
 
1 

THE FORMALIZATION OF MATHEMATICS 
by 

Harvey M. Friedman 
Ohio State University 

Department of Mathematics 
friedman@math.ohio-state.edu 

www.math.ohio-state.edu/~friedman/ 
February, 1997 

 
I really should be talking to you about more mainstream 
things like face recognition 
information retreival  
passing the Turing test. 
 
I have some wonderful code that solves these problems 
completely, and I want to share it with you now. 
 
01011101010100000010101110101010101010101001001011010001001
01010101101010100101001000010101010100101010101001011101010
01010101010101010101110001001010101010101001000101010101110
10100101010100101000100010101010101001101010101010101010101
01010101001000011010101010101010111010101010101010101010010
01010101010010100100000101010011010101011111101100101010101
11100101010101001010101010010101000101010010101010101100100
10101010100101010101010101001001010101010101001000101010101
01010100110010101011010111010010101010010101010101001010101
01010101001010101010100101001010000010010110011011001010101
01010011101010100110001010101010101010101001010100101010101
01010011101101101101010101100000101010101010010101011001010
101001010010 
 
Can mathematics be formalized? 
 
It has been accepted since the early part of the Century 
that there is no problem formalizing mathematics in 
standard formal systems of axiomatic set theory. Most 
people feel that they know as much as they ever want to 
know about how one can reduce natural numbers, integers, 
rationals, reals, and complex numbers to sets, and prove 
all of their basic properties. Furthermore, that this can 
continue through more and more complicated material, and 
that there is never a real problem. 
 
They are basically correct. However, the formalization of 
mathematics is extraordinary inconvenient in any of the 
current formalisms. But why do we care about inconvenience? 
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Put differently, why would anyone want to formalize 
mathematics, since everybody thinks anybody who cares can? 
Let me distinguish two concepts of formalization. The first 
is what I call syntax and semantics of mathematical text. 
Here there are no proofs. One is only concerned with a 
completely precise presentation of mathematical 
information.  
 
This is already grossly inconvenient in present formalisms. 
Why do we want to make this convenient? 
 
1. To obtain detailed information about the logical 
structure of mathematical concepts. For instance, what are 
the appropriate measures of the depth or complexity of 
mathematical concepts? What are the most common forms of 
assertions? We hope for interesting and surprising 
information here. Perhaps one can do a lot here without 
going too far with convenience; but more convenience than 
usual seems appropriate. 
2. To develop a theory of mathematical notation, and 
notation in general. When how and why do mathematicians 
break concepts up into simpler ones? What is it about 
mathematical notation that makes it convenient and 
readable? These are important matters that have evolved in 
a certain way - largely not by accident. E.g., consider 
music notation.  
3. To maintain a uniformly constructed database of 
mathematical information. Such a database would benefit 
from agreement on notation, and would also help facilitate 
it. There could be automatic algorithms for changing 
notation. Also information retrieval of various kinds seem 
useful and interesting. The more ambitious concept of 
formalization includes proofs. These are even much more 
inconvenient in present formalisms. What is to be gained by 
making them reasonably convenient? 
4. To obtain detailed information about the logical 
structure of mathematical proofs. For instance, there is a 
sophisticated area of logic called proof theory, where 
there is almost no such detailed information. There is a 
lot of information in logic about unprovability, but 
virtually nothing about real proofs. What inference rules 
are really used frequently? Is there a good classification 
of the levels of triviality? 
5. To maintain a uniformly constructed database of verified 
mathematical information. Of course, the success of this 
project depends delicately on how convenient people think 
it is. You might be able to consult such a database with 
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intelligent tools and retrieve information about what is 
known. Uniform presentation of mathematical information is 
necessary to really get this going. 
6. To lay the groundwork for the yet more ambitious project 
of developing a convenient way to prove the correctness of 
substantial computer programs. There are other issues that 
need to be addressed in order to accomplish this such as 
overhauling the present programming languages. 
 

STANDARD FORMAL SET THEORY 
 
The language has the following: 
i) connectives ¬,∧,∨,→,↔; 
ii) variables x1,x2,... ranging over sets only;  
iii) quantifiers ∀,∃; 
iv) membership ∈; 
v) equality =.  
 
The terms consist of just the variables. The atomic 
formulas  
are equality and membership between terms. Formulas are 
obtained from the atomic formulas by combining according to 
the connectives; and by quantification. Thus if A,B are 
formulas, then so are ¬A, A∧B, A∨B, A→B, A↔B, (∀xn)(A) and 
(∃xn)(A).  
 
There are the nine usual axioms (ZFC): 
 
1. Extensionality. Two sets are equal if and only if they 
have the same members. 
2. Pairing. There is a set consisting of exactly any two 
(possibly equal) sets. 
3. Separation. (Infinitely many axioms). For any formula A 
in our language, {x: A} exists. 
4. Union. For any set x, there is a set consisting of 
exactly the elements of the elements of x. 
5. Power set. For any set x, there is a set consisting of 
exactly the subsets of x. 
6. Infinity. There is a set x containing the empty set, and 
where for all b ∈ x, b ∪ {b} ∈ x. 
7. Replacement. (Infinitely many axioms). For any formula A 
in our language, if (∀x ∈ u)(∃!y)(A(x,y)) then (∃z)(∀x ∈ 
u)(∃!y ∈ z)(A(x,y)). 
8. Foundation. In every nonempty set x there exists y ∈ x 
such that for all z ∈ x, z ∉ y. 
9. Choice. Let x be a set of pairwise disjoint nonempty 
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sets. Then some set has exactly one element in common with 
each element of x. 
 
One also has some version of predicate calculus at the 
bottom. 

 
MORE CONVENIENT FORMALISM 

INFORMAL DISCUSSION 
 
Work in joint progress with Randy Dougherty.  
 
Again we stick to mathematical text without proofs. We need 
to shift to class theory. This is well known to be 
intimately connected with set theory. All objects will are 
classes. Some classes are "small" and are considered sets. 
Some classes are too big to be sets, and they are not 
members of any other classes. We use M(x) to indicate that 
x is a set.  
 
When a variable is used, one must know its range of 
possible values (by a well formed formula in the language).  
 
When a constant is introduced, it must be given a 
definition. The most usual definition completely defines 
the constant as the unique object obeying some condition. 
However, more generally, we allow a constant to be defined 
as any object satisfying some given condition, with the 
understanding that if no  object satisfies the given 
condition, then the constant is not defined. If the 
constant c is not defined then we can write this as c↑.  
 
A semantic symbol is introduced in exactly one of the 
following roles: 
 
i) as a k-ary prefix relation symbol for some k ≥ 1; 
ii) as a (binary) infix relation symbol; 
iii) as a k-ary prefix function symbol for some k ≥ 1; 
iv) as a (binary) infix function symbol; 
v) as a (unary) suffix function symbol.   
 
If R is a k-ary prefix relation symbol and x1,…,xk 
represent classes, then R(x1,…,xk) is viewed as either true 
or false. It is never undefined. If R is an infix relation 
symbol and x,y represent classes, then x R y is viewed as 
either true or false. If F is a k-ary prefix function 
symbol and x1,…,xk represent classes, then F(x1,…,xk) is 
viewed as either a unique class or undefined. If F is an 
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infix function symbol and x,y represent classes, then x F y 
is viewed as either a unique class or undefined. Finally, 
if F is a suffix function symbol and x represents a class, 
then xF is viewed as either a unique class or undefined.  
 
When a semantic symbol is introduced, it is, optionally, 
given a definition. This definition is often incomplete. 
For example, one may introduce the semantic symbol < as a 
binary relation symbol, and define it only for natural 
numbers. This does not mean that it is undefined outside 
the natural numbers (in fact, every actual relation is 
viewed as being defined everywhere); but rather, the 
meaning of < for pairs of objects that are not both natural 
numbers is completely left open. Or for example, one may 
introduce the semantic symbol + as a binary function 
symbol, and define it only for natural numbers. 
 
Again, this does not mean that it is actually undefined 
outside the natural numbers, but rather that its meaning 
outside the natural numbers is left completely open. 
 
Statements of claims are also given a name (like LEMMA 5.6 
or like FUNDAMENTAL THEOREM OF ALGEBRA). The body of the 
claim is just a formula (perhaps with an explanatory 
clause). We allow certain variations that are convenient, 
such as making 
multiple claims, and using “Let” clauses to highlight 
hypotheses.  
 
We now consider the crucial matter of correctness. One way 
of interpreting mathematical text without proofs is within 
the theory of classes. One inductively defines the concept 
of an interpretation of a term or formula based on an 
appropriate assignment of introduction clauses to signs in 
that term or formula, as well as the value of that 
interpretation or truth value of that interpretation 
(depending on whether it is a term or formula).  
 
Roughly speaking, an interpretation consists of a nonempty 
domain of objects, together with abinary relation 
interpreting ∈, and assignments of objects (sets or classes 
as appropriate) to every introduction clause, so that the 
condition in each introduction clause comes out true, where 
the quantifiers range over the objects that obey the 
condition in the governing introduction clause for the 
variable(s) being quantified.  
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The text is said to be true if every claim is true (as a 
statement in the theory of sets, classes, and superclasses) 
under all assignments.  
 
The main thing we need to discuss is the formation of terms 
and formulas. We first informally discuss the special 
symbols: 
 
∈=¬∧∨→↔∀∃λ,(){}↑↓!.Μ 
 
The only symbols here that are not part of the usual set 
theory formalism are l and ≠Ø and !. As we shall see, the l 
is used mainly to convert expressions into functions. Thus 
mathematicians are fond of saying things like “the function 
3x + y - 7.” If this is meant to be a function of two 
variables, then we would write (λxy)(3x + y - 1). 
 
The ↑↓ are used to indicate that a term is undefined or 
defined. E.g., 1/0↑ and 1/2 ↓. 
 
The braces {} are used not only for, say, the unordered 
pair {x,y}, but also for class abstraction in the form {x| 
A}. Of course, by Russell’s paradox, we have ¬M{x| x ∉ x}. 
 
We use ! in connection with quantifiers; i.e., (∃!x)(A). 
Also it is used to denote the unique x such that … . I.e., 
(!x)(A). If there isn’t a unique x, then this is undefined. 
 
The fundamental theorem of true texts asserts the 
following. Every formula appearing as a claim in a true 
text that only involves the primitives  
 
∈=¬∧∨→↔∀∃λ,(){}↑↓!Μ  
 
must be universally true in the standard sense of class 
theory. A special case is of course that every formula 
appearing as a claim in a correct text that only involves 
∈=¬∧∨→↔∀∃()Μ and standard (unrestricted) variables is 
universally true in the standard sense of class theory.   
 
We remind you that we are for the moment entirely 
unconcerned with any issues of provability - just truth. Of 
course we can step back and see what axioms of class theory 
we need to prove that the text is correct. 
 
***************************** 
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ABSTRACT TREATMENT OF FORMULAS AND TERMS 
 
In this treatment of formulas and terms, we start with the 
symbols  
 
∈=¬∧∨→↔∀∃λ,(){}[]↑↓!|∼Μ 
 
and a set V of variables, a set PF of prefix function 
symbols, a set IF of infix function symbols, a set IR of 
infix relation symbols, a set PR of prefix relation 
symbols,  and a set SF of suffix function symbols. We 
assume that V,PF,IF,IR,PR,SF are pairwise disjoint.  
 
We also have 3 precedence relations. A precedence relation 
on a set is simply a function from that set into the 
integers (positive or negative or 0). The first precedence 
relation is on the connectives ∧∨→↔; the second is on IF; 
the third is on IR. 
 
We now give the context free grammar for formulas and 
terms. We need to bring in the additional syntactic 
categories: bracketed formula and bracketed term. 
 
1. For all x ∈ V, y ∈ PF, z ∈ PR, x is a bracketed term, y 
is a bracketed term, and z is a bracketed formula; 
2. For all bracketed formulas B, ¬B is a bracketed formula; 
3. For all bracketed formulas B1,...,Bn, B1 op ... op Bn is a 
formula, where n ≥ 2 and the op's are among ∧∨→↔; 
4. For all terms s,t, M(s), s↑, s↓, s ∈ t, s = t, and s ∼ t 
are bracketed formulas; 
5. For all terms t, (t) is a bracketed term; 
6. For all formulas B, (B) is a bracketed formula; 
7. For all terms t1,...,tn, n ≥ 1, {t1,...,tn} is a bracketed 
term; 
8. For all terms s,t1,...,tn, n ≥ 1, s[t1,...,tn] is a 
bracketed formula and s(t1,...,tn) is a bracketed term; 
9. For all bracketed terms s, and x ∈ PF, y ∈ SF, z ∈ PR, 
xs, sy are bracketed terms and zs is a bracketed formula;  
10. For all terms t1,..,tn and x ∈ PR and y ∈ PF,    
x[t1,...,tn] is a bracketed formula and y(t1,...,tn) is a 
bracketed term; 
11. For all n ≥ 2, bracketed terms t1,...,tn, x1,...,xn ∈ IF, 
y1,...,yn in IR, t1,...,tn is a term, and t1 y1 t2 ... tn is a 
formula; 
12. For all terms t, x ∈ V, and formulas B, {x|B} and 
{x∈t|B} are bracketed terms; 
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13. Let B be a bracketed formula, n ≥ 1, x1,...,xn ∈ V, t be 
a term. Then ∀x1,...,xnB, ∃x1,...,xnB, (∀x1,...,xn)B, 
(∃x1,...,xn)B, ∃!x1,...,xnB, (∃!x1,...,xn)B, ∀x1,...,xn∈tB, 
∃x1,...,xn∈tB, (∀x1,...,xn∈t)B, (∃x1,...,xn∈t)B, 
∃!x1,...,xn∈tB, (∃!x1,...,xn∈t)B, are bracketed formulas; 
14. Let t be a bracketed term, n ≥ 1, x1,...,xn ∈ V, s be a 
term. Then  λx1,...,xnt, (λx1,...,xn)t, λx1,...,xn∈st, 
(λx1,...,xn∈s)t are bracketed terms; 
15. Let t be a bracketed term, n ≥ 1, x1,...,xn ∈ V, s be a 
term. Then !x1,...,xnt, (!x1,...,xn)t are bracketed terms. 
 
This grammar has unique parsing. Parsing is very efficient. 

 
CONCRETE TREATMENT OF FORMULAS AND TERMS 

 
The formalism is based on a fixed finite alphabet A. 
Although there probably is some wisdom in making this 
expandable, we will simplify matters by taking A to be 
fixed. These characters are identified with bytes (ASCI 
codes).  
 
A is divided into characters, the blank, and the carriage 
return.  
 
The characters are divided into visible and invisible 
characters only for the purpose of what is displayed on the 
screen in normal mode, and what the printout looks like. It 
is only when the screen is in special mode that the blanks, 
carriage returns, and invisible characters can be seen. 
 
A must have at least the visible characters   
 
∈=¬∧∨→↔∀∃λ,(){}[]↑↓!|∼Μ 
 
as well as the visible characters (unformatted) remaining 
on standard computer keyboards. 
 
A name is a nonempty string from A that has no carriage 
reuturns and does not begin or end with a blank, comma, or 
period.  
 
The formulas (terms) are the elements x of A* which are 
uniquely (up to isormophism) a substitution instance of an 
abstract formula (abstract term) subject to the following 
conditions:  
 
 i) the substitutions are made by names; 
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 ii) in the substitution, the names that are replaced 
by variables are exactly the names used in the substitution 
that start with a lower case English alphabetic character. 
 
The recognition and parsing problems can be solved very 
efficiently.   
 

THE SYNTAX OF TEXT 
 
A name is a nonempty string from A that has no carriage 
reuturns and does not begin or end with a blank, comma, or 
period.  
 
A (well formed) text is an element x of A* satisfying 
certain conditions. It is required that x consist of a 
series of entries which contain no carriage returns, 
separated by at least one carriage return. It is understood 
that any number of blanks can be inserted anywhere in a 
text and the result will still be a text. 
 
There are three types of entries. When reading each entry, 
one ignores blanks.  
 
To determine the kind of entry, look for the first period. 
This must be one of the following: 
 
CONVENTIONx. 
DEFINITIONx. 
x. 
 
Here x must be a name. In the third case, x does not start 
with CONVENTION or DEFINITION. Typically, in the third 
case, x will be THEOREM, LEMMA, CLAIM, PROPOSITION, FACT, 
SUBLEMMA, LEMMATA, COROLLARY, etcetera. 
 
The actual conventions (there may be more than one) are 
found after the first period in the first case. They are of 
the following forms:  
 
x. 
u has precedence k. 
Precedence k is left associative. 
Precedence k is right associative. 
 
Here in the first case, x is a formula. The idea is that x 
asserts that the free variables in x are to range over 
those choices which make x true. The most normal case is 
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where x has exactly one free variable, say y, and we are 
simply declaring the range of the variable y; e.g., x is 
just M(y). This is like declaring that y is a variable 
ranging over all sets.  
 
In the second case, we are designating the precedence of u. 
Here u is any name (including a single binary connective). 
This is referred to if and when u is used in a formula as a 
single binary connective or as an infix symbol, for the 
purposes of fixing the ultimate parsing.    
 
The actual definitions are found after the first period in 
the second case. They are of the following forms: 
 
Define R[x1,...,xn] as Q; 
If P then define R[x1,...,xn] as Q; 
Define F(x1,...,xn) as t; 
If P then define F(x1,...,xn) as t. 
 
Here R, x1,...,xn,F are names and P is a formula and t is a 
term; x1,...,xn begins with a lower case alphabetic letter. 
The free variables of Q as well as t must be among 
x1,...,xn. 
 
Conflicts in definitions are resolved by latest updates. 
This is a little tricky in full generality. 
 
The claim entries are of the form 
 
P. 
 
where P is a formula. In interpreting P, one uses the 
earlier definitions and conventions.  
 
SEMANTIC ASPECTS 
 
From the semantic point of view, every text is a 
presentation of mathematical information that sits inside 
the theory of classes, as represented by a version of the 
von Neumann Bernays class theory with the global axiom of 
choice - VBGC - based on classes of sets. The truth 
definition is carried out in an appropriate superclass 
theory, based on classes of classes of sets. 
 
Concentrating on the present concept of text finesses the 
issue of treating mathematical text that refers to various 
other mathematical texts, which may not have consistent 
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notation with each other. This is an issue my coauathor 
especially likes - Randy Dougherty at the Ohio State 
mathematics department.  
 
In the appropriate version of VBGC, every object is a 
class. If the class X is a set then we write M(X). The sets 
are just the classes that are elements of some class. Hence 
every element of a class is a set. Classes that are not 
sets are called proper classes. The unordered pair, union, 
and power set of any set is a set. There is an infinite 
set. Two classes are equal if and only if they have the 
same elements. Every nonempty class has an element which 
has no element in the class. From these axioms, we have 
ordered pairing for sets. Therefore, we know what we mean 
by a class being a function. The image of every function on 
a set is a set. There is a function which produces an 
element of any nonempty set to which it is applied. 
Finally, we have separation for classes. This asserts that 
we can form the class of all sets satisfying any first 
order formula in our language, provided all quantifiers in 
the formula are restricted to sets. 
 
VBGC is well known to be a conservative extension of ZFC = 
Zermelo Frankel set theory with the axiom of choice, in 
which all variables range over sets only (no proper 
classes). I.e., every sentence provable in VBGC in which 
all quantifiers range over sets is provable in ZFC (with 
the relativizations of the quantifiers removed). 
Furthermore any sentence provable in ZFC is provable in 
VBGC if the quantifiers are relativized to sets. 


