 
atomic formulas POS(Ai), i ≥ 1.  
 
The system T3, in language L3, has the following nonlogical 
axioms. 
 
NONLOGICAL AXIOMS FOR T3 
 
PAIRING 
 
P(v1,v2) = P(v3,v4) → v1 = v3 ∧ v2 = v4.  
 
L3 COMPREHENSION 
 
(∃A1)(∀v1)(v1 ∈ A1 ↔ ϕ), where ϕ is a formula of L3 in which 
A1 is not free.  
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EXTENSIONAITY 
 
(∀v1)(v1 ∈ A1 ↔ v1 ∈ A2) → A1 = A2.  
 
CHOICE OPERATOR 
 
v1 ∈ A1 → CHO(A1) ∈ A1. 
 
POSITIVE CLASSES 
 
(∀v1)(v1 ∈ A1 ∨ v1 ∈ A2) → POS(A1) ∨ POS(A2). 
POS(A1) ∧ POS(A2) → (∃v1 ≠ v2)(v1,v2 ∈ A1 ∧ v1,v2 ∈ A2).  
 
This completes the presentation of the nonlogical axioms of 
T3.   
 
Here is an alternative axiom group for Positive Classes.  
 
POSITIVE CLASSES ALTERNATIVE 
 
(∀v1)(v1 ∈ A1 ↔ v1 ∉ A2) → (POS(A1) ↔ ¬POS(A2)). 
(∀v1)(v1 ∈ A1 ↔ (v1 ∈ A2 ∧ v1 ∈ A3)) → (POS(A2) ∧ POS(A3) → 
POS(A1)). 
POS(A1) → (∃v1 ≠ v2)(v1,v2 ∈ A1). 
 
Note that we have dropped the first line of Pairing. It can 
be easily recovered from Positive Classes. 
 
THEOREM 3.4. T3 proves the existence of at least two 
objects. T3 proves T2. T3 is logically equivalent to T3 with 
Positive Classes replaced by Positive Classes Alternative. 
Let (D,K,P,∈,CHO,POS) satisfy T3, where K ⊆ ℘(D). Then POS 
is a nontrivial ultrafilter over D.  
 
Proof: For the first claim, from Positive Classes we have 
that the class of all objects, V, is positive or the empty 
class is positive. The latter is impossible, since it has 
no elements. Hence there are at least two objects. 
 
The second claim is immediate from the first claim.  
 
For the third claim, we first derive Positive Classes 
Alternative. For the first line, it suffices to show that 
¬(A is positive ∧ V\A is positive). This is clear from 
Positive Classes. For the second line of Positive Classes 
Alternative, we assume A,B are positive, and show A ∩ B is 
positive. Suppose A ∩ B is not positive. By line 1 of 
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Positive Classes Alternative, V\A ∪ V\B is positive. By 
Positive Classes, V\A is positive or V\B is positive. These 
violate line 1 of Positive Classes Alternative. The third 
line of Positive Classes Alternative follows from the 
second line of Positive Classes by setting A2 = A1.  
 
We now derive Positive Classes from Positive Classes 
Alternative. Let V = A ∪ B. Suppose A,B are not positive. 
By Positive Classes Alternative, V\A and V\B are positive, 
V\A ∩ V\B is positive, V\(V\A ∩ V\B) is not positive, A ∪ B 
is not positive, V is not positive, ∅ is positive, 
violating line 3 of Positive Classes Alternative. Finally, 
Let A,B be positive. By Positive Classes Alternative, A ∩ B 
is positive, and so A ∩ B has at least two distinct 
elements.  
 
Let (D,K,P,∈,CHO,POS) satisfy T3, where K ⊆ ℘(D). POS is an 
ultrafilter over D since we have Positive Classes 
Alternative (this needs only POS(A1) → (∃v1)(v1 ∈ A1)). Line 
3 of Positive Classes Alternative and Theorem 3.2 
guarantees that POS is a nontrivial ultrafilter. We can 
also use Theorem 3.3 and Positive Classes. QED    
 
DEFINITION 3.3. For n ≥ 0, T3[n] is the subsystem of T3, 
where in L3 Comprehension, the formula ϕ is required to have 
at most n class quantifiers.  
 
THEROEM 3.5. T3,Z2 are mutually interpretable. For all n ≥ 
1, T3[n],Z2[n] are mutually interpretable. T3[0] is 
interpretable in ACA0. 
 
Proof: Recall the interpretation of T1 in Z2 given for 
Theorem 1.5. We now have to interpret POS using a defined 
nontrivial ultrafilter over N. This cannot be done in Z2. 
However, we can use the well known construction of the 
constructible hierarchy in Z2. For a treatment within ATR0 
and its applications to Z2 and strong fragments of Z2 with 
and without choice principles, see sections VII.4 - VII.6 
in [Si99].  
 
Thus we interpret the objects in T3 as nonnegative integers, 
and the classes in T3 as constructible subsets of N. For 
CHO, we can of course continue to use the least element 
construction. It is well known that we obtain the full 
comprehension of Z2.  
 
Now it is easily proved in ACA0 that for any nontrivial 
ultrafilter U on a countable Boolean algebra B of subsets 
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of N, and A ⊆ N, A ∉ B, there is a unique nontrivial 
ultrafilter on the Boolean algebra generated by B ∪ {A}, 
with B ∈ U, extending U.  
 
This allows us to make an obvious transfinite construction 
along the constructible hierarchy of subsets of N that 
results in an explicitly definable ultrafilter. We use this 
ultrafilter to interpret POS. This establishes the first 
claim. 
 
For n ≥ 2, this argument is robust enough to interpret T3[n] 
in Z2[n], as Π1

2-CA0 is rather substantial and well supports 
the constructible hierarchy for subsets of N.  
 
To interpret T3[1] in Z2[1], it is better to think in terms 
of the first ω hyperjumps. We build a nontrivial 
ultrafilter arithmetically in the first hyperjump for sets 
recursive in the first hyperjump. We then extend this to a 
nontrivial ultrafilter arithmetically in the second 
hyperjump for sets recursive in the second hyperjump, 
etcetera. The classes in T3[1] are interpreted as the sets 
recursive in some iterated hyperjump. We have to be careful 
not to use more than set induction, so we don't have that 
for all n, the n-th hyperjump exists. Only for a cut of n. 
Then we build the nontrivial ultrafilter as indicated.  
 
Any single class quantifier statement in T3[1] becomes an 
arithmetic statement in the hyperjump of its class 
parameters under this interpretation. Thus the 
interpretation of single class quantifier comprehension in 
T3[1] is provable in Z2[1].  
 
To interpret T3[0] in Z2[0] = ACA0, we follow the above 
approach, thinking in terms of the first ω Turing jumps. 
Again we have to be careful not to use more than set 
induction, so we don't have that for all n, the n-th Turing 
jump exists. Again, only for a cut of n. We build the 
nontrivial ultrafilter as above. QED 
 
THEOREM 3.6. T3 is not finitely axiomatizable. For n ≥ 1, 
T3[n] is finitely axiomatizable. 
 
Proof: Since we are not claiming that T3,Z2 have commuting 
interpretations, use a different kind of argument to show 
that T3 is not finitely axiomatizable. Let K be a finite 
axiomatization of T3. The interpretation of T3 in Z2 given 
in the proof of Theorem 3.5 shows that Con(K) is provable 
in Z2. Let n be such that Con(K) is provable in Z2[n]. Now 
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Z2[n] is finitely axiomatizable, and interpretable in T3. 
Let K' be a finite fragment of T3 such that Z2[n] is 
interpretable in K'. Using the proof of K' in K, we see 
that Z2[n] proves Con(K'). Hence Z2[n] proves Con(Z2[n]), 
and therefore Z2 is inconsistent. This is a contradiction.  
 
Let n ≥ 1. To see that T3[n] is finitely axiomatizable, we 
argue directly. We obtain the expected normal form theorem 
for formulas in L3 without class quantifiers, via a formula 
beginning with 1 class quantifier followed by a formula 
with no class quantifiers. The class quantifier can be 
taken to be either ∀ or ∃. This works even though POS is 
present. QED 
 
QUESTION 3.1. What is the interpretation power of T3[0]? Is 
T3[0] finitely axiomatizable? 
 
There are many ways to justify both parts of Positive 
Classes, or, alternatively, all three parts of Positive 
Classes Alternative.  
 
A particularly straightforward way to motivate the first 
line of Positive Classes is to assume the existence of a 
perfect object v. Let V = A1 ∪ A2. Then v ∈ A1 ∨ v ∈ A2.  
 
We claim that if v ∈ A1 then A1 is positive. To argue this, 
suppose A1 is not positive. Then v would not belong to A1, 
since if v is perfect, v would choose not to belong to A1. 
 
So we have argued that v ∈ A1 → A1 is positive, and v ∈ A2 
→ A2 is positive. Therefore A1 is positive or A2 is 
positive. 
 
Unfortunately, if we admit a perfect object v, then the 
second part of Positive Classes fails. This is because the 
class consisting of exactly v must be positive; i.e., v ∈ 
{v} → {v} is positive. But {v} has exactly one element. 
 
In order to reconcile the discussion with Positive Classes, 
we must deliberately exclude any perfect object from the 
totality of objects. E.g., redefine the objects to consist 
of the imperfect objects.  
 
A very natural viewpoint is this: no object is perfect, but 
objects can "approximate perfection" without limit. I.e., 
any level of "approximate perfection" can be achieved by 
imperfect objects.   
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In particular, all objects have flaws. This is an 
interesting statement in its own right, formalized as 
follows. 
 
UNIVERSAL FALLIBILITY 
 
(∀v1)(∃A1)(v1 ∈ A1 ∧ ¬POS(A1)).  
 
Note that Universal Fallibility is provable in T3 as 
follows. Let v be an object. Since positive classes have at 
least two distinct elements, {v} is not positive. Hence the 
complement of {v} is positive (e.g., use the second line of 
Positive Classes), yet does not contain v.  
 
We continue the argument for Positive Classes. Now suppose 
all objects lie in A1 or A2. If A1,A2 are not positive, then 
objects are certainly not approximating perfection without 
limit, in that every object is flawed even with respect to 
just A1 and A2. So this justifies the first part of Positive 
Classes.  
 
For the second line of Positive Classes, let A1,A2 be 
positive classes. There must exist an object v in both A1 
and A2 (since we can approximate perfection without limit). 
Suppose v is the unique object in both A1 and A2. By 
Universal Fallibility, let v ∉ A3, where A3 is positive. 
Since we can approximate perfection without limit, let w 
lie in A1,A2,A3. Then v ≠ w, and we have the desired 
contradiction.    
 
DEFINITION 3.4. The standard models of T3 are of the form 
(D,℘(D),∈,P,CHO,POS), where P:D2 → D is one-one, CHO:℘(D) 
→ D, A ≠ ∅ → CHO(A) ∈ A, and POS is a nontrivial 
ultrafilter over D.  
 
4. T4: Definable classes.  
 
We follow the usual convention in mathematical logic that 
"definable" means "definable with parameters", and "0-
definable" means definable without parameters.  
 
In this section, we extend L3 to L4 by the unary relation 
symbol DEF on classes. The intended meaning of DEF(A) is 
"the class A is L3 0-definable". This is the same as "the 
class A is L4 0-definable without DEF". 
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The object terms, atomic formulas and formulas of L3 are 
extended in the obvious way to L4, incorporating the new 
unary relation symbol DEF on classes.  
 
The system T4, in language L4, has the following nonlogical 
axioms. 
 
NONLOGICAL AXIOMS FOR T4 
 
PAIRING 
 
P(v1,v2) = P(v3,v4) → v1 = v3 ∧ v2 = v4.  
 
L4 COMPREHENSION 
 
(∃A1)(∀v1)(v1 ∈ A1 ↔ ϕ), where ϕ is a formula of L4 in which 
A1 is not free.  
 
EXTENSIONAITY 
 
(∀v1)(v1 ∈ A1 ↔ v1 ∈ A2) → A1 = A2.  
 
CHOICE OPERATOR 
 
v1 ∈ A1 → CHO(A1) ∈ A1. 
 
POSITIVE CLASSES 
 
(∀v1)(v1 ∈ A1 ∨ v1 ∈ A2) → POS(A1) ∨ POS(A2). 
POS(A1) ∧ POS(A2) → (∃v1 ≠ v2)(v1,v2 ∈ A1 ∧ v1,v2 ∈ A2).  
 
0-DEFINABLE CLASSES 
 
(∀v1)(v1 ∈ A1 ↔ ϕ) ∧ DEF(A2) ∧ ... ∧ DEF(An) → DEF(A1), 
where ϕ is a formula of L4 without DEF, with at most the 
free variables v1,A2,...,An, n ≥ 1. 
 
DEFINITION 4.1. For n ≥ 0, T4[n] is the subsystem of T4, 
where in L3 Comprehension and 0-Definable Classes, the 
formula ϕ is required to have at most n class quantifiers.  
 
THEOREM 4.1. T4,Z2 are mutually interpretable. For all n ≥ 
1, T4[n],Z2[n] are mutually interpretable. T4[0] is 
interpretable in ACA0. 
 
Proof: This is immediate from Theorem 3.5, since we can 
interpret DEF(A) as A = A. We won't be able to interpret 
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DEF(A) in this trivial way for T5, since T5 proves 
¬(∀A)(DEF(A)). QED  
 
THEOREM 4.2. T4 is not finitely axiomatizable. For n ≥ 1, 
T4[n] is finitely axiomatizable. 
 
Proof: Suppose T4 is equivalent to K, where K is finite. Now 
replace each DEF(Ai) with Ai = Ai in all axioms of T4 and K, 
obtaining T4' and K'. Then T4',K' are logically equivalent. 
But T4' is logically equivalent to T3. This contradicts that 
T3 is not finitely axiomatizable. The argument given for the 
second claim of Theorem 3.6 adapts to this context. QED 
 
QUESTION 4.1. What is the interpretation power of T4[0]? Is 
T4[0] finitely axiomatizable? 
 
DEFINITION 4.2. The standard models of T4 are of the form 
(D,℘(D),∈,P,CHO,POS,DEF), where P:D2 → D is one-one, 
CHO:℘(D) → D, A ≠ ∅ → CHO(A) ∈ A, POS is a nontrivial 
ultrafilter over D, and DEF is the set of all subsets of D 
that are 0-definable over (D,℘(D),∈,P,CHO,POS).  
 
We can formulate 0-Definable Classes in the following 
reduced form. 
 
0-DEFINABLE CLASSES (binary) 
 
(∀v1)(v1 ∈ A1 ↔ ϕ) ∧ DEF(A2) ∧ ... ∧ DEF(An) → DEF(A1), 
where ϕ is a formula of L4 without DEF, with at most the 
free variables v1,A2,...,An, 1 ≤ n ≤ 3. 
 
THEOREM 4.2. T3 is logically equivalent to T3 formulated 
with 0-Definable Classes (binary). This is also true for 
all T3[n], n ≥ 0. 
 
Proof: We work with 0-Definable Classes (binary), and the 
rest of T3. We establish (∀v1)(v1 ∈ A1 ↔ ϕ) ∧ DEF(A2) ∧ ... 
∧ DEF(An) → DEF(A1), where ϕ has no DEF, and at most the 
free variables v1,A2,...,An, holds. We can assume that n ≥ 3.  
 
Assume (∀v1)(v1 ∈ A1 ↔ ϕ), DEF(A2),...,DEF(An). With n-2 
uses of the binary form, we obtain DEF(An+1), with An+1 = 
{P(x2,...,xn): x2 ∈ A2 ∧ ... ∧ xn ∈ An}, where here we have 
used P associated to the left. We replace the free 
occurrences of Ai in ϕ, 2 ≤ i ≤ n, by {xi: (∃x2,...,xi-
1,xi+1,...,xn)(P(x2,...,xn) ∈ An+1}, and then simplify by 
removing these set abstraction terms in the usual way. Thus 
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we have defined A1 with the single parameter An+1, where 
DEF(An+1). Hence DEF(A1).  
 
Since this argument does not introduce any class 
quantifiers, the second claim is also established. QED 
 
5. T5: Divine objects. 
 
Here we finally introduce the theory T5 that we use in 
section 6 to interpret ZFC.  
 
The language of T5 is the same as the language of T4, and T5 
merely extends T4 by the Divine Object axiom.   
 
Since in section 1, we suggested that the reader can safely 
start reading this section, we now give a fully self 
contained presentation of T5.  
 
The language L5 of T5 has two sorts: objects and classes of 
objects (classes). L5 has object variables vi, i ≥ 1, and 
class variables Ai, i ≥ 1. L4 uses a binary relation symbol 
∈ between objects and classes, a binary function symbol P 
on objects (pairing), = between objects, a unary function 
CHO from classes to objects (choice), a unary relation 
symbol POS on classes (positive classes), and a unary 
relation symbol DEF on classes (definability without DEF).  
 
Note that L5 is the same as the language L4 presented in 
section 4.  
 
The object terms of L5 are inductively defined by  
 
i. For all i ≥ 1, vi is an object terms of L5. 
ii. For all object terms s,t, P(s,t) is an object term of 
L5. 
iii. For all i ≥ 1, CHO(Ai) is an object term of L5. 
 
The atomic formulas of L5 are given as follows.  
 
i. For all i,j ≥ 1, Ai = Aj is an atomic formula of L5. 
ii. For object terms s,t of L5, s = t is an atomic formula 
of L5.  
iii. For all i ≥ 1 and object terms t of L5, t ∈ Ai is an 
atomic formula of L5. 
iv. For all i ≥ 1, POS(Ai), DEF(Ai) are atomic formulas of 
L5.   
 
The formulas of L5 are inductively defined as follows.  
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i. Every atomic formula of L5 is a formula of L5. 
ii. For all formulas ϕ,ψ of L5, ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, ϕ → ψ 
are formulas of L5. 
iii. For all i ≥ 1 and formulas ϕ of L5, (∀vi)(ϕ), (∃vi)(ϕ), 
(∀Ai)(ϕ), (∃Ai)(ϕ) are formulas of L5.  
 
We use ↔ as an abbreviation. I.e., ϕ ↔ ψ abbreviates (ϕ → 
ψ) ∧ (ψ → ϕ). 
 
There are standard axioms and rules of inference for L5, 
with a corresponding completeness theorem. The system T5, in 
language L5, has the following nonlogical axioms. 
 
NONLOGICAL AXIOMS FOR T5 
 
PAIRING 
 
P(v1,v2) = P(v3,v4) → v1 = v3 ∧ v2 = v4.  
 
L5 COMPREHENSION 
 
(∃A1)(∀v1)(v1 ∈ A1 ↔ ϕ), where ϕ is a formula of L5 in which 
A1 is not free.  
 
EXTENSIONAITY 
 
(∀v1)(v1 ∈ A1 ↔ v1 ∈ A2) → A1 = A2.  
 
CHOICE OPERATOR 
 
v1 ∈ A1 → CHO(A1) ∈ A1. 
 
POSITIVE CLASSES 
 
(∀v1)(v1 ∈ A1 ∨ v1 ∈ A2) → POS(A1) ∨ POS(A2). 
POS(A1) ∧ POS(A2) → (∃v1 ≠ v2)(v1,v2 ∈ A1 ∧ v1,v2 ∈ A2).  
 
0-DEFINABLE CLASSES 
 
(∀v1)(v1 ∈ A1 ↔ ϕ) ∧ DEF(A2) ∧ ... ∧ DEF(An) → DEF(A1), 
where ϕ is a formula of L5 without DEF, with at most the 
free variables v1,A2,...,An, n ≥ 1. 
 
DIVINE OBJECT 
 
(∃v1)(∀A1)(DEF(A1) ∧ POS(A1) → v1 ∈ A1). 
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As discussed in section 3, T5 proves that there is no object 
that lies in every positive class. I.e., there is no 
perfect object. In section 3, we discussed the informal 
principle that we can approximate perfection without 
limitation.  
 
With this background, we say that an object is divine if 
and only if it is an element of all 0-definable positive 
classes. The Divine Object axiom asserts that there exists 
a divine object.  
 
Divine objects turn out to be surprisingly powerful 
approximations to perfection. In section 6, we use the 
existence of a divine object to give an interpretation of 
ZFC in T5. This is extended in section 7 by giving an 
interpretation of ZFC together with a rather substantial 
large cardinal hypothesis - the existence of arbitrarily 
large strong Ramsey cardinals. This is just short of the 
well known large cardinal hypothesis that asserts the 
existence of a measurable cardinal. See Definition 7.18. 
These interpretations also provide consistency and relative 
consistency proofs in the usual way.  
 
But how do we know that T5 is consistent - i.e., free of 
contradiction?  
 
We now present the standard models of T5 using measurable 
cardinals from set theory.  
 
DEFINITION 5.1. In set theory, a von Neumann cardinal κ is 
measurable if and only if κ is uncountable, and there is 
nontrivial κ complete ultrafilter U over κ. I.e., a 
nontrivial ultrafilter U over κ such that the intersection 
of fewer than κ many elements of U is an element of U. This 
is equivalent to: the intersection of fewer than κ many 
elements of U is nonempty.  
 
DEFINITION 5.2. ZFM is the theory ZFC + "there exists a 
measurable cardinal".  
 
ZFM is a very well studied system which is very much 
stronger than ZFC alone. See, e.g., [Ka94], [Je06].  
 
DEFINITION 5.3. The standard models of T5 are 
(κ,℘(κ),∈,P,CHO,POS,DEF), where P:κ2 → κ is one-one, 
CHO:℘(κ) → κ, A ≠ ∅ → CHO(A) ∈ A, POS is a nontrivial κ 
complete ultrafilter over κ, and DEF is the set of all 
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subsets of κ that are 0-definable over 
(κ,℘(κ),∈,P,CHO,POS). 
 
DEFINITION 5.4. EFA = exponential function arithmetic, is 
our notation for a system that later became known as 
IΣ0(exp). See [HP93], p. 37.  
 
The first claim of Theorem 5.1 is an interpretability 
result. The second claim is a consistency proof. The third 
claim is a relative consistency proof. All three of these 
results establish that T5 is "all right" assuming that ZFM 
is "all right".  
 
The main point of this paper goes the other direction. That 
ZFC is "all right" assuming T5 is "all right" - see Theorem 
6.27. Moreover, that something just shy of ZFM is "all 
right" assuming T5 is "all right" - see Theorem 7.34.  
 
THEOREM 5.1. ZFM proves that the structures in Definition 
5.3 are models of T5. T5 is interpretable in ZFM. ZFM proves 
the consistency of T5. EFA proves Con(ZFM) → Con(T5). 
 
Proof: All of the axioms of T4 obviously hold in the 
(κ,℘(κ),∈,P,CHO,POS,DEF) of Definition 5.3. Since there are 
fewer than κ many (in fact, only countably many) subsets of 
κ that are 0-definable over (κ,℘(κ),∈,P,CHO,POS), the 
intersection of those that have POS (i.e., lie in the 
nontrivial κ complete ultrafilter) is nonempty (in fact, has 
POS). Any element of this intersection is therefore divine.  
 
This provides an interpretation of T5 in ZFM. Also ZFM 
obviously proves the consistency of T5 since ZFM proves the 
existence of a model of T5. The last claim follows from the 
interpretability of T5 in ZFM.  
 
The third claim follows immediately from the fact that the 
first claim is provable in EFA. QED 
 
Note that we have only used that the intersection of 
countably many elements of the ultrafilter over κ is 
nonempty. Thus we only need a weaker condition on the 
ultrafilter, called countable completeness. 
 
DEFINITION 5.5. A countably complete ultrafilter over a set 
D is an ultrafilter U where the intersection of any 
countable number of elements of U is an element of U. This 
is equivalent to: the intersection of any countable number 
of elements of U is nonempty.  
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It is well known that the existence of a nontrivial 
countably complete ultrafilter is equivalent to the 
existence of a measurable cardinal, over ZFC. See, e.g., 
[Ka94], p. 23.  
 
It is natural to expand our set theoretic models of T5 in 
the following way. 
 
DEFINITION 5.6. The preferred models of T5 are 
(D,℘(D),∈,P,CHO,POS,DEF), where P:D2 → D is one-one, 
CHO:℘(D) → D, A ≠ ∅ → CHO(A) ∈ A, POS is a nontrivial 
countably complete ultrafilter over D, and DEF is the set 
of all subsets of D that are 0-definable over 
(D,℘(D),∈,P,CHO,POS). 
 
6. Interpreting ZFC in T5.  
 
In this section, we interpret ZFC in T5. We work in T5, 
developing the interpretation. We carry out the development 
in T4 for as long as we can, before using the powerful 
Divine Object axiom of T5.   
 
DEFINITION 6.1. V is the class of all objects. Relations on 
V are treated as classes using the pairing function P. 
Functions are treated as relations.  
 
DEFINITION 6.2. A well ordering is a pair (A,<), where A 
and < ⊆ A2 are classes, such that < is irreflexive, 
transitive, connected, and where every nonempty B ⊆ A has 
an R least element. Define x ≤ y ↔ x < y ∨ x = y. Define 
<[x] = {y: y < x}, ≤[x] = {y: y ≤ x}, >[x] = {y: x < y}, 
≥[x] = {y: x ≤ y}. x is a < limit point if and only if x is 
not < least and x has no immediate predecessor in <. If x 
is not < greatest, define x+1 to be the immediate successor 
of x in <. If x is not a limit point and not < least, 
define x-1 to be the immediate predecessor of x in (A,<). 
 
DEFINITION 6.3. A ⊆ V is finite if and only if A is empty, 
or there is a well ordering (A,<) with a < greatest object 
and without a < limit point. A is infinite if and only if A 
is not finite.  
 
LEMAM 6.1. (T1). Let (A,<) be a well ordering with a < 
greatest element and without a < limit point. Then < 
induction holds. I.e., suppose 0 ∈ B ∧ (∀x ∈ A)(x ∈ B → 
x+1 ∈ B), where 0 is < least. Then A ⊆ B.  
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Proof: Let A,<,0,B be as given. Let x be < least such that 
x ∉ B. Now x = 0 ∨ x is a < successor ∨ x is a < limit 
point. None of these three disjuncts are possible. QED 
 
LEMMA 6.2. (T1). Let (A,<) be a nonempty linear ordering 
(irreflexive, transitive, connected), with no < greatest 
element. Then A is infinite. 
 
Proof: Let (A,<) be as given, and assume A is finite. Let 
(A,<') be a well ordering, with a <' greatest element, and 
with no <' limit points. We prove by <' induction (Lemma 
6.1) that (∀x ∈ A)(∃y ∈ A)(∀z <' x)(z < y). This induction 
is clear using that there is no < greatest element. Now 
apply this quantified statement to the <' greatest element, 
resulting in a contradiction. QED 
 
LEMMA 6.3. (T1). V is infinite. 
 
Proof: Suppose V is finite. Let < be a well ordering of V 
with a < greatest object, and with no < limit points.  
 
We first prove by < induction on x that every one-one f:≤[x] 
→ ≤[x] is onto. This is obvious if x is < least. Suppose 
this is true for x. Let f:≤[x+1] → ≤[x+1] be one-one. Let g 
be f restricted to the subdomain ≤[x]. 
 
case 1. f(x+1) = x+1. By the induction hypothesis, rng(g) = 
≤[x]. Therefore f is onto.  
 
case 2. f(x+1) ≠ x+1. Now f(x+1) ∉ rng(g). If x+1 ∉ rng(g) 
then by the induction hypothesis, rng(g) = ≤[x], 
contradicting f(x+1) ∉ rng(g).  
 
If x+1 ∈ rng(g), then let g(b) = x+1. Let h be the same as 
g except h(b) = f(x+1). By the induction hypothesis, rng(h) 
= ≤[x]. Hence rng(g) = ≤[x+1]\{f(x+1)}. Hence rng(f) = 
≤[x+1]. This completes the induction argument. 
 
By setting x to be the < greatest object, we see that every 
one-one f:V → V is onto. But let a ≠ b (since there are at 
least two objects). Then the function f(x) = P(a,x) is one-
one, but does not achieve P(b,b). This is a contradiction. 
QED 
 
DEFINITION 6.4. We say that (A,R) is critical if and only 
if (A,R) is a well ordering, and for all x ∈ A, x = CHO({y: 
¬R(y,x)}). 
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LEMMA 6.4. (T2). Let (A,R),(B,S) be critical. There is a 
longest common initial segment. (A,R) is an initial segment 
of (B,S) or (B,S) is an initial segment of (A,R).  
 
Proof: Let A,B,R,S be as given. By well foundedness, there 
is a longest initial segment (C,T) of (A,R) that is an 
initial segment of (B,S). If C = A then (A,R) is an initial 
segment of (B,S). If C = B then (B,T) is an initial segment 
of (B,S), and so S = T and (B,S) is an initial segment of 
(A,R).  
 
The remaining case is where C ≠ A ∧ C ≠ B. Since C ⊆ A ∩ B, 
let x be R least outside C, and y be S least outside C. Now 
the R predecessors of x and the S predecessors of x are the 
same (the elements of C). By the definition of critical, x 
= y. This contradicts that (C,T) is longest. QED  
 
We refer to the second claim of Lemma 6.4 as critical 
comparability. 
 
LEMMA 6.5. (T2). Let A be the union of the domains of the 
critical well orderings, and R be the union of the 
relations of the critical well orderings. Then (A,R) is 
critical.  
 
Proof: Let A,R be as given. Obviously R ⊆ A2 and (A,R) is 
irreflexive. To see that (A,R) is transitive, let x R y R 
z. Let (B,S),(C,T) be critical, where S(x,y) ∧ T(y,z). By 
critical comparability, T(x,z) ∨ S(x,z). Hence R(x,z).  
 
To see that (A,R) is connected, let x ≠ y, x,y ∈ A. Let x ∈ 
B, y ∈ C, (B,S),(C,T) critical. By critical comparability, 
T(x,y) ∨ T(y,x) ∨ S(x,y) ∨ S(y,x). Hence R(x,y) ∨ R(y,x).  
 
To see that (A,R) is well ordered, let E ⊆ A, E ≠ ∅. Let x 
∈ E, x ∈ B, (B,S) critical. Let y be the S least element of 
E ∩ B. We claim that y is the R least element of E. To see 
this, let z R y, z ∈ E. Let T(z,y), (C,T) critical. By 
critical comparability, S(z,y). This contradicts the choice 
of y.  
 
To see that (A,R) is critical, let x ∈ A, x ∈ B, (B,S) 
critical. Then x = CHO(V\{a: a S x}). It suffices to prove 
that (∀y)(R(y,x) ↔ S(y,x)). Clearly S(y,x) → R(y,x). 
Suppose R(y,x). Let T(y,x), (C,T) critical. Since x,y ∈ B ∩ 
C, we have S(y,x). QED 
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LEMMA 6.6. (T2). There is a unique critical well ordering 
(V,<). (T4). DEF(<). 
 
Proof: Let (A,R) be as given by Lemma 6.3. Suppose A ≠ V. 
Let x = CHO(V\A). Then we can extend (A,R) by putting x ∉ A 
on top. The result is a critical (A ∪ {x},R'), 
contradicting the definition of (A,R). Note that (A,R) has 
been explicitly defined without parameters using only 
∈,P,CHO, and equality between objects and between classes. 
Hence DEF(<) by 0-Definable Classes. QED 
 
DEFINITION 6.5. A is negative if and only if A is not 
positive. DEF(A1,...,An) ↔ DEF(A1) ∧ ... ∧ DEF(An). 
 
LEMMA 6.7. (T4). There is a well ordering (V,<*) with 
DEF(<*) such that each ≤*[x] is negative. Every finite set 
is negative. 
 
Proof: Let < be as given by Lemma 6.6. Suppose some ≤[x] is 
positive. Let x be < least such that ≤[x] is positive. Then 
<[x] is positive and DEF({x}).  
 
Let <* be the result of removing ≥[x] and putting it at the 
bottom. Then (V,<*) is a well ordering, and DEF(<*). Let y 
∈ V. If y <* x then ≤[y] is negative, and so ≤*[y] is 
negative, since ≥[x] is negative. If y ≥ x then ≤*[y] ⊆ 
≥[x], and so ≤*[y] is also negative.  
 
For the second claim, let A be finite. We can assume A ≠ ∅. 
Let (A,<) be a well ordering with a greatest element and no 
limit point. It suffices to show that for all x ∈ A, ≤[x] 
is negative. Let x be the < least counterexample. Then x is 
not the < least element of A. Now ≤[x-1] is negative. Hence 
≤[x] is negative, and we have a contradiction. QED 
 
DEFINITION 6.6. <* is as given by Lemma 6.6. 0 is the <* 
least element. 1 is the immediate successor of 0 in <*. x+1 
is the immediate successor of x in <*, if it exists.  
 
LEMMA 6.8. (T4). There is no <* greatest object. <* 
induction holds if  <*[x] is finite. I.e., suppose 0 ∈ A ∧ 
(∀x ∈ A)(<*[x] finite → x+1 ∈ A). Then (∀x)(<*[x] finite 
→ x ∈ A).   
 
Proof: Let x be <* greatest. Then ≤*[x] is negative by Lemma 
6.7. But ≤*[x] = V, which is positive. There is no <* 
greatest object, and hence every x+1 exists. 
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For the second claim, let A be as given, and let x be <* 
least such that x ∉ A and <*[x] is finite. Then x ≠ 0 and x 
is not a <* successor. Hence x is a <* limit point, which 
contradicts that <*[x] is finite, by Lemma 6.2. QED 
 
DEFINITION 6.7. sup(A) is the <* least object x with (∀y ∈ 
A)(y <* x), provided such an x exists. Otherwise, we take 
sup(A) = ∞.  
 
DEFINITION 6.8. (x,f) is a reduction if and only if  
i. dom(f) = V ∧ sup(rng(f)) = x. 
ii. For all y <* x, f-1(y) is negative. 
iii. DEF(f).  
(x,f) is a semi reduction if and only if the above holds, 
with sup(rng(f)) ≤* x.  
 
DEFINITION 6.9. We use γ for the <* least object such that 
there is a reduction (γ,f), provided there is some 
reduction. Otherwise, we take γ = ∞, which is not considered 
to be an object. If γ ≠ ∞ then we use J for a fixed function 
such that (γ,J) is a reduction. If γ = ∞ then we use J for 
the identity function on V. We extend <* to V ∪ {∞}. We 
continue to use letters x,y,z,w,u,v,... for objects 
(elements of V) only.  
 
LEMMA 6.9. (T4). If (x,f) is a reduction then DEF({x}). If 
(x,f) is a semi reduction then (sup(rng(f)),f) is the 
unique reduction with second term f. If (x,f) is a semi 
reduction then γ ≤* x. Suppose γ ≠ ∞. Then DEF({γ}), and γ is 
a <* limit point.  
 
Proof: Let (x,f) be a reduction. Since x = sup(rng(f)), we 
have DEF({x}). The second claim is immediate. For the third 
claim, let (x,f) be a semi reduction. Then (sup(rng(f)),f) 
is a reduction, and so γ ≠ ∞ and γ ≤* sup(rng(f)) ≤* x.  
 
Now suppose γ ≠ ∞. By the first claim, DEF({γ}). Obviously γ 
≠ 0.  
 
Let γ = x+1. Let f(y) = H(y) if J(y) <* x; 0 if J(y) = x. 
Note that f-1(0) = J-1(0) ∪ J-1(x), which is negative. Also 
DEF(f), since DEF({γ},{x},f,{0}). Hence (x,f) is a semi 
reduction, x <* γ. Hence there is a reduction (y,f), y ≤* x 
<* γ, by the previous claim. This is a contradiction. QED 
 
Note that if γ = ∞, then we can still use γ as if DEF({γ}). 
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LEMMA 6.10. (T4). If x <* γ then J-1[<*[x]] is negative. Let 
f:<*[γ] → <*[x] be partially defined, dom(f) is positive, x 
<* γ, and DEF(f). Then some f-1(y) is positive.  
 
Proof: If γ = ∞ then J-1[<*[x]] = <*[x], which is negative 
by Lemma 6.7. Assume x <* γ ≠ ∞. Suppose J-1[<*[x]] is 
positive. Define f:V → <*[x] by f(y) = J(y) if J(y) <* x; 0 
otherwise. Since the default set is negative, we see that 
(x,f) is a semi reduction, x <* γ. By Lemma 6.9, γ ≤* x, 
which is a contradiction.  
 
For the second claim, let f be as given. We can assume that 
x is <* least such that rng(f) ⊆ <*[x]. Extend f to g:<*[γ] 
→ <*[x], where g is 0 off of dom(f). Then DEF(g). If all g-
1(y) are negative, then (x,g) is a reduction. But this 
contradicts the definition of γ. QED   
 
LEMMA 6.11. (T4). Let x <* γ, f:<*[x] → <*[γ], and DEF(f). 
Then sup(rng(f)) <* γ.  
 
Proof: let x,f be as given. Suppose sup(rng(f)) = γ. Note 
that DEF({x}). Define g:V → <*[x] by g(z) = min{w <* x: 
J(z) <* f(w)}. Note that g is well defined since 
sup(rng(f)) = γ. Also DEF(g).  
 
Let y <* x. We claim that g-1(y) ⊆ J-1[<*[f(y)]]. To see 
this, suppose g(z) = y = min{w <* x: J(z) <* f(w)}. In 
particular, y ∈ {w <* x: J(z) <* f(w)}. I.e., J(z) <* f(y), 
as required. 
 
By Lemma 6.10, J-1[<*[f(y)]] is negative, since f(y) < γ. 
This establishes that (x,g) is a semi reduction, x <* γ. 
This is a contradiction. QED 
 
DEFINITION 6.10. We treat f:A → ℘(B) as the corresponding 
class {P(x,y): y ∈ f(x)}, which is also a relation on A ∪ 
B.  
 
LEMMA 6.12. (T4). Let x <* γ. There is no one-one f:<*[γ] → 
℘(<*[x]) with DEF(f). Let g:<*[γ] → ℘(<*[x]) be partially 
defined and one-one, with DEF(g). Then dom(g) is a <* 
bounded subclass of <*[γ]. 
 
Proof: For the first claim, let x <* γ. Let f:<*[γ] → 
℘(<*[x]) be one-one, with DEF(f).  
 
We first define a special E ⊆ <*[x]. For each w <* x, we 
look at {z: w ∈ f(J(z))} and {z: w ∉ f(J(z))}. One of these 
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is positive and the other is negative. E consists of the w 
for which the first of these two sets is positive. 
Obviously DEF(E). 
 
We now define g:V → <*[x]. Set g(z) = min(E Δ f(J(z))} if 
this exists; 0 otherwise. Clearly DEF(g). We show that 
(x,g) is a semi reduction. This is a contradiction since x 
< γ. 
 
In this definition of g, the default applies for g(z) if 
and only if f(J(z)) = E (in which case, we are taking the 
min of ∅, which does not exist). I.e., when J(z) = f-1[(E). 
Here we are inverting f at the point E, as f is one-one. 
(If f-1(E) does not exist, or if it lies outside rng(J), 
then there is no default in the definition of g). Thus the 
default applies only for z in a single J-1(u), u <* γ, or 
not at all. In any case, the default applies only on a 
negative class of z's.  
 
It now suffices to show that for all w <* x, {z: min(E Δ 
f(J(z)) = w} is negative. This is because {z: min(E Δ 
f(J(z)) = w} is the same as g-1(w) off of the negative 
default class of z's.  
 
case 1. w ∈ E. Then {z: min(E Δ f(J(z)) = w} ⊆ {z: w ∉ 
f(J(z)).  If g(z) = w then w ∉ f(J(z)). Hence z lies in the 
negative set {z: w ∉ f(J(z))}. This set is negative because 
w ∈ E.  
 
case 2. w ∉ E. Then {z: min(E Δ f(J(z)) = w} ⊆ {z: w ∈ 
f(J(z)). This set is negative because w ∉ E.  
 
This completes the proof of the first claim. For the second 
claim, let g:<*[γ] → ℘(<*[x]) be partially defined, with 
DEF(g). Suppose dom(g) is <* unbounded in γ. Let h be the 
unique order preserving comparison between (<*[γ],<*) and 
(dom(g),<*). Then DEF(h). By Lemma 6.11, it is clear that h 
is an isomorphism. Now let f:<*[γ] → ℘(<*[x]), where f(z) = 
g(h(z)). Then DEF(f), and apply the first claim to f,x. QED 
 
LEMMA 6.13. (T4). Suppose <*[x] is finite. Then DEF(x). 
Every A ⊆ <*[x] has DEF(A). 
 
Proof: The first claim is by an obvious induction on the x 
<* γ with <*[x] finite (see Lemma 6.8). For the second 
claim, we prove by induction on the x <* γ with finite 
<*[x], that (∀A)(A ⊆ <*[x] ∧ A finite → DEF(A)). This is 
clearly true for x = 0. Suppose this is true for fixed x <* 
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γ with finite <*[x]. Let A ⊆ <*[x+1] be finite. Then A\{x} 
is finite, and so by the induction hypothesis, DEF(A\{x}). 
Since DEF({x}), we have DEF(A). QED 
 
We now use the Divine Object axiom for the first time.  
 
DEFINITION 6.11. x is divine if and only if (∀A)(DEF(A) ∧ 
POS(A) → x ∈ A). Note that by the Divine Object axiom in 
T5, there is a divine object.  
 
LEMMA 6.14. (T5). Let x be divine. (∀y)(DEF({y}) → y <* x). 
¬DEF({x}) ∧ <*[x] is infinite. If γ ≠ ∞ then x >* γ. 
(∃z)(<*[z] is infinite). The class K of all divine objects 
has ¬DEF(K). 
 
Proof: Let x is divine. Let DEF({y}). By Lemma 6.7, >*[y] 
is positive and DEF(>*[y]). Hence x ∈ >*[y], y <* x. 
 
From the first claim, ¬DEF({x}). Suppose <*[x] is finite. 
By the induction in Lemma 6.8, we see that DEF(<*[x]), 
which is a contradiction.  
 
Suppose γ ≠ ∞. Then DEF({γ}), DEF(<*[γ]), and by Lemma 6.7, 
≤*[γ] is negative. Hence x ≥* γ.  
 
By the second claim, <*[x] is infinite. Hence (∃z)(<*[z] is 
infinite). 
 
If the class K of all divine objects has DEF(K), then let x 
be the <* least element of K. Clearly DEF({x}) and x is 
divine. This contradicts the second claim. QED 
 
DEFINITION 6.12. ω is the <* least object such that <*[ω] 
is infinite. 
 
LEMMA 6.15. (T5). DEF(ω). ω <* γ.  
 
Proof: DEF(ω) by Definition 6.12. By Lemma 6.9, γ is a <* 
limit point. Hence <*[γ] is infinite. Therefore ω ≤* γ.  
 
Now suppose γ = ω. Then (ω,J) is a reduction. Let x be 
divine, and J(x) = n <* ω. Now J-1(n) is negative. By Lemma 
6.13, DEF({n}), DEF(J-1(n)).  Therefore x ∉ J-1(n). But x ∈ 
Js(n), and we have a contradiction. Hence ω <* γ. QED 
 
We now want to code the constructible hierarchy up through 
γ. For this purpose, we will need the "0-definable 
regularity" of γ afforded by Lemma 6.11.  
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Throughout this section, and even section 7, we will 
operate under ignorance as to whether γ = ∞ or γ ≠ ∞. We are 
able to argue uniformly. We will also freely use ω, and so 
we will from now on just consider our claims to be proved 
in T5. 
 
We now sharpen Lemma 6.11. 
 
DEFINITION 6.13. A is a <* bounded subclass of <*[γ] if and 
only if sup(A) <* γ. B is a <* bounded subclass of <*[γ]2 if 
and only if there exists x <* γ such that for all (y,z) ∈ B, 
y,z <* x.  
 
LEMMA 6.16. Let f:V → <*[γ] be partially defined, where 
DEF(f). Then f maps <* bounded subclasses of <*[γ] onto <* 
bounded subclasses of <*[γ]. Let g:V2 → <*[γ] be partially 
defined, where DEF(g). Then g maps <* bounded subclasses of 
<*[γ]2 onto <* bounded subclasses of <*[γ]. 
 
Proof: The first claim follows from the second easily by 
using g(x,x). 
 
For the second claim, let g be as given. Suppose this is 
false, and let x be <* least such that x <* γ and g[<*[x]2] 
is <* unbounded in <*[γ]. Then DEF({x}).  
 
We claim that for all y <* γ, sup({g(y,z): z <* x}) <* γ. 
Suppose this is false, and let y be <* least such that y <* 
x and sup({g(y,z): z <* x}) = γ. Then DEF({y}), and we can 
apply Lemma 6.11 to the function g(y,z), with y fixed. 
Hence sup({g(y,z): z <* x}) <* γ. This contradicts the 
choice of y. 
 
We now define h:<*[γ] → <*[γ] by h(y) = sup({g(y,z): z <* 
x}) <* γ, using the claim in the previous paragraph. Then by 
Lemma 6.11, sup(rng(h)) <* γ. But clearly sup(rng(h)) = 
sup({g(y,z): z <* x}) <* γ. This contradicts the choice of 
x. QED 
 
The pairing function P is rather uncontrolled. E.g., P(0,0) 
might even be larger than γ (although of course this can't 
happen if γ = ∞). We need a pairing function that maps 
<*[γ]2 into <*[γ].  
 
DEFINITION 6.14. (x,y) <' (z,w) ↔ max(x,y) <* max(z,w) ∨ 
(max(x,y) = max(z,w) ∧ (x,y) <lex (z,w)). Here max and <lex 
are with respect to <*. 
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LEMMA 6.17. (V2,<') is a well ordering.  
 
Proof: <' is obviously irreflexive. Let (x,y) <' (z,w) ∧ 
(z,w) <' (u,v). Clearly max(x,y) ≤* max(z,w) ≤* max(u,v). If 
not all three of these max's are equal, then (x,y) <' 
(u,v). So assume that all three max's are equal. Then (x,y) 
<lex (z,w) <lex (u,v). Therefore (x,y) <' (u,v).  
 
Let (x,y) ≠ (z,w). If max(x,y) ≠ max(z,w) then (x,y) <' 
(z,w) ∨ (z,w) <' (x,y). So assume that max(x,y) = max(z,w). 
If (x,y) <lex (z,w) then (x,y) <' (z,w). If (z,w) <lex (x,y) 
then (z,w) <' (x,y).  
 
Let A ⊆ V2 be nonempty. Cut down to the elements of A with 
<* least possible max. Then cut down to those with <* least 
possible first coordinate. Then pick the one with <* least 
second coordinate. This is the <' least element of A. QED 
 
DEFINITION 6.15. We say that f is a (<',x,y) function if 
and only if  
i. f:<'[(x,y)] → V. 
ii. For all (z,w) <' (x,y), f(z,w) = sup({f(u,v): (u,v) <' 
(z,w)}). 
 
LEMMA 6.18. If f is a (<',x,y) function and g is a (<',z,w) 
function, then f ⊆ g ∨ g ⊆ f. For all x,y <* γ, there is a 
unique (<',x,y) function. The range of this function is a 
<* bounded subset of <*[γ].  
 
Proof: The first claim is easily proved by using the <' 
least (u,v) such that f(u,v) ≠ g(u,v).  
 
We now prove the remaining claims. Let (x.y) be <' least 
with x,y <* γ, such that there is no (<',x,y) function f 
with sup(rng(f)) < γ. Then x is unique such that there 
exists y such that (x,y) is <' least with this property, 
and y is unique such that (x,y) is <' least with this 
property. Hence DEF({x}), and therefore DEF({y}).  
 
Clearly (x,y) is not <' least. I.e., (x,y) ≠ (0,0).  
 
case 1. (x,y) is a <' immediate successor. Let (x,y) be the 
<' immediate successor of (z,w). Then z,w <* γ. Also 
DEF({z},{w}). Let f be the (<',z,w) function. By the choice 
of (x,y), sup(rng(f)) <* γ. Also DEF(f). Extend f at (z,w) 
by f'(z,w) = sup(rng(f)). Then DEF(f'), and sup(rng(f')) <* 
γ. This contradicts the choice of (x,y).    
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case 2. (x,y) is a <' limit point. Let g be the union of 
the various (<',z,w) functions, where (z,w) <' (x,y). This 
union is a function by the first claim. Clearly DEF(g), and 
g is a (<',x,y) function. Note that g is a partial function 
from ≤*[max(x,y)]2 into <*[γ]. By Lemma 6.16, sup(rng(g)) <* 
γ. This contradicts the choice of (x,y).  
 
Thus we have a contradiction. Hence For all (x,y) <* γ, 
there is a (<',x,y) function f with sup(rng(f)) <* γ. By the 
first claim, f is unique. QED 
 
DEFINITION 6.16. We define P*(x,y) for x,y <* γ as follows. 
Let (x',y') be the <' immediate successor of (x,y). Let f 
be the unique <'(x',y') function. Define P*(x,y) = 
f(x',y'). For other x,y, P*(x,y) is undefined.  
 
LEMMA 6.19. P*:<*[γ]2 → <*[γ] is one-one with DEF(P*). x,y 
≤* P*(x,y). 
 
Proof: DEF(P*) by Definition 6.16. Now let P*(x,y) = 
P*(z,w). We want x = z ∧ y = w. By symmetry, assume (x,y) 
<' (z,w). Let (x',y'),(z',w') be the <' immediate 
successors of (x,y),(z,w), respectively. Clearly 
x',y',z',w' <* γ, (x',y') <' (z',w'). 
 
By Lemma 6.18, let f,g be the (<',x',y'),(<',z',w') 
functions, respectively. By Lemma 6.18, f ⊆ g. Also P*(z,w) 
= g(z,w) = sup({g(u,v): (u,v) <' (z,w)}). Hence f(x,y) = 
g(x,y) = P*(x,y) <* f(z,w) = P*(z,w), which is a 
contradiction.  
 
For the second claim, suppose this is false. Let (x,y) be 
<' least such that x,y ≤* P*(x,y) is false. Then (x,y) ≠ 
(0,0). Suppose (x,y) is the <' immediate successor of 
(z,w). Clearly max(x,y) ≤* max(z,w)+1 ≤* P*(z,w)+1 = 
P*(x,y). Let (x,y) be a <' limit point. For all (z,w) <' 
(x,y), z,w ≤* P*(z,w). Now P*(x,y) = sup({P*(z,w): (z,w) <' 
(x,y)} ≥* sup({max(z,w): (z,w) <' (x,y)}) ≥* max(x,y). Thus 
x,y ≤* P*(x,y), which contradicts the choice of (x,y). This 
is a contradiction. QED 
 
DEFINITION 6.19. We extend P* to any standard arity ≥ 2, 
left associatively, by P*(x1,...,xn) = 
P*(...(P*(x1,x2),...,xn). We say that f is a finite sequence 
if and only if f:<*[x] → V, for some x <* ω. The length of 
f, lth(f), is x.  
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DEFINITION 6.20. Let f be a finite sequence of length x. A 
P* sequence for f is a finite sequence g of length x such 
that  
i. 0 <* x → g(0) = P*(x,0,f(0)). 
ii. (∀y+1 <* x)(g(y+1) = P*(x,g(y),f(y+1))).  
 
LEMMA 6.20. Every finite sequence into <*[γ] has a unique P* 
sequence into <*[γ]. 
  
Proof: By obvious induction arguments along lengths x <* ω. 
Use x,y <* γ → P*(x,y) <* γ. QED  
 
DEFINITION 6.21. Let f be a finite sequence of length x 
into <*[γ]. y is a P* code for f if and only if y = g(x-1) 
if x ≠ 0; P(0,0,0) otherwise, where g is the P* sequence 
for f. A P* code is a P* code for some finite sequence into 
<*[γ]. B has a P* code if and only if B is a finite sequence 
into <*[γ].     
 
LEMMA 6.21. Two finite sequences into <*[γ] have the same P* 
code if and only if they are equal. (∀x <* γ)(∃y <* γ)(∀z,w 
<* x)(P*(z,w) <* y).   
 
Proof: Suppose x,y are finite sequences into <*[γ] with 
different lengths. Their P* codes are of the form 
P*(lth(x),z,w) and P*(lth(y),u,v), respectively. Hence 
their P* codes are not equal. 
 
We prove by induction on x <* ω that any two finite 
sequences f,g, with lth(f) = x, and the same P* code, are 
equal. The basis case x = 0 is immediate, as there is 
exactly one finite sequence of length 0. Suppose this is 
true for fixed x ≠ 0. 
 
Let f',g' be the P* sequences for f,g, respectively. We 
prove by backwards induction i = x-1,...,0, that f(i) = 
g(i). To see this, clearly f'(x-1) = g'(x-1), as these are 
the P* codes for f,g, respectively. Suppose f'(z) = g'(z), 
z ≠ 0. Then P*(x,f'(z-1),f(z)) = P*(x,g'(z-1),g(z)), and so 
f'(z-1) = g'(z-1).  
 
Since f' = g', we see that for all 0 ≠ i <* x, f(i) = g(i), 
and also f(0) = g(0). Hence f = g.    
 
The second claim follows immediately from Lemma 6.16. QED   
 
LEMMA 6.22. Let x <* γ. The P* codes of finite sequences 
into <*[x] form a <* bounded subclass of <*[γ].  
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Proof: Suppose this is false, and let x <* γ be the <* least 
counterexample. Then DEF({x}). We first show that for all y 
<* ω, the P* codes of length y sequences into <*[x] form a 
<* bounded subclass of <*[γ].  
 
Let y <* ω. We show by induction that for all i <* y, 
{g(i): g is a P* sequence for some finite sequence of 
length y into <*[x]} is <* bounded in <*[γ]. The basis case 
is obvious, and the induction step is clear using the 
second claim of Lemma 6.21.  
 
By setting i = y-1, we see that the P* codes of finite 
sequences of length y into <*[x] are bounded in <*[γ]. (The 
case y = 0 is trivial).   
 
Define g:<*[ω] → <*[γ] by g(y) = the sup of the P* codes of 
length y sequences into <*[x]. Then DEF(g). By Lemma 6.16, 
sup(rng(g)) <* γ. QED 
 
DEFINITION 6.22. Let x be a P* code. lh(x) is lth(f), where 
the P* code of f is x. x<y> is f(y), where the P* code of f 
is x. Note that x<y> is defined if and only if y <* lh(x).  
 
We are now in a position to code the constructible 
hierarchy below γ. We freely assume standard Gödel 
numberings of formulas in the language LST of set theory, 
which is based on ∈,=, and using variables v1,v2,... .   
 
DEFINITION 6.23. Let R ⊆ A2. SAT(A,R,x,y) if and only if  
i. x <* ω is a Gödel number of a formula ϕ of LST. 
ii. y is the P* code of a finite sequence f into A, where 
all subscripts of variables appearing in ϕ are <* lth(f). 
iii. (A,R) satisfies ϕ at the assignment f, where R 
interprets ∈. 
 
Definition 6.23 is formalized in T5 using Tarski's truth 
definition (satisfaction relation definition). This makes 
reference to a provably unique class that forms the 
relevant satisfaction relation.  
 
DEFINITION 6.24. A wfes (well founded extensional 
structure) is an (A,R), R ⊆ A2, where (∀x,y ∈ 
A)((∀z)(R(z,x) ↔ R(z,y)) → x = y), every nonempty subset 
of A has an element with no R predecessor from A, and A is 
a <* bounded subclass of <*[γ]. 
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DEFINITION 6.25. Let (A,R) be given, R ⊆ A2. x is a basic 
code over (A,R) if and only if  
i. x is the P* code of a nonempty finite sequence f into A. 
ii. {u ∈ A: SAT(A,R,f(0),u,f(1),...,f(lth(f)-1))} is not of 
the form {a ∈ A: R(a,b)}, b ∈ A.  
iii. {u ∈ A: SAT(A,R,f(0),u,f(1),...,f(lth(f)-1))} is not 
{u ∈ A: SAT(A,R,g(0),u,g(1),...,g(lth(g)-1))}, where the P* 
code of nonempty g is <* x.  
x is a code over (A,R) if and only if x = P*(y,sup(A)), 
where y is a basic code over (A,R). 
 
The last line of Definition 6.25 is to guarantee that the 
codes are higher than A in <*. 
 
DEFINITION 6.26. Let (A,R) be given, R ⊆ A2. FODO(A,R) = 
(B,S), where B is A union the class of all codes over 
(A,R), and S(u,x) if and only if R(u,x) ∨ (u ∈ A ∧ 
SAT(A,R,(f(0),u,f(1),...,f(lth(f)-1)))), where x = 
P*(y,sup(A)) and y is the P* code of f.  
 
DEFINITION 6.27. We say that (A,R) is an initial segment of 
(B,S) if and only if R ⊆ A2 ∧ S ⊆ B2 ∧ A = B ∩ <*[sup(A)] ∧ 
R = S ∩ A2. The union of a family of (A,R)'s is (B,S), where 
B is the union of the A's and S is the union of the R's. 
sup(A,R) = sup(A).  
 
LEMMA 6.23. Every wfes (A,R) is a proper initial segment of 
the wfes FODO(A,R).  
 
Proof: Let A,R be as given. The first component of 
FODO(A,R) is a <* bounded subclass of <*[γ] by Lemma 6.21. 
Extensionality in FODO(A,R) is clear by the construction in 
Definition 6.25. That (A,R) is an initial segment of 
FODO(A,R) is also clear by the construction in Definition 
6.25, as the new elements are ≥ sup(A) using Lemma 6.19. For 
the well foundedness of FODO(A,R), let X be a nonempty 
subset of dom(FODO(A,R)). If X ∩ A ≠ ∅, then use an R least 
element of X. Otherwise, use any new element.  
 
It remains to show that FODO(A,R) is not (A,R). We have 
only to show that some (A,R) definable B ⊆ A is not the set 
of R predecessors of any x ∈ A. Take B = {x ∈ A: ¬R(x,x)}. 
QED   
 
Recall the convention in Definition 6.10.  
 
DEFINITION 6.28. f is an L function if and only if f:<*[x] 
→ ℘(<*[γ]), where  
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i. x <* γ. 
ii. 0 <* x → f(0) = (∅,∅). 
iii. y+1 <* x → f(y+1) = FODO(f(y)). 
iv. Let y <* x, and y be a <* limit point. f(y) = ∪z<*yf(z).  
 
In T5, f:V → ℘(V) are interpreted as corresponding 
relations on V.  
 
LEMMA 6.24. If f,g are L functions then f ⊆ g ∨ g ⊆ f. For 
all x <* γ there exists a unique L function f:<*[x] → 
℘(<*[γ]). This unique f has sup(∪rng(f)) <* γ. Furthermore, 
for all y ≤* z <* x, f(y) is an initial segment of f(z), and 
f(y) is a wfes. 
 
Proof: Let f,g be L functions, and suppose (∃x)(f(x) ≠ 
g(x)). Let x be <* least such that f(x) ≠ g(x). Then f(x) = 
g(x), which is a contradiction. Hence f,g are comparable.  
 
We now prove that for all x <* γ, there exists an L function 
f:<*[x] → <*[γ] with sup(∪rng(f)) <* γ, and for all y ≤* z 
<* x, the wfes f(y) is a proper initial segment of the wfes 
f(z). Suppose this is false, and let x be the <* least 
counterexample. Obviously x ≠ 0, and DEF(x).  
 
case 1. x is a <* limit point. Let f be the union of the L 
functions whose domain is some <*[y], y <* x. This union is 
a function by the first claim. Clearly f:<*[x] → ℘(<*[γ]). 
By Lemma 6.16, sup(rng(f)) <* γ. Also, the initial segment 
property holds for f, since the initial segment property 
holds for the L functions whose domain is some <*[y], y <* 
x. 
 
case 2. x = y+1. Let f be the L function with f:<*[y] → 
<*[γ]. If y = 0 then extend f at 0 by f'(0) = (∅,∅). If y = 
z+1 then extend f at y by f'(y) = FODO(f(z)). Since 
sup(∪rng(f)) <* γ, we see that sup(∪rng(f')) <* γ, by Lemma 
6.22. Also the initial segment property holds by Lemma 
6.23. This contradicts the choice of x. 
 
Assume y is a <* limit point. Let f be the L function with 
f:<*[y] → <*[γ]. Let (A,R) = ∪sf(z). Since y <* x, 
sup(∪rng(f)) <* γ. From the initial segment property for f, 
we see that (A,R) is a wfes. Hence FODO(A,R) is a wfes. 
Extend f at y by f'(y) = (A,R). Then f' is an L function 
with f':<*[x] → <*[γ], sup(∪rng(f')) <* γ, and we have the 
initial segment property. This contradicts the choice of x. 
 



 45 

Thus we have arrived at a contradiction, and so for all x 
<* γ, there exists an L function f:<*[x] → <*[γ] with 
sup(∪rng(f)) <* γ, where for all y ≤* z <* x, f(y) is an 
initial segment of f(z), and f(y) is a wfes. QED 
 
DEFINITION 6.29. Let x <* γ. (L[x],E[x]) = f(x), where f is 
the L function with domain <*[x+1].  
 
LEMMA 6.25. (L[0],E[0]) = (∅,∅). For all x <* γ, 
(L[x+1],E[x+1]) = FODO(L[x],E[x]). For all <* limit points 
x <* γ, L[x] = ∪y<*xL[y], E[x] = ∪y<*xE[y]. For all x <* y <* 
γ, (L[x],E[x]) is an initial segment of (L[y],E[y]). For all 
x,y,z <* γ, (E[x](y,z) → y <* z) ∧ (z ∈ E[y]\E[x] → 
sup(E[x] <* z).  
 
Proof: The first four claims follow easily from Lemma 6.24 
using Definition 6.29. For the last claim, let x be the <* 
least counterexample. Clearly x ≠ 0. Let x = w+1. Since w 
has the property, x has the property by the FODO 
construction, and x,y ≤ P*(x,y) from Lemma 6.19. Let x be a 
<* limit point. Then x has the property, using that each y 
<* x has the property, and the initial segment claims in 
Lemma 6.24. We have contradicted the choice of x, and hence 
have a contradiction. QED 
 
DEFINITION 6.30. L = ∪x<*γL[x], E = ∪x<*γE[x]. 
 
LEMMA 6.26. DEF(L,E). E(x,y) → x <* y. L ∩ <*[y] ⊆ L[y]. 
 
Proof: DEF(L,E) is clear from the definitions of L,E. The 
second claim is by Lemma 6.24 and the last claim of Lemma 
6.25. For the third claim, let z ∈ L ∩ <*[y]. Let z ∈ L[w], 
z <* y. If w ≤* y then z ∈ L[y]. If w >* y then by Lemma 
6.24, (L[y],E[y]) is a proper initial segment of 
(L[w],E[y]). Hence z ∈ L[y]. QED  
 
THEOREM 6.27. T5 proves (L,E) is a model of ZF. T5 proves 
the consistency of ZFC, when formulated with standard 
formalized syntax. ZFC is interpretable in T5. EFA proves 
Con(T5) → Con(ZFC). 
 
Proof: In T5, we can define the satisfaction relation over 
(L,E), no matter whether γ = ∞ or γ < ∞. The axioms of 
extensionality, pairing, union, infinity, foundation are 
easily verified. This leaves separation, power set, and 
replacement.  
 



 46 

Separation is verified by adapting the standard argument 
using Skolemization, in order to pull down a formula ϕ with 
unbounded quantifiers, and parameters from some L[x], to a 
formula ψ with quantifiers bounded to some L[y], where ϕ,ψ 
are equivalent for all parameters from some L[x]. Here ψ 
depends only on ϕ, and y depends only on x,ϕ. In the sense 
internal to (L,E), the required set lies in L[y+1]. This 
pulling uses the regularity of γ given by Lemma 6.16.   
 
Replacement is established by first using the regularity of 
γ given by Lemma 6.16, and then applying separation. 
 
For power set, we show that (∀x)(∃y)(∀z)((L,E) satisfies z 
⊆ x → z ∈ L[y]). This suffices, since we have already 
established Separation in (L,E). 
 
Suppose this is false, and let x be the <* least 
counterexample. Then DEF(x).  
 
We define partial f:<*[γ] → ℘(<*[γ]) by f(z) = {w: E(w,z)} 
if (L,E) satisfies z ⊆ x; undefined otherwise. Then DEF(f). 
By extensionality in (L,E), f is one-one. Also for all z ∈ 
dom(f), f(z) ∈ ℘(<*[x]) by Lemma 6.26. By Lemma 6.12, let y 
= sup(dom(f)). By Lemma 6.26, L ∩ <*[y] ⊆ L[y]. Hence 
(∀z)((L,E) satisfies z ⊆ x → z ∈ L[y]). This contradicts 
the choice of x.  
 
Thus we have proved the first two claims. For the third 
claim, note that ZFC is interpretable in ZF. The fourth 
claim follows easily from the second claim. QED 
 
7. Interpreting a strong extension of ZFC in T5.  
 
In this section, we extend Theorem 6.26 to ZFC + "there are 
arbitrarily large strong Ramsey cardinals". See Definition 
7.18.  
 
We use the development and notation from section 6. The 
ideas are an adaptation of the well known inner model 
construction L[U], where U is a nontrivial κ complete 
ultrafilter on a measurable cardinal κ, to the present 
context. See, e.g., [Ka94], p. 261.  
 
One difference in the present construction is that we are 
not sitting inside a model of ZFC above γ. Recall that we 
have only γ ∈ V ∨ γ = ∞, and we are arguing uniformly under 
both cases. Thus we will not be getting a model of ZFC + 
"there exists a measurable cardinal". We know that we 
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cannot get such a model from T5 because of the last claim in 
Theorem 5.1.  
 
Another difference is that we cannot normalize the 
ultrafilter given by POS before starting the construction. 
Usually, in set theory, with L[U] type constructions, the 
filter is normalized first before constructing from it. We 
will, however, still get an internal γ complete ultrafilter, 
which, internally, can be normalized - even though we are 
not sitting within a model of ZFC. Then the normal γ 
complete ultrafilter is used in familiar ways to prove the 
existence of arbitrarily large  strong Ramsey cardinals 
below γ. This will be enough to get a model of ZFC with 
arbitrarily large strong Ramsey cardinals.  
 
We argue entirely in T5.  
 
DEFINITION 7.1. Let (A,T) be a well ordering. An end 
extension of (A,T) is a well ordering (A',T') such that  
i. A ⊆ A' ∧ T ⊆ T'. 
ii. y ∈ A ∧ T'(x,y) → x ∈ A. 
A proper end extension of (A,T) is an end extension which 
is not (A,T).  
 
In this section, in a typical well ordering (A,T), A is a 
<* unbounded subclass of <*[γ], and (A,T) is much longer 
than (<*[γ],<*). The end extensions (B,W) of (A,T) will 
typically have many x ∈ A and y ∈ B\A with x >* y. This is 
in contrast with the initial segment notion in Definition 
6.27, which is tied to <*.    
 
DEFINITION 7.2. We often consider (A,T ∩ A2). It is 
convenient to define (A,T/) = (A,T ∩ A2), as the expression 
for A may be long.   
 
The following definition was made in section 6 only for <* 
(Definition 6.14). Here we need the more general notion. 
 
DEFINITION 7.3. Let (A,T) be a wo. We define <A,T on A2 as 
follows. (x,y) <A,T (z,w) ↔ T(max(x,y),max(z,w)) ∨ (max(x,y) 
= max(z,w) ∧ (x,y) <lex (z,w)). Here max and <lex are with 
respect to (A,T).  
 
LEMMA 7.1. If (A,T) is a wo then (A2,<A,T) is a well 
ordering.  
 
Proof: See Lemma 6.17. QED 
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LEMMA 7.2. Let A ⊆ <*[γ] be <* unbounded in <*[γ], DEF(A). 
There is a unique isomorphism from (A,<*/) onto (<*[γ],<*/). 
This unique isomorphism f has DEF(f). 
 
Proof: Let A be as given. First show that the isomorphisms 
from (A ∩ <*[x],<*/) onto some (<*[y],<*/) cohere. Then 
show that for all x <* γ, there exists a unique isomorphism 
from (A ∩ <*[x],<*/) onto some (<*[y],<*/), using the 
regularity given by Lemma 6.11. Finally, take the union f 
of these coherent isomorphisms. By Lemma 6.11, f is onto. 
QED 
 
LEMMA 7.3. Let A ⊆ <*[γ] be <* unbounded in <*[γ], 0 ≠ x ≤* 
γ, and DEF(A,{x}). There exists f:A → <*[x] such that for 
all y <* x, f-1(y) is <* unbounded in <*[γ], and DEF(f). 
 
Proof: Let A,x be as given. In light of Lemma 7.2, it 
suffices to find f:<*[γ] → <*[x] such that for all y <* x, 
f-1(y) is <* unbounded in <*[γ], and DEF(f). Take f:<*[γ] → 
<*[x] given by f(y) = z if (∃w <* γ)(z <* x ∧ y = P*(z,w)); 
0 otherwise. Then for all z <* x, f-1(z) = {P*(z,w): w <* 
γ}, which is unbounded in <*[γ] by Lemma 6.11 and that P* is 
one-one. QED  
 
DEFINITION 7.4. The f constructed in the proof of Lemma 7.2 
is called the x splitting of A.  
 
LEMMA 7.4. There exists A ⊆ <*[γ], where  
i. <*[ω] ⊆ A. 
ii. <*[γ]\A is <* unbounded in <*[γ]. 
iii. POS(A) 
iv. DEF(A). 
 
Proof: Let f be the 2 splitting of <*[γ]. Then POS(f-1(0)) ∨ 
POS(f-1(1)). Take A = f-1(0) ∪ <*[ω] if POS(f-1(0)); f-1(1) ∪ 
<*[ω] otherwise. We are using Lemma 6.7. Here 0 <* 1 <* 2 
are the first three elements of <*[ω]. QED 
 
DEFINITION 7.4. Let X be the A constructed in the proof of 
Lemma 7.4. Let θ be the <* least element of <*[γ]\A. Clearly 
θ >* ω.  
 
All of the well orderings that we will be now using will 
end extend X ∪ {θ}, with θ moved to just above X.  
 
θ is very important to the rest of this section. Ultimately, 
θ will become an internal strongly inaccessible cardinal 
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with large cardinal properties, and V(θ) will be a model of 
ZFC with arbitrarily large strong Ramsey cardinals. 
 
DEFINITION 7.5. A good wo is a well ordering (A,T) such 
that  
i. A ⊆ <*[γ]. 
ii. <*[γ]\A is <* unbounded in <*[γ]. 
iii. (A,T) is an end extension of (X ∪ {θ},{(x,y): (x <* y 
∧ x,y ∈ X) ∨ (x ∈ X ∧ y = θ)}).   
 
We impose condition ii because we will want to be end 
extending good wo's, and we need some room. 
 
DEFINITION 7.6. (A,T) is an adequate wo if and only if  
i. (A,T) is a good wo. 
ii. (A2,<A,T) is order isomorphic to (A,T). 
PA,T is the unique order isomorphism from (A2,<A,T) onto 
(A,T).  
 
LEMMA 7.5. (X ∪ {θ},{(x,y): (x <* y ∧ x,y ∈ X) ∨ (x ∈ X ∧ y 
= θ)}) is a good wo whose two components have DEF. Let (A,T) 
be a good wo, DEF(A,T). There is an adequate wo (B,W) which 
is a proper end extension of (A,T), with DEF(B,W).  
 
Proof: The first claim is immediate. For the second claim, 
we put ω successive copies of (A2,<A,T) on top of (A,T). We 
have to replace ordered pairs with points, and we also have 
to disjointify. For the n-th copy, n <* ω, use points from 
f-1(n+1), where f is the ω splitting of <*[γ]\A. 
Specifically, for each n <* ω, let gn:<*[γ] → f-1(n+1) be 
the unique <* preserving bijection, and hn:A2 → f-1(n+1) be 
given by hn(y,z) = gn(PA,T(y,z)). The n-th successive copy of 
(A2,<A,T) will be the push of hn, so that its domain is a <* 
unbounded subclass of f-1(n+1). Note that f-1(0) remains 
unused. QED 
 
An adequate wo (A,T) is a pretty good place to build 
hierarchies over its <* unbounded domain, because of its 
closure under the natural pairing function PA,T. However, it 
is more convenient to have the stronger closure property in 
Definition 7.8.  
 
DEFINITION 7.7. f is special for (A,T) if and only if   
i. (A,T) is an adequate wo.  
ii. dom(f) = A. 
iii. f(0) = (A,T). 
iv. If T(x,y) then f(x),f(y) are adequate wo's, and f(y) is 
a proper end extension of f(x). 
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v. ∪rng(f) is an adequate wo. 
 
LEMMA 7.6. Let (A,T) be an adequate well ordering, 
DEF(A,T). There is a special f for (A,T), DEF(f).  
 
Proof: Let (A,T) be as given. We consider specific 
approximations to the desired f. These are based on the γ 
splitting F of <*[γ]\A. We require that f(0) = (A,T), and 
that f at limits in (A,T) be the union of the earlier 
values. At successors x' in (A,T), we require that f(x') be 
the end extension of f(x) constructed in the proof of Lemma 
7.5, then trivially modified so that the new points lie in 
F-1(x'). 
 
There is a longest such f. If dom(f) = A then we are done. 
Assume dom(f) ≠ A. Then DEF(f), and so we can extend f. 
Hence dom(f) = A. In the construction, we never use F-1(0), 
and so condition v holds. QED 
 
DEFINITION 7.8. (A,T) is a special wo if and only if (A,T) 
is an adequate wo which is order isomorphic to (B,T ∩ B2), 
where B = {x ∈ A: {y: T(y,x)} is closed under PA,T}}. We 
write P#A,T for this order isomorphism.  
 
LEMMA 7.7. Let (A,T) be an adequate wo, DEF(A,T). There is 
a special wo (B,W) which is a proper end extension of 
(A,T), with DEF(B,W).  
 
Proof: Let (A,T) be as given. We construct (A,T) = 
(A0,T0),(A1,T1), ..., and functions f0,f1,..., such that each 
fi is special for (Ai,Ti), and each (Ai+1,Ti+1) is the union 
of the range of fi. Specifically, each fi is given by the 
explicit construction used in the proof of Lemma 7.6.  
 
The union (A',T') of the (Ai,Ti) meets all of the 
requirements of a special wo, except that <*[γ]\A' might be 
<* bounded in <*[γ]. This can be easily fixed using the 2 
splitting of A'\(X ∪ {θ}), resulting in the desired (B,W), 
DEF(B,W). QED 
 
We now develop the constructible hierarchy relative to POS, 
along any special wo (A,T). We can build this without 
assuming DEF(A,T).   
 
DEFINITION 7.9. Let (A,T) be a special wo, and (D,T ∩ 
D2,R,U) be given, where D is a proper initial segment of A 
under T, X ∪ {θ} ⊆ D, R ⊆ D2, U ⊆ D. Furthermore, we assume 
that (D,R) satisfies extensionality, and R(x,y) → T(x,y). 
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We define the continuation of (D,T ∩ D2,R,U) in (A,T) as the 
following quadruple (D',T ∩ D'2,R',U'). We have D ⊆ D', and 
D' is a proper initial segment of A under T. The sets {y: 
R'(y,x)}, x ∈ D', comprise exactly the subsets of D that 
are first order definable over (D,T ∩ D2,R,U), without 
repetition (extensionality). We accomplish this by 
assigning, to each x ∈ D'\D, one finite sequence 
(ϕ,y1,...,yn), ϕ a formula in the language of (D,T ∩ 
D2,R,U), with free variables assigned the elements y1,...,yn 
∈ D, with the free variable v of ϕ reserved to define the 
associated subset of D definable over (D,T ∩ D2,R,U). The 
constraint is that extensionality is to be maintained. 
Suppose that we have used, in this way, all y above D but 
below a given x, under T. For x, we use the "least" finite 
sequence that will maintain extensionality when used in 
this manner. (If we cannot maintain extensionality, then 
the construction has already been completed). Here "least" 
is in terms of the ordering T of finite sequence codes 
arising out of the pairing function PA,T. We take U' to 
consist of all x ∈ D' such that {y: R'(y,x)} ⊆ X and 
POS({y: R'(y,x)}).     
 
Definition 7.9 is a more careful form of Definitions 6.25, 
6.26. Here we are working in an environment (A,T), of which 
there are many - rather than previously in one specific 
environment (<*[γ],<*). Here we retain (A,T) as part of a 
richer structure, that also incorporates a piece of POS. So 
we make sure that we use initial segments of (A,T) as sets 
of points. In Definition 6.29, we didn't care about L[x] 
skipping over points in <*[γ].  
 
LEMMA 7.8. Definition 7.9 is well defined. (D,T ∩ D2,R,U) is 
a proper initial segment of (D',T' ∩ D'2.R',U') in the sense 
that (D',T' ∩ D'2) is a proper end extension of (D,T ∩ D2), 
R = R' ∩ D2, and U = U' ∩ D. 
 
Proof: For the first claim, the issue is whether there is 
enough room to go through the finite sequences from D in 
the manner stipulated. This follows from the adequacy of 
(A,T): specifically the closure of A under PA,T.  
 
For the second claim, it suffices to show that some E ⊆ D 
that is (D,T ∩ D2,R,U) definable if not the set of R 
predecessors of any x ∈ D. Take E = {x ∈ D: ¬R(x,x)}. QED 
 
DEFINITION 7.10. Let (A,T) be a special well ordering. For 
each x ∈ A, we define L[x,A,T,POS] to be a proper initial 
segment of A, E[x,A,T,POS] ⊆ T ∩ L[x,A,T,POS]2, POS*[x,A,T] 
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⊆ L[x,A,T,POS], as follows. We take L[0,A,T,POS] = X ∪ {θ}, 
E[0,A,T,POS] = T ∩ (X ∪ {θ})2, POS*[0,A,T] = {θ}. If x is a 
limit point in (A,T), then L[x,A,T,POS] = ∪{L[y,A,T,POS]: 
T(y,x)}, E[x,A,T,POS] =  ∪{E[y,A,T,POS]: T(y,x)}, 
POS*[x,A,T] = ∪{POS*(y,A,T): T(y,x)}. Let x' be the 
immediate successor of x in (A,T). We take (L[x',A,T,POS], 
T/,E[x,A,T,POS],POS*[x,A,T)) to be the continuation of 
(L[x,A,T,POS],T/,E[x,A,T,POS],POS*[x,A,T]) in (A,T), 
assuming L[x,A,T,POS] is a proper initial segment of A.  
 
Definitions 7.9, 7.10 are formalized in T5 using 
approximating functions, as in section 6. 
 
LEMMA 7.9. Definition 7.10 is well defined for all x ∈ A.  
 
Proof: The issue is whether we run out of points in A 
during the construction. We must check that if x is a limit 
point in (A,T), and we have defined L[x,A,T,POS], 
E[x,A,T,POS], POS*[x,A,T), that we have not used up all of 
A. We use P#A,T for this purpose. It is easy to show that 
for each x ∈ A, the construction can be made uniquely for 
all y with T(y,x), so that L[y,A,T,POS] ⊆ P#A,T(2+y). Since 
(A,T) is a special wo, A is closed under P#A,T. QED 
 
DEFINITION 7.11. Let (A,T) be a special wo. E[A,T,POS] = 
∪x∈AE[x,A,T,POS]. POS*[A,T] = ∪x∈APOS*[x,A,T]. Let M[A,T] = 
(A,T,E[A,T,POS],POS*[A,T]). For purely set theoretic 
statements in M[A,T], quantifiers range over A, and ∈ is 
interpreted as E[A,T,POS].  
 
LEMMA 7.10. Let (A,T) be a special well ordering. M[A,T] is 
well founded, and satisfies extensionality, pairing, union, 
infinity, foundation, Δ0 separation, and "every set is in 
one-one correspondence with an ordinal". E[A,T,POS](x,y) → 
T(x,y). X forms a proper initial segment of the set 
theoretic ordinals of M[A,T], with θ as the next set 
theoretic ordinal of M[A,T]. The ordinals of M[A,T] under 
E[A,T,POS] are isomorphic to (A,T).  
 
Proof: Left to the reader. T5 is sufficient to formalize the 
statement that M[A,T] satisfies Δ0 separation. QED  
 
We want to work with an M[A,T] which satisfies "V(θ) 
exists". Some work is needed in order to find such M[A,T] 
within T5. We need to develop canonical codes for some 
M[A,T].   
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LEMMA 7.11. There is a sentence ϕ in ∈,=,POS such that the 
following holds. Let (A,T) be a special well ordering. 
M[A,T] is the unique expansion of (A,T) satisfying ϕ which 
interprets POS correctly, in the following sense. For any x 
∈ A, POS(x) holds if and only if the ∈ predecessors of x 
forms a subset of X which actually has POS. 
 
Proof: Left to the reader. QED 
 
DEFINITION 7.12. Let (A,T) be a special wo. For x ∈ A, 
define M[A,T]x = {y: E[A,T,POS](y,x)}. B is M[A,T] internal 
if and only if B = M[A,T]x for some necessarily unique x ∈ 
A. B <A,T,POS C if and only if (∃x,y)(B = M[A,T]x ∧ C = 
M[A,T]y ∧ T(x,y)).   
 
DEFINITION 7.13. (A,T) is a great wo if and only if  
i. (A,T) is a special wo. 
ii. Some subset of X that is definable over M[A,T] with 
parameters from X, is not M[A,T] internal.  
iii. ii holds for any special wo (B,W) such that (A,T) is 
an end extension of (B,W).  
 
LEMMA 7.12. Let (A,T) be a great wo. Some subset of X 
definable over M[A,T] without parameters, is not M[A,T] 
internal. 
 
Proof: This amounts to being able to kill the parameters 
used for the subset of X. First note that θ is defined as 
the least ordinal with POS*[A,T]. Hence X is also defined 
without parameters. Now use T least counterexamples to 
successively kill the parameters. QED 
 
LEMMA 7.13. Let (A,T) be a great wo. Every element of A is 
definable over M[A,T] with parameters from X.  
 
Proof: Let (A,T) be a great wo. By Lemma 7.12, let {x ∈ A: 
ϕ(x) holds in M[A,T]} be not M[A,T] internal, where ϕ has 
no parameters. 
 
Let B be the set of all elements of A which are definable 
over M[A,T] with parameters from X. Using T least examples, 
we see that the restriction of M[A,T] to B, M[A,T]|B, is an 
elementary substructure of M[A,T].  
 
It is easy to see that (B,T ∩ B2) is a special wo. Since it 
is a restriction of M[A,T] that contains X, it interprets 
POS correctly. By Lemma 7.11, M[A,T] satisfies the sentence 
ϕ used there. Hence M[A,T]|B also satisfies this ϕ. Hence 
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by Lemma 7.11, M[A,T]|B = M[B,T ∩ B2]. Clearly {x ∈ A: ϕ(x) 
holds in M[A,T]} = {x ∈ A: ϕ(x) holds in M[B,T ∩ B2]} is 
not M[A,T] internal and not M[B,T ∩ B2] internal. Also (B,T 
∩ B2) is obviously not longer than (A,T). 
 
Suppose (B,T ∩ B2) is shorter than (A,T). Then (B,T ∩ B2) is 
isomorphic to a proper initial segment of (A,T). Therefore 
{x ∈ A: ϕ(x) holds in M[B,T ∩ B2]} is M[A,T] internal. This 
is a contradiction. 
 
Thus (B,T ∩ B2) and (A,T) are isomorphic, and therefore 
M[A,T] and M[B,T ∩ B2] are isomorphic. The isomorphism must 
be the identity on X. Since every element of B is definable 
over M[A,T]|B = M[B,T ∩ B2] with parameters from X, it is 
also the case that every element of A is definable over 
M[A,T] with parameters from X. We can also conclude that B 
= A (although this is not needed). QED 
 
DEFINITION 7.14. Let (A,T) be a great wo. CODE(A,T) is the 
set of all sentences with parameters from X that hold in 
M[A,T]. Using PA,T, CODE(A,T) is viewed as a subset of X.   
 
LEMMA 7.14. Let (A,T),(B,W) be great wo's. We can 
explicitly recover an isomorphic copy of M'[A,T] from 
CODE(A,T). The following are equivalent. 
i. CODE(A,T) = CODE(B,W). 
ii. (A,T),(B,W) are isomorphic. 
 
Proof: Let A,T,B,W be as given. Using CODE(A,T), we 
construct an isomorphic copy of M[A,T], and therefore of 
(A,T), as follows. First identify definitions of 
prospective points, with parameters from X, under the 
equivalence relation of equality. Then define the 
components of the prospective copy of M(A,T), acting on the 
equivalence classes. Then explicitly pick a unique 
representative from each equivalence class, using the 
explicit well ordering of X. By Lemma 7.13, this results in 
an isomorphic copy of M[A,T].  
 
The second claim follows immediately from the first claim. 
QED 
 
LEMMA 7.15. Let (A,T),(B,W) be great wo's. If (A,T) is 
shorter than (B,W), then CODE(A,T) is M[B,W] internal. 
CODE(A,T) is not definable over M[A,T]. In particular, 
CODE(A,T) is not M[A,T] internal.  
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Proof: Any great wo (B,W) has easily enough power to 
internally construct CODE(A,T) for each proper initial 
segment (A,T) that is a great wo.  
 
Suppose CODE(A,T) is definable over M[A,T]. Then E = 
{(x,y): x codes the Gödel number of a formula ϕ and a 
finite sequence from X, and y ∈ X, and ϕ(x,y)} enumerates 
all subsets of X definable over M[A,T]. Since E can be read 
off of CODE(A,T), E is definable over M[A,T]. Therefore {x 
∈ X: (x,x) ∉ E} is definable over M[A,T]. Fix x ∈ X such 
that {y: (x,y) ∈ E} = {x ∈ X: (x,x) ∉ E}. Then (x,x) ∈ E ↔ 
(x,x) ∉ E. QED 
 
LEMMA 7.16. There is a great wo, (A,T), with DEF(A,T). 
 
Proof: We start with the good wo of Lemma 7.5, (X ∪ 
{θ},{(x,y): (x <* y ∧ x,y ∈ X) ∨ (x ∈ X ∧ y = θ)}). The 
proof of Lemma 7.5, second claim, produces a specific 
adequate wo (A,T). The proof of Lemma 7.7 produces a 
specific proper end extension (B,W) of (A,T) which is a 
special wo. We claim that (B,W) is a great wo. To see this, 
we repeat these specific constructions internally in 
M[B,W]. We obtain R ⊆ X2, definable over M[B,W], such that 
the Rx, x ∈ X, comprise exactly the M[B,W] internal subsets 
of X. {x: ¬R(x,x)} is therefore definable over M[B,W], yet 
not M[B,W] internal. Clearly DEF(B,W). QED  
 
LEMMA 7.17. Let (A,T) be a great wo, DEF(A,T). There is a 
great wo (B,W) which is a proper end extension of (A,T), 
with DEF(B,W). 
 
Proof: Let A,T be as given. Apply the construction in the 
proof of Lemma 7.7 to (A,T), obtaining the special wo 
(B,W), DEF(B,W). As in the proof of Lemma 7.16, repeat this 
specific construction applied to (A,T), internally in 
M[B,W]. Argue as in the proof of Lemma 7.16 that there is a 
subset of X, definable over M[B,W], which is not M[B,W] 
internal. QED  
 
LEMMA 7.18. Let x ∈ X. There is a great wo (A,T) such that 
the following holds.  
i. M[A,T] satisfies "V(x) exists and is in one-one 
correspondence with some u ∈ θ".  
ii. For any great wo (B,W) longer than (A,T), the V(x) of 
M[B,W] is the same as the V(x) of M[A,T]. 
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Proof: Assume the hypothesis. Suppose this is false, and 
let x ∈ X be a <* least counterexample. Clearly DEF({x}), 
and x ≠ 0.  
 
case 1. x is the immediate successor of y in X. Clearly 
DEF({y}). Let (A,T) be a great wo and u ∈ X be <* least 
such that  
 
i. M[A,T] satisfies "V(x) exists and is in one-one 
correspondence with u". 
ii. For any great wo (B,W) longer than (A,T), the V(x) of 
M[B,W] is the same as the V(x) of M[A,T].  
 
Then DEF({u}). We now show that there is a great wo (B,W) 
and v ∈ X such that  
 
iii. M[B,W] satisfies "℘(u) exists and is one-one 
correspondence with v". 
iv. For any great wo (C,Y) longer than (B,W), the ℘(u) of 
M[C,Y] is the same as the ℘(u) of M[B,W]. 
 
To establish iii,iv, look at all of the M[B,W] internal 
subsets of u for the various great wo's (B,W), under the 
various <B,W,POS. Suppose that the resulting length is at 
least that of (<*[γ],<*). Then we can find a one-one f:<*[γ] 
→ ℘(<*[u]) with DEF(f), using that DEF({x},{y},{u}). This 
contradicts Lemma 6.12.  
 
Thus the resulting length is that of some (<*[v],<*/), v <* 
γ, DEF({v}). We now show that we can find a single special 
wo (B,W) long enough so that all of the internal subsets of 
u living in the various great wo's are M[B,W] internal. 
 
Clearly v ≠ 0. Suppose v is a successor in <*. We use any 
great wo which has all of these subsets of u, internally. 
Since v is a successor, ℘(u) exists internally in this 
great wo, and also the internal one-one correspondence with 
the analog of v in X.  
 
Thus we now assume that v is a <* limit point.  
 
For each w <* v, let h(w) be CODE(C,Y), for the shortest 
great wo (C,Y) whose internal subsets of u are of length at 
least (<*[w],<*/) under <C,Y,POS. Note how the use of these 
codes, with Lemma 7.14, avoids use of any form of choice 
which is unavailable in T5.  
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From each h(w), we can recover a copy of the corresponding 
great wo with code h(w), using Lemma 7.14. We can then put 
these great wo's together to form a single long special wo, 
(B,W).  
 
It only remains to verify that (B,W) is a great wo. 
Obviously, if there is a longest h(w), w <* v, then there 
is nothing to prove, since h(w) is already great. So we 
assume that there is no longest h(w), w <* v.  
 
To verify this, we shift the work along X, using v' ∈ X 
with the same position in X that v has in <*[γ]. Internally 
in M[B,W], define h'(w), w ∈ X, w <* v', as CODE(C,Y), for 
the shortest great wo (C,Y) whose internal subsets of u are 
of length at least the ordinal w.  
 
Since each code is a subset of X, and these codes are 
indexed by {w ∈ X: w <* v'}, we can join them together to 
form a subset of X that is definable over M[B,W]. But this 
join cannot be M[B,W] internal. If it is M[B,W] internal, 
then it is M[C,Y] internal, for some great (C,Y) that is a 
proper initial segment of (B,W), and  CODE(C,Y) is M[C,Y] 
internal. This contradicts Lemma 7.15.  
 
So we have shown that M[B,W] is a great wo. But in order to 
get the desired contradiction, we need to properly end 
extend (B,W) to another great wo. Note that DEF(B,W). Hence 
we can apply Lemma 7.17.   
 
case 2. x is a <* limit point in X. For each y <* x, y ∈ X, 
let f(y) be CODE(A,T), where (A,T) is a great wo of least 
length such that  
 
i. M[A,T] satisfies "V(y) exists and is in one-one 
correspondence with some u ∈ θ". 
ii. For any great wo (B,W) longer than (A,T), the V(y) of 
M[B,W] is the same as the V(y) of M[A,T]. 
 
We also let g(y) be the least u ∈ θ in clause i. Clearly 
DEF({x},f,g). By the regularity in Lemma 6.16, fix w to be 
the sup in X of the values of g. Note that DEF({w}).   
 
By Lemma 7.14, for each y <* x, y ∈ X, recover a copy of 
the corresponding great wo with code f(y), and then piece 
these together to form a single long special wo, (B,W), 
DEF(B,W). By redoing the construction of (B,W) within 
M[B,W] as in case 1, we see that (B,W) is a great wo. 
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By Lemma 7.17, let (C,Y) be a great wo which is a proper 
end extension of (B,W). Then M[C,Y] satisfies that V(x) 
exists. Also, by Lemma 7.10, in M[C,Y], V(x) is in one-one 
correspondence with an ordinal. Using w and the regularity 
in Lemma 6.16, we see that in M[C.Y], V(x) is in one-one 
correspondence with an ordinal < θ. Hence x is not a 
counterexample, and we have a contradiction. 
 
Since both cases lead to contradictions, x is not a 
counterexample, and the Lemma is proved. QED 
 
LEMMA 7.19. There is a great wo (A,T) such that the 
following holds.  
i. M[A,T] satisfies "V(θ) exists and is in one-one 
correspondence with θ".  
ii. For any great wo (B,W) longer than (A,T), the V(θ) of 
M[B,W] is the same as the V(θ) of M[A,T]. 
iii. DEF(A,T). 
iv. M[A,T] satisfies "θ is a strongly inaccessible 
cardinal". 
 
Proof: First construct a great wo (A,T) with i,ii above, in 
a manner that is entirely analogous to how we argued case 2 
in the proof of Lemma 7.18. I.e., for each x ∈ θ there 
exists a least code of a great wo that stabilizes V(x) in 
the sense of Lemma 7.18, with internal one-one 
correspondence with some u ∈ θ. Then piece these codes 
together to form a special wo (B,W) which stabilizes V(θ), 
and in light of Lemma 7.10, has V(θ) is one-one 
correspondence with θ. By redoing the construction inside 
(B,W), we see as before that (B,W) is a great wo. We will 
also have DEF(B,W) because of Lemma 7.14.  
 
For iv, use this M[B,W] with i-iii above, and Lemma 6.12 
and 6.16. We can apply Lemmas 6.12, 6.16, since DEF[B,W]. 
QED 
 
We now normalize POS.  
 
DEFINITION 7.15. We fix the great wo (A,T), built from 
CODE(A,T), given by Lemma 7.19. 
 
For the remainder of this section, the only great wo that 
we use is (A,T). By "internal" we will always mean internal 
to M[A,T].  
 
We will be making a number of arguments internally in 
M[A,T]. We do not have to worry about using choice within 
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M[A,T], as all internal objects are given by points in A, 
and we have access to the well ordering T of A. 
 
However, we have to be careful about the separation in 
M[A,T] that we use. We have V(θ) as internal in M[A,T]. 
However, we have only Δ0 separation in M[A,T], and we have 
to be careful not to use separation in M[A,T] with 
unbounded quantifiers. Of course, we have access to POS 
internally.  
 
We now normalize the ultrafilter POS in M[A,T].  
 
DEFINITION 7.16. f is internally adequate if and only if f:θ 
→ θ, f is internal, and for all x ∈ θ, ¬POS(f-1(x)). f <# g 
if and only if f,g are adequate and POS({x: f(x) <* g(x)}). 
We say that f is <# minimal if and only if f is internally 
adequate and there is no g <# f.  
 
LEMMA 7.20. There exists f such that f is <# minimal and 
DEF(f). 
 
Proof: Suppose there is no <# minimal f. Externally, we 
build internally adequate f0,f1,... as follows. f0 is the 
identity on θ. fn+1 is the M[A,T] least fn+1 <# fn. Let F(n,x) 
= fn(x), x ∈ θ. We are not claiming that F is internal, but 
clearly DEF(F).  
 
For all x ∈ X, let h(x) be the least n such that fn(x) ∈ 
... ∈ f0(x) is false. h:X → <*[ω] by well foundedness. 
Clearly DEF(h). Since ω <* γ, by Lemma 6.10, some h-1(n) is 
positive. I.e., fix n such that {y ∈ θ: fn(x) ∈ ... ∈ f0(x) 
is false} is positive.  
 
We claim that {y ∈ θ: fn(y) ∈ ... ∈ f0(y)} is positive. This 
is proved by straightforward induction up through n. This 
contradicts the choice of n. We have a contradiction. 
 
So there is a <# minimal f. Choose f to be the M[A,T] least 
<* minimal f. Then DEF(f). QED  
 
DEFINITION 7.17. Fix H to be the # minimal f constructed in 
Lemma 7.20. Define POS#(E) if and only if E ⊆ θ is 
internal, and POS(H-1[E]). 
 
LEMMA 7.21. POS# is a nontrivial θ complete ultrafilter in 
the following sense.  
i. If x ∈ θ then ¬POS#({x}). 
ii. If E ⊆ θ is internal, then POS#(E) ↔ ¬POS#(θ\E). 
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iii. Let f:θ → x, x ∈ θ, be partially defined and internal, 
where POS#(dom(f)). There exists y ∈ x such that POS#(f-
1(y)). 
 
Proof: i follows from the internal adequacy of H. ii 
follows from the same statement for POS. 
 
Suppose iii is false, and let f be the M[A,T] least 
counterexample. Let x be least such that f:θ → x. Then 
DEF(f,{x}).  
 
Define G:θ → x by G(y) = f(H(y)), y ∈ θ. Then H-1[f-1(y)] = 
G-1(y). Clearly DEF(G). By Lemma 6.10, there exists y ∈ x 
such that POS(G-1(y)), POS(H-1[f-1(y)]), POS#(f-1(y)). QED  
 
LEMMA 7.22. POS# is normal in the following sense. Let f:θ 
→ θ be internal and partially defined, where POS#({x: f(x) 
∈ x}). There exists c < θ such that POS#(f-1(c)).   
 
Proof: Suppose this is false, and let f be the M[A,T] least 
counterexample. Note that POS#(dom(f)). Extend f to f':θ → 
θ by setting f' to be 0 on θ\dom(f).  
 
There is no c ∈ θ such that POS#(f-1(c)). Hence there is no 
c ∈ θ such that POS#(f'-1(c)), since f'-1(c) = f-1(c) ∪ 
(θ\dom(f)).  
 
Let G(x) = f'(H(x)), x <* γ. Then DEF(f',{x},G), and G is 
internal.  
 
case 1. G is not internally adequate. Let POS(G-1(c)). Now 
G-1(c) = {y: f'(H(y)) = c} = {y: H(y) ∈ f'-1(c)} = H-1(f'-
1(c)). Hence POS(H-1(f'-1(c))), and so POS#(f-1(c)).  
 
case 2. G is internally adequate. Since POS#({x: f(x) <* 
x}), we have POS({x: f(H(x)) <* H(x)}). Hence G <# H. But 
this contradicts that H is <# minimal.  
 
Since both cases lead to contradictions, the Lemma has been 
proved. QED 
 
LEMMA 7.23. POS# diagonal intersection. Let R ⊆ θ2 be 
internal, where for all x ∈ θ, POS#(Rx). Then POS#({x ∈ θ: 
(∀y ∈ x)(x ∈ Ry)}).  
 
Proof: Let R be as given. Suppose ¬POS#({x ∈ θ: (∀y ∈ x)(x 
∈ Ry)}). Then POS#({x ∈ θ: (∃y ∈ x)(x ∉ Ry)}). Let f:θ → θ 
be the partial function given by f(x) = (µy ∈ x)(x ∉ Ry). 
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Then f is internal, POS#({x: f(x) ∈ x}). Let c ∈ θ be such 
that POS#(f-1(c)). Now f-1(c) ⊆ θ\Rc. Hence POS#(θ\Rc)), 
contradicting that POS#(Rc). QED 
 
DEFINITION 7.18. We make the following definitions in set 
theory. [E]k is the set of all k element subsets of E. [E]<ω  
is the set of all nonempty finite subsets of E. κ is a 
Ramsey cardinal if and only if κ is a cardinal such that the 
following holds. Let f:[κ]<ω → α, α < κ. There exists 
unbounded E ⊆ κ such that for all n ≥ 1, f is constant on 
[E]n. The strong Ramsey cardinals are defined the same way 
with "unbounded" replaced by "stationary". I.e., "meets 
every closed unbounded subset of κ".   
 
LEMMA 7.24. Let f:[E]k+1 → x be internal, POS#(E), x ∈ θ. 
There exists internal E' ⊆ E with POS#(E') such that the 
following holds. For each x ∈ [E]k, f is constant on the x 
∪ {y}, max(x) ∈ y ∈ E'.  
 
Proof: Let f be as given. We define internal sets Cx ⊆ 
(x,θ), for x ∈ θ. Fix x ∈ θ. 
 
For each y ∈ [E]k, there exists unique u ∈ x such that 
POS#({z: f(y ∪ {z}) = u}), by Lemma 7.21. Let By = {z: 
max(y) ∈ z ∧ f(y ∪ {z}) = u}. We have POS#(By).  
 
By Lemma 7.23, POS#(Cx), where Cx = {z ∈ θ: (∀y ∈ z)(z ∈ 
By)}.  
 
By Lemma 7.23, POS#(E'), where E' = {y ∈ E: (∀x ∈ y)(y ∈ 
Cx)}). Let z ∈ [E]k, max(z) = x. Then f is constant on the z 
∪ {y}, where x ∈ y ∈ E'. QED 
 
We need the following refinement of Lemma 7.24. 
 
LEMMA 7.25. In Lemma 7.24, if the M[A,T] level of f is at 
most the limit point u ∈ A, θ ∈ u, then E' can be taken to 
be of M[A,T] level < u.   
 
Proof: This is evident, as the constructions made in the 
proof of Lemma 7.24 are very explicit. QED 
 
LEMMA 7.26. Let k be such that the following holds. For all 
limit points u ∈ A, x ∈ θ ∈ u, every f:[E}k → x of M[A,T] 
level < u, POS#(E), is constant on some E' ⊆ E, POS#(E'), 
of M[A,T] level < u. Then this holds with k replaced by 
k+1.  
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Proof: Let k be as given. Let u ∈ A be a limit point, x ∈ θ 
< u, f:[E]k+1 → x of M[A,T] level < u, POS#(E). Let E' be as 
given by Lemma 7.24, E' of M[A,T] level < u. Let g:[E']k → 
x be given by g(y) = f(y ∪ {z}), for max(y) ∈ z ∈ E'. Then 
g is of M[A,T] level < u. By hypothesis, let E'' ⊆ E', 
POS#(E''), g constant on [E'']k, where E'' is of M[A,T] 
level < u. Note that f is constant on [E'']k+1. QED  
 
LEMMA 7.27. Let k be a positive integer. Let u ∈ A be a 
limit point, x ∈ θ ∈ u, f:[E]k → x be internal of level < 
u, POS#(E). There exists E' ⊆ E, POS#(E'), where f is 
constant on [E']k, and of M[A,T] level < u. 
 
Proof: By external induction on k. The basis case k = 1 is 
obvious using Lemma 7.21. The induction step is from Lemma 
7.26. We use external induction since the induction 
hypothesis has unbounded quantification over u ∈ A. QED 
 
LEMMA 7.28. Let f:[E]<ω → x be internal, x ∈ θ, E ⊆ θ, 
POS#(E). There exists internal E' ⊆ E, POS#(E'), where f is 
constant on every [E']k. 
 
Proof: Let f,E,x be as given, where E is of M[A,T] level < 
u, θ ∈ u, u a limit point. For all k ≥ 1, let En be the 
M[A,T] least subset of E such that f is constant on [E]k and  
POS#(En). By Lemma 7.27, the En are of M[A,T] level < u, and 
so the sequence E1,E2,... is M[A,T] internal. By Lemma 7.21, 
we see that ∩kEk is internal, and POS#(∩kEk). QED   
 
LEMMA 7.29. Let E ⊆ θ be internal and internally closed and 
unbounded in θ. Then POS#(E). If E ⊆ θ ∧ POS#(E), then E is 
internally stationary in θ. 
 
Proof: Let E be as given. Let f:θ\E → θ be given by f(x) = 
the greatest y ∈ x that lies in D if 0 ∈ x ∈ θ; 0 
otherwise. By Lemma 7.21, if POS#(θ\E), some f-1(c) is 
unbounded in θ. Hence POS#(E). The second claim follows 
immediately. QED   
 
LEMMA 7.30. Let f:θ → V(θ) be internal, where for all x ∈ 
θ, f(x) ⊆ V(x). There exists internal E ⊆ θ, POS#(E), such 
that for all x ∈ y ∈ E, f(x) = f(y) ∩ V(x).  
 
Proof: Let f be as given. For each x ∈ V(θ), let g(x) = 1 
if POS#({y ∈ θ: x ∈ f(y)}); 0 otherwise, and let h(x) = {y 
∈ θ: x ∈ f(y)} if g(x) = 1; {y ∈ θ: x ∉ f(y)} otherwise. 
For each y ∈ θ, let By = ∩x∈V(y)h(x). By Lemma 7.21, for all 
y ∈ θ, POS#(By). By Lemma 7.23, POS#({y ∈ θ: y ∈ By}). If y 
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∈ By ∧ z ∈ Bz ∧ y ∈ z, then f(y),f(z) have the same elements 
from V(y). QED 
 
LEMMA 7.31. Let E ⊆ θ be internal, POS#(E). POS#({x ∈ θ: E 
∩ x is internally stationary in x}). 
 
Proof: Note that the set in question involves only 
quantifiers ranging over the V(θ) of M[A,T]. Let E be as 
given. Suppose POS#({x ∈ θ: E ∩ x is not internally 
stationary in x}). Then POS#(B), where B = {x ∈ θ: x is an 
internal limit ordinal ∧ E ∩ x is not internally stationary 
in x}. (The set of limit ordinals ∈ θ, both in the internal 
and external sense, must have POS# by Lemma 7.22). For each 
internal limit ordinal x ∈ B, let Cx ⊆ x be the M[A,T] 
least internally closed and unbounded set in x that is 
disjoint from E. By Lemma 7.30, let B' ⊆ B be internal, 
POS#(B'), where for all x ∈ y from B', Cx = Cy ∩ V(x). Then 
the union of the Cx, x ∈ E', is internally closed unbounded 
in θ, and disjoint from E. This contradicts that POS#(E), by 
Lemma 7.29. QED  
 
LEMMA 7.32. POS#({x ∈ θ: x is an internal strong Ramsey 
cardinal}).  
 
Proof: Suppose B = {x ∈ θ: x is not an internal strong 
Ramsey cardinal} has POS#(E). Let C = {x ∈ θ: x is an 
internal cardinal ∧ x is not an internal strong Ramsey 
cardinal}. Then POS#(C). For each x ∈ C, let fx be M[A,T] 
least such that f:[x]<ω → x, sup(rng(f)) ∈ x, and for no E 
⊆ x, E internally stationary in x, is it the case that for 
all k, f is constant on [E]k. Then each fx ⊆ V(x), and so we 
can apply Lemma 7.30. We obtain internal E' ⊆ θ, POS#(E'), 
such that the fx, x ∈ E', are comparable under ⊆. Let 
F:[θ]<ω → θ be the union of the fs, x ∈ E'. Then sup(rng(F)) 
= y ∈ θ.  
 
By Lemma 7.28, let D ⊆ θ, POS#(D), where F is constant on 
every [D]k. By Lemma 7.31, POS#({x ∈ θ: D ∩ x is internally 
stationary in x}). Let x ∈ θ, x an internal cardinal, D ∩ x 
is internally stationary in x. Clearly fx is constant on 
every [D ∩ x]k. This contradicts the choice of fx. QED     
 
LEMMA 7.33. The V(θ) of M[A,T] under E(A,T,POS) satisfies 
ZFC + "there are arbitrarily large strong Ramsey 
cardinals".    
 
Proof: By Lemma 7.19, the V(θ) of M[A,T] under E(A,T,POS) 
satisfies ZFC. Now apply Lemma 7.32. QED  
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THEOREM 7.34. ZFC + "there are arbitrarily large strong 
Ramsey cardinals" is interpretable in T5. T5 proves the 
consistency of ZFC + "there are arbitrarily large strong 
Ramsey cardinals", when formulated with standard formalized 
syntax. EFA proves Con(T5) → Con(ZFC "there are arbitrarily 
large strong Ramsey cardinals"). T5 is interpretable in ZFM. 
ZFM proves the consistency of T5. EFA proves Con(ZFM) → 
Con(T5). 
 
Proof: By Theorem 5.1 and Lemma 7.33. Since the theories 
involved are not finitely axiomatizable, the EFA results do 
not immediately come from the existence of the 
interpretations. The simplest route is to verify that EFA 
is sufficient to prove that the interpretations work. QED  
 
8. Without Extensionality.  
 
In [Go95], positivity is used as an attribute on properties 
of objects, not on classes of objects. As discussed in 
section 3, Gödel assumed that positivity behaves as an 
ultrafilter, and this leads to an easy derivation that 
positivity depends only on the extension of properties. 
I.e., if two properties hold of the same objects, then one 
is positive if and only if the other is positive. Adams in 
[Go95] also discusses the Leibniz view of positivity, in 
some detail, citing parts of [Le23], [Le56] [Le69]. 
 
This would suggest that we might be able to simply drop 
Extensionality from T5, and be able to retain Theorem 7.34, 
or at least Theorem 5.1. However, we doubt this, as a 
difficulty arises in connection with Choice Operator.  
 
We now present the system T5(prop), where "prop" abbreviates 
"properties". For ease of comparison with T5, we take the 
language L5(prop) of T5[prop] to be the same as the language 
L5 of T5, except we remove equality between class variables. 
Here x ∈ A read "the property A holds of the object x". 
Extensionality is dropped, and the axioms that are modified 
are asterisked. The only substantial modification is to 
Choice Operator, where a second line is added.  
 
We show that Ts(prop) proves the strongest form of 
extensionality that can be formulated without equality 
between classes. From this result, it is easy to conclude 
that Theorem 7.34 holds for T5(prop). 
 
NONLOGICAL AXIOMS FOR T5(prop)  
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PAIRING 
 
P(v1,v2) = P(v3,v4) → v1 = v3 ∧ v2 = v4.  
 
L5(prop) COMPREHENSION 
 
(∃A1)(∀v1)(v1 ∈ A1 ↔ ϕ), where ϕ is a formula of L5(prop) in 
which A1 is not free.  
 
AUGMENTED CHOICE OPERATOR 
 
v1 ∈ A1 → CHO(A1) ∈ A1. 
(∀v1)(v1 ∈ A1 ↔ v1 ∈ A2) → CHO(A1) = CHO(A2). 
 
POSITIVE CLASSES 
 
(∀v1)(v1 ∈ A1 ∨ v1 ∈ A2) → POS(A1) ∨ POS(A2). 
POS(A1) ∧ POS(A2) → (∃v1 ≠ v2)(v1,v2 ∈ A1 ∧ v1,v2 ∈ A2).  
 
0-DEFINABLE CLASSES (prop)  
 
(∀v1)(v1 ∈ A1 ↔ ϕ) ∧ DEF(A2) ∧ ... ∧ DEF(An) → DEF(A1), 
where ϕ is a formula of L5(prop) without DEF, with at most 
the free variables v1,A2,...,An, n ≥ 1. 
 
DIVINE OBJECT 
 
(∃v1)(∀A1)(DEF(A1) ∧ POS(A1) → v1 ∈ A1). 
 
Here is the strongest form of extensionality in the 
language of L5(prop), where we have dropped equality between 
classes.  
 
EXTENSIONLTIY WITHOUT CLASS EQUALITY 
 
(∀v1)(v1 ∈ A1 ↔ v1 ∈ A2) → (ϕ ↔ ψ), where ϕ,ψ are formulas 
of L5(prop), and ψ is the result of replacing zero or more 
free occurrences of A1 by A2.  
 
THEOREM 8.1. T5(prop) proves Extensionality Without Class 
Equality. 
 
Proof: By standard predicate calculus manipulations, it 
suffices to prove this for atomic formulas ϕ,ψ. Working in 
T5(prop), assume (∀v1)(v1 ∈ A1 ↔ v1 ∈ A2). 
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case 1. s = t, where s,t are object terms. The relevant 
substitutions are of the form s' = t', where s',t' are 
obtained from s,t by replacing some A1's by A2, 
respectively. Now the A1's appear only as part of subterms 
CHO(A1), and Augmented Choice Operator proves CHO(A1) = 
CHO(A2). Therefore we obtain s = s', t = t' by the axioms of 
equality (for the equality that we do have, namely between 
objects). Hence we have s = t ↔ s' = t'.   
 
case 2. t ∈ Ai, where t is an object term. The relevant 
substitutions are of the form t' ∈ Aj, where the reasoning 
in case 1 yields t = t'. Now if i = j then we are done. 
Otherwise, i = 1 and j = 2. But t ∈ A1 ↔ t' ∈ A2 is 
provable, using t = t'.  
 
case 3. DEF(Ai). We have only to prove DEF(A1) ↔ DEF(A2). By 
0-Definable Classes (prop), we have the universal closure 
of 
 

(∀v1)(v1 ∈ A1 ↔ v1 ∈ A2) ∧ DEF(A2) → DEF(A1) 
 
and therefore  
 

(∀v1)(v1 ∈ A2 ↔ v1 ∈ A1) ∧ DEF(A1) → DEF(A2). 
 
Hence we have DEF(A1) ↔ DEF(A2).  
 
case 4. POS(Ai). We have only to prove POS(A1) ↔ POS(A2).  
 
Assume POS(A1). By L5(prop) Comprehension, let A3 be such 
that (∀v1)(v1 ∈ A3 ↔ v1 ∉ A1). By (∀v1)(v1 ∈ A1 ↔ v1 ∈ A2), 
we have (∀v1)(v1 ∈ A2 ∨ v1 ∈ A3). By Positivity, POS(A2) ∨ 
POS(A3).  
 
We claim that ¬POS(A3). Assume POS(A3). By Positivity, (∃v1 
≠ v2)(v1,v2 ∈ A1 ∧ v1,v2 ∈ A3). Let v1 be such that v1 ∈ A1, v1 
∈ A3. Then v1 ∉ A1. Contradiction.  
 
By POS(A2) ∨ POS(A3), ¬POS(A3), we have POS(A2). 
 
We have established the universal closure of  
 

(∀v1)(v1 ∈ A1 ↔ v1 ∈ A2) → (POS(A1) → POS(A2)) 
 
and therefore  
 

(∀v1)(v1 ∈ A2 ↔ v1 ∈ A1) → (POS(A2) → POS(A1)). 
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Hence we have established POS(A1) ↔ POS(A2).  
 
QED 
 
THEOREM 8.2. T5(prop) and T5 are mutually interpretable. 
Theorem 7.34 holds for T5(prop).  
 
Proof: As in the proof of Theorem 7.34, we want to use that 
EFA proves that a particular interpretation of T5 in 
T5(prop) works. This will be clear below. Note that Theorem 
8.1 is provable in EFA. This will be enough to establish 
Theorem 7.34 for T5(prop) based on Theorem 7.34 for T5.  
 
In an interpretation that does not treat equality as 
equality, we have to be particularly careful. Here we do 
interpret equality between objects as equality between 
objects, but we obviously don't interpret equality between 
classes as equality between classes, since we don't have 
equality between classes in the language.  
 
The simplest approach to interpretations is to use the 
associated theories with only relation symbols and no 
equality. Here all equality relations on sorts are viewed 
simply as binary relation symbols, all constant symbols are 
replaced by unary predicates, and all function symbols are 
replaced by relation symbols of one higher arity. In the 
associated theory, we include not only the modified form of 
the nonlogical axioms, but also the axioms for equality, 
now formulated in the modified language, and now viewed as 
nonlogical axioms.  
 
Thus an interpretation of T in T' is an interpretation of 
modified T in modified T'. We take this approach now in our 
interpretation of T5 in T5(prop).    
 
The axioms for equality can always be formulated in terms 
of equivalences between atomic formulas. With these caveats 
in mind, we now give the interpretation of T5 in T5(prop). 
 
We interpret the objects of T5 as the objects of T5(prop), 
the classes of T5 as the classes of T5(prop), = between 
objects of T5 as = between objects of T5(prop), the ternary 
relation P of T5 as the ternary relation P of T5(prop), ∈ of 
T5 as ∈ of T5(prop), DEF of T5 as DEF of T5(prop), POS of T5 
as POS of T5(prop).  
 
We interpret A1 = A2 in T5 as (∀v1)(v1 ∈ A1 ↔ v1 ∈ A2) in 
T5(prop).  
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We interpret the binary relation CHO of T5 as the binary 
relation CHO of T5(prop). 
 
We now have to show that the interpretation of all of the 
axioms of modified T5, including all of the equality axioms 
in its language, are provable in modified T5(prop).  
 
1. Equality axioms. The proof of Theorem 8.1 establishes 
this.  
 
2. Nonlogical axioms. We have only to consider the 
nonlogical axioms of modified T5 where = between classes 
occurs. The only such axiom is modified L5 Comprehension. 
But its interpretation is clearly follows from modified 
L5(prop) Comprehension.   
 
QED  
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