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The motivation for the program presented here is the so called
consistency problem for mathematical analysis, or more generally, for bodies
of mathématics.** We were led to more careful formulations of these
problems than are customary, including a new methodology for the construction
of negative soiutions.

The legitimacy of the formulations and methodology rests on a
syntactic and semantic analysis of mathematics (mathematical text). This
%theoretical analysis of text is in turn based on a logical calculus U
which is an augmentation of the ordinary first order predicate calculus,

The analysis serves to legitimize the notions of provability, consistency,
and satisfiability in the context of genuine mathematical statements -
rather than merely in the usual framework of formalized mathematics.

In particular, the analysis shows how any finite set S of mathe-
matical statements can be construed as a finitely axiomatized formal

system - the raw formal system lS| - whose axioms are just the statements

themselves (presented as sentences in U).

Let Sl’ 2 be any two formal theories in U whose axioms consist of
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"In fact, we regard this work as the proper formulation of, and answer to,
Hilbert's second problem (about the consistency of analysis). Or,
"everything metamathematics was meant to be but never was''.




a finite number of statements together with a finite number of schemes.

(Thus, Peano arithmetic is allowed). We say that S, and S. are equi~

1 2
consistent if it can be proved in primitive recursive arithmetic (PRA)
that S1 is consistent if and only if 32 is. In this case we write
Sl~ 82 . We also write 81 < 82 to indicate that it can be proved in
PRA that if Sz is consistent, S1 is consistent. |

We say that two finite sets Sl’ 82 of mathematical statements have
the same logical strength of |SI|4~ |82| . We say that the logical
strength of 32 is at least that of S1 if |Sl| < |82| .

By analysis on Euclidean space, or more loosely speaking, real
variables, we will mean the study of pointsets in E® and functions from
pointsets in E® into E° , and more generally, of pointsets in spaces of
power < ¢ , and functions from such pointsets into such spaces.

We have made an extensive study of the raw formal systems arising out
of real variables and have uncovered the following remarkable empirical
phenomenon. Once a set of statements of real variables includes a handful
of certain basic ones (which we call RV), the raw formal system will
closely correspond to one of the principal metamathematically oriented
formal systems studied in mathematical logic.

One aspect of this correspondence between mathematical and metamathe-
matical statements is equiconsistency. The raw formal systems arising

out of real variables (including ‘RV| as a base) all seem to be equi~

consistent with metamathematical systems. Thus for finite sets S of

sentences of real variables (including RV as a base), we can "calculate"

the logical strength of S by presenting a standard metamathematical




<j system T for which T ~ |8] . other aspects of this correspondence relate

to provable ordinals and conservative extension results,

The calculus U 1is presented in a preliminary report "A universal
calculus for the logic of méthematics", August, 1976.

Finally, wé emphasize‘tﬁat there is another approach to logical
strength which is not in any way dependent on a system of axioms and rules
of logic. Indeed, one may question whether such axioms and rules are a
faithful modelling of mathematical practice. Perhaps some restriction on
them - which now may be transcendentally difficult for us to discover -
form just as inclusive a modelling of mathematical practice, and lead to a
very altered situation regarding consistency; perhaps even the demise of
the second incompleteness theorem for the 'nmew consistency”.

The approach that avoids the issue»of the modelling of mathematical
practice is the semantic approach. Semantic consistency just means the
existence of a system of objects in which all the statements hold. If
there are only finitely many statements in the class ~ and this is always
the case here - then semantic consistency is straightforwardly a single
statement. No extrapolation or modelling of mathematical practice is

involved.

In the treatment of ~ and s , we cannot of course use PRA, One

approach is to expand PRA to arithmetic comprehension (ACA0 of my
abstract in JSL of June, 1976). But.then we know, of course, by the
Godel completeness theorem that the approach in terms of proofs is equivalent

(if PA 1is used instead of PRA ; in pfactice, this makes no difference

either),




1.1

1. Arithmetic 3rd order comprehension - the logician's RV.

RV and |RV| are presented in the next section, and are quite lengthy
because they have real live genuinely mathematical primitives and principles
which are finite in number and explicitly used in actual text. It is quite
impossible to think efficiently in RV , \RV] for obtaining metamathematical
results, just as it is impossible to think efficiently in arithmetic 3rd
order comprehension (ACAS) for obtaining mathematical results.

We have variables kn over natural numbers, x, over sets of natural
numbers, and F: over m-ary total functions from sets of natural numbers to
sets of natural numbers. We have constants 0,1 , and function symbols
+, . We have =,€,

The numerical terms are given by 1) kn,O,l ‘are 2) if s,t are then |
(s +t), (s*t) are. The set terms are given by 1) X, are 2) if Syseces8
are, so is Fz(sl,...,sm) « The function terms are just the Fﬂ .

The atomic formulae are s =t, a € B8 , where s,t are either both
numerical terms or both set terms, and @ is a numerical term, 8 a set
term,

A formula is arithmetic if the only quantifiers are numéric#l. The
axioms and rules of logic are obvious.. The proper axioms are as follows.

1. n+ m+1)=(+mn + 1, ne(m + 1) = (nem) + n; n+1#0,n+1-=
m+1- n=m, |

2. Dex& (Mm)(n€x*+n+1€x)) »n€Ex.

3. (Zx) (Vn) (n € x «+ A), where A is arithmetic, x not free in A .
4o (@F) (¥x))eou (V5 ) (k) (k € F(x),000,% ) = A), where A is arithmetic
and F 1is not free in A .,

5. x=ye (fn(ne€xenecy) .
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<1 ACA3 is a conservative extension of Peano arithmetic, or even the

ACA, of my abstract in the JSL of June, 1976.

For metamathematical purposes, one always thinks of ACA3 instead of

RV, |RV| .
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2. The statements of RV and the formal system lRVl .

The primitives of the raw formal system |RV| are as follows.

a, Variables cxj over finite nonempty sequenées of real numbers;
variables xj over l-tuples of real numBers, which are identified with

real numbers; variables n, over natural numbers (1,2,3...) , which are

3

certain real numbers.

b. Variables A, over subsets of Euclidean spaces.

h|
c. Variables fj over partial functions from one Euclidean space
into another.
d. Variables Fj over partial binary functions from some EF x EJ

into some Er .

e. The sets E » @s a function symbol from natural numbers into sets,
and the set constant N .,

f. The function symbols +,+ on both the natural numbers and the
real numbers; the function symbbls -,1/ ,| | on the real numbers; the
function symbol Lth from finite sequences (of real numberé) into natural
numbers; the real number constant O0; the natural number constant 1.

g. The relation symbols < on real numbers, and = among natural
numbers, or reél numbers, or finite sequences, or sets; the relation symbol
C among sets; the 3-ary relation symbol fj: Ap - Aq among unary functions

and two sets; the 4-ary relation symbol Fj: Ap)(Aq - Ar among binary

functions and three sets.

n n
h. The variable binding operators X , I on real numbers, or on
k=1 k=1
natural numbers; the variable binding operator 1lim on real numbers.
n, b

3
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Thus in |RV| there are six sorts of variables - natural number
variables, real variables, Euclidean variables, set variables, unary
variables, and binary variables. The unary terms, binary terms are
respectively the unary variables, binary variables,

The natural number terms are given by i) l,n, are natural number

3

terms 1i) if s,t -are natural number terms, so are s + t, sot iii) if s

is a Euclidean term then Ath (s) is a natural number term iv) 1if
] s
8,t are natural number terms, then X t, Il t are natural number terms.
n,=1 n.=1

3 J

The real terms are given by i) all natural number terms are real

terms 1ii) O,x, are real terms iii) if s,t are real terms, so are

]

s +t, st,s~-t, /s, |s] iv) if s is a Euclidean term, t a natural

number terms then s(t) is a real term v) if s is a natural number term,
] s
t a real term, then X t, @I t, 1limt are real terms.
nj=1 nj=1 nj-bvoo

The Euclidean terms are given by i) all real terms are Euclidean

terms 1ii) aj is a Euclidean term 1ii) if s,t are Euclidean terms,
80 are fj(s), Fj(s,t) .
The set terms are given by i) N, Aj are set terms ii) if s is a

natural number term then Es is a set term.

The atomic formulas of |RV| consist of i) s =t, s ~ t , where

s,t are either both natural number terms, both real terms, both Euclidean

terms, or both set terms ii) s < t, where s,t are real terms iii) s € t,
where s 1is a Euclidean term, t is a set term iv) s C t, where s,t

are set terms v) fj: s =+ t, Fj: sXt »r, where s, t, r are set terms

-vi) D(s) for any term s .




C, 1. Equality axioms., Two sets are equal if and only if they have the
same elements. Two finite sequences of real numbers are equal if and only
if they agree everywhere,

2. Miscellaneous axioms. N is the set of all natural numbers. Every

natural number is a real numbér. The real numbers are the finite sequences
of length 1, The 1eng£h of all finite sequences is a natural number.
+,°,=,] | are defined on exactly the real numbers. Reciprocal is defined
exactly for all nonzero real numbers,

3. Axioms of explicit definition. The unary and binary functions
together are closed under substitution. +,',-,1/,| | define functions.
All constant functions exist. For each n =1 there is an F such that
F(oyx) =y if and only if q(x) =y, for all o € B, Every set is the
domain of some function. Every real valued function can be extended to a

<; total function by making it O off the domain. The restriction of any
1

function to a set exists. For all F: {1,...,n}XA % E  there is a

g: A+ E" such that for €A, 1 <k <n, g(a) (k) = F(k,a) .

4. Normal Archimedean ordered field axioms. The reals are an

Archimedean ordered field under +,+,-,1/,< , 0<x 4 lxl =x,x<0- |x|

=0-%, (0<x &0<y)~ (@n)(x < n-y) .

n n n+l n
5. ZI axioms., X f(k) = 0 f(k) = f(1), T £f(k) =~ fa+1) + T f(k),
k=1 k=1 k=1 k=1
n+l
I £&) < fm+1) O £fk) .
k=1 k=1

6. Sequential induction axioms. O § N, L EN, n+m €N, If
f: N+ E' and £(1) =0, (Vn)(f() =0 £( + 1) = 0), then (¥n)(£(n) = 0) .




2.4

( 7. Cauchy completeness axioms. 1lim f(n) = x if and only if
(Yp) (Fq) (¥r) (q < r - |x - £(r)] < 1/p)n-.'°° (@x) (1im £(n) = x) 1if and only
1f (V) @q) (Wr) (¥e) ((q < r & q < s) =+ |£f(x) - Ifr;;;l <1l/p) .
8. Pointwise limit axiom. If F: NXA - E1 and lim F(n,0) exists
for all o« € A, then there is a g: A - E1 such that Igln(’s = lim F(n,q) ,

n-
for all o €A . '

We now present the raw formal system lRVI . The purely logical axioms

and rules of inference are as follows.

A. All propositionmal tautologies. B. ((W\) () & (£)) »@\/t] .

C. (@IN/t] &D(t)) » @) () . D. DQ) . E. D(s) = D(t) , for regular

. subterms t of s . F. - D(s) , for all terms s appearing in the

atomic formula @ . G. s>t e ((D(s) VD(t)) +s=1¢t) . H. )\ = A,

A=nK=X, A=n&n=p) *x=p. I. A=5 @p\s]) .
C' n n n n ,
Jo (M)(s=t)»(Zs= Zt& Ns=~ Nt&lims = limt) . From

k=1 k=1 k=1 k=1 k- k=
©sp >y derive P . L. From @y derive @ -+ (@) . M. From y ».¢

derive (@) * ¢ .

Here, A\,k,u are variables and s,t are terms so that the above are
all formulas; and m free occurence of )\ in ¢ lies within the scope of
a quantifier (W) or (dv) , where v is free in t ; A is not free in

P .

The proper axioms of |RV| are as follows.

I. Equality axioms. A =B« (Vo) (@ €A~ a€B) a=p8+« (V) (am = 4(n)).

II. Miscellaneous axioms. A €N« (In)(n =qa). (o) @x)(Mm = x) .

(Yo) (4th(o) =1 » (@x)(x = @) . fth(e) €N . (Yo)(x € E* ~ 4th(a) = n) .
ACBw (T)(@€A+0€B). (En)@ACE). (£: A=B) « (Yo) (D(E(@)
@ €A) & D(£(@) - £(0) €B). (F: AXB »C) « (Vo) (¥8) ((D(F(a,B)) *
(€A & q€B)) &D(F(a,B)) »* Fla,B) € C).
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( ' D (|a) o a€ElL D(/g) - @cE sot 0).
III. Axioms of explicit definition. (&J) (Vo) (VB) (J(a,B) =
F(6(0B),H(@,8))), (ED (Vo) (¥8) (J(auB) = £(G(@yB))), @h) (o) (h(ed = I(E@),8(cd)),
(EF) (BG) (Vo) (¥B) (( € E" & B € E") + (F(o,B) = a & G(a,8) = B)),
@) (Vo) (Y8) ((w € E” & B € E) » J(aB) = 9). (@F) EG) (@H) (Vo) (¥B) (F (a, B) =
a+ B &Gh) = a*B &H(@pP) = a=p), @D Ee) (o) (£@) =
Va &g = |of). (@EF) (Vo) (V8) (@ € E" + F(a,f) = a(f)).
(VA) (¥8) @F) (F: AXB + ED). (Vo) (V8) (D(F(a,B)) + (o € E° & B € B® & F(o,) € EYY)
+ (ZG) (Vo) (YB) ((D(F(yB)) + G(a,B) = F(a,B)) & (@ €E" & B € E* & ~D(F(a,B)))
+ G(aB) = 0)) . (BA) (Vo) (a € A » D(£(@))) . (@g) (Vo) (VB) (g(a) =
B (£() =B &a€A) . (F:BXASE & (W)X €EB» (x EN&Ll<x<m)) » @g)
(8: A+ E® & (Vo) (VK @@ (k) = F(k,0))), (Z6) ((¥n) (Vo) (V8) G(n,0) =
c 2 F(k,0) & DEB,@) 4 €N, E6) ((Vn) (To) (VB) (G (n,0) * kﬁlwk,w &
D(G(/s,oo) 4B €.
IV. Normed Archimedean ordered field axioms. x + y=y+x,x+ (y +2)
=(x+y) +z,0+x=x,x+0-%x)=0,x-y=x+0-y), x°y=y-x,
Xe(ye2) = (xey) ez, lox=x,x#¢04x.(1/x) =1, x-(y+2) = (xey) +
(xe2), 0sx|x| =%, x<0|x] =0-x,~x<x), x<y&y<z)+
x<z,x<yVy<xVx=y,x<y-+x+2<y+z, x<y&0<z)
Xxez<yez, 0<x&0<7y -+ (En)(x<n ¥ .

1 .
V. Zlaxioms. f(l) € E - (E f(k) = U £(kk) = £(1)), D( % fk)) o
= k=1

k=1 k=1
1 n+l. n n+l n
(ﬁf(k))»f(l) EE, SEfE S f(n+1) + TEk), N £k) = £fm+1) I £(k).
k=1 k=1 k=1 k=1 k=1

VI. Sequential induction axioms. 0 EN, 1€ N, n+mé€EN, (f: N~ E]'

& £(1) =0 & (¥n) (£(n) =0 4 £(n + 1) = 0) » (¥n)(f(n) = 0) .
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Q] VII. Cauchy completeness axioms. 1lim f(n) = @+ (¥p) (Zq) (Vr)(q < r

n-»©
+ e £ <1/p) « @) (lim £() = x) = (¥p) @) (V) (Vs) (@ < r & q < 8)

n-
» |£(x) - £(s)| < 1/p) .

VIII. Pointwise limit axiom. (F: NXA - El

& (Vo) (@ € A » D(lim F(n,q))))

+ @g)(g: A+ E' & (Vo) (2 € A » g() = Lim F(n,0))) «
n-¥co.

n-sow
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3. Some calculations of Egicalb strengths,

A very substantial amount of analysis on Euclidean space is already
provable in RV . This is discussed in detail in "The analysis of mathe-
matical texts, and their calibration in terms of intrinsic strength IV",
PP. 3-24, August, 1975, Also, a number of strengths were given there,
which we append at the end.

As a guide to the results, we have come across four strengths,

Class I is measured by Peano arithmetic, or TI(< eo) + By the latter, we
mean the quantifier theory of a-induction and @-recursion, based on
standard notations for ¢ < € ° Class II is measured by the theory

ATR K ww), which is the subsystem of second order arithmetic based on the
closure of sets under the o-jump (and recursivity, join), for each
standard notation for o< ww : Or also TIK Kw (0)) , where standard
notations are used for all @< k¥ (0) . Here KO(B) = wﬁ, Ky+1(8) is the
Bth fixed point of Ky, K"(ﬁ) is the Bth simultaneous fixed poi_nt for all
K"Y, ¥ < A . Another characterization of the strength is the subsystem of
second order arithmetic HDC with arithmetic induction only, which we

call HDCO in the June 1976 JSL abstract. Class III is measured by the

_\theor}‘r ATR K I‘O) s or TIK I"o) . Here ]."0 is the least q with

Ka(O) = o . Also class III is measured by the sybsystem of analysis ATR
with arithmetic induction only, which we call ATRO in the June 1976 JSL
abstract. The ATR stands for "arithmetic transfinite recursion',
Class IV 1is measured by the system ID(K®w) of finitely iterated

inductive definitions. See Feferman's paper in the North Holland volume

Intuitionism and Proof Theory, 1968, for detailed axioms. It is the theory
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6 . @

of 6,6, 66

» etce Or the subsystem of second order‘arithmetic given

by II% - CA with arithmetic induction only, which we call Hl - CA

1 in the

0
JSL abstract.

Class I can also be measured by HAC0 + Class IV can also be
measured by I ; - AC0 . (The latter was independently observed by
S. Feferman, observing its being omitted in the JSL abstract).

At this point, we only intend to state some results obtained since
the '"Text paper IV". A thorough discussion of the proper organization of
these results, general conclusions, and further results, will be in "The
logical strength of mathematical stateﬁents.II";

We know that all of the below which are designated (I); i.e.,, of
class I when added to RV , are inifact not provable in RV .

A few remarks about the below.

A. TItem 19 is of special interest. By bounded variation, we mean that
there is an upper bound to the variations. This is different than the
definition adopted in "Text paper IV'. All other notions are taken from
‘there,

B. Item 14 corrects an error in "Text IV".

C. In item 15, wem., in [0,1] means that for all € > 0 there are two
sequences of balls’in [0,1] whose total lengths are respectively a,8 ,
the first of which covers the set, the second of which covers the complement
of the set, and where a+8<1 + ¢ .

D. In item 16, we mean that £: [0,1] # [0,1] has the following property.

There is a function which assigns to each 0 <x <1 and ¢> 0 » two
1
[

sequences of balls in [0,1]. with the property in 3 above for f

(0,1 .




3.3

This is all you seem to need for Lebesgue theory.

1, Continuous functions on bounded closed sets are unif. cont. .

2, Infinite sets have arb. large finite subsets. (II).

3. Infinite sets have denumerable subsets. (II).

4., Uncountable sets have limit points. (III).

5. Uncountable sets have perfect subsets. (III),

6. Limit pts are aﬁproachable. .

7. The least upper bound principle. (IV).

8. The inverse of a one-one function exists. (III).

9. (Vo) (¥B) (F(a,B) = 0) -+ (ZG) (Ya) (F(a,G(&)) = 0). (III).

10. The sup of a function exists. aw).

11, Bded Infinite sets have limit points. (II).

12, Every open set is the union of a sequence of open intervals. (IV).
13. The least upper bound principle for closed sets., (IV).

14. The intersection of a sequence of dense open sets is dense, I.
15. There is an open set which is not weakly measurable in [0,1] . (I).
16, Every function on [0,1] is strongly measurable. (I).

17. 1If £: [0,1] » F 4is bounded and is cont. a.e., then f is Riemann
integrable. (I).

18, 1If f£f: [0,1] » E is R;emann integrable then £ is cont. a.e. (I).
19, Every function of bounded v#riation is the difference between two
monotone increasing functions., (III).

20, Every subset of E" closed under addition and scalar multiplication,
is spanned by a finite independent set. (II).

21, The set of points of continuity of functions on the reals exists. (IV).




3.4

(. 22. The conjunction of 1, 6, 14, 16, 17, 18. (1).
23. The conjunction of 22, 2, 3, 11, 20. (11).

24. The conjunction of 23, 4, 5, 8, 9, 19, (III).

25. The conjunction of 1-21, (IV).




Taken from "The analysis of mathematical texts, and their calibration

in terms of intrinsic strength IV"
Theorems of Strength  PA

The theorems below are provable in RV, *+ sequential choice, which
reads (¥n) Ea) (£(n,0) = 0) =+ (Ig) (Vn) (f(n,g(n)) = 0) , and is equi-

consistent with PA .

THEOREM 1. Every limit point x of A is the limit of a sequence of

elements from A other than x .

THEOREM 2. 1If a set contains arbitrarily large finite subsets, then it

contains a denumerable subset.

THEOREM 3. Every nhbd of a limit point of A contains a denumerable sub-

set from A .

THEOREM 4. Every sequence of open sets covering a compact set has an

initial segment covéring it also.
THEOREM 5. A continuous function on a compact set is uniformly continuous.

THEOREM 6. If fn 2 fn+1. on a compact set E , fn +f on E, and fn’f

are continuous on E , then fn <+ f uniformly on E .

THEOREM 7. Let K be a compact set, If {fn} is a uniformly convergent

sequence of continuous functions on K , then {fn} is equicontinuous.

THEOREM 8., If f: Ik +R, f 1is continuous a,e., then f is Riemann

integrable.

THEOREM 9. If A C B, A compact, B open, then there is a finite sequence

of open rectanglesvfrom B which cover A .




<i; In Theorem 8, cont. a. e. means that for each € > 0 there is a
sequence of open rectangles, the sum of whose volumes is < ¢ , such that

the function is continuous off of these rectangles.




Theorems of Strength égRé<gQaﬁ

The theorems below are equiconsistent with ATR( afu) when added to

RV, , and are provable in RV, + dependent choice, which is

(Vo) @EB) (£(a,B) = 0) =+ (Vo) (@) (8(0) = & & (¥n) (£(g(n),g(n + 1)) = 0)) ,

and is also equiconsistent with ATR(< ufv) .

THEOREM 1, A set is infinite if and only if it contains a denumerable

subset.

THEOREM 2. A set is infinite if and only if it contains arbitrarily iarge

finite subsets.

THEOREM 3. If A CFBn is closed under addition and scalar multiplication,

then A is a vector space.

THEOREM 4.  The finite union of finite sets is finite.




(«. Theorems of Strength  ATR (2 I‘O) s 1\'1'Ro

The following theorems are equiconsistent with ATR (< Ib) and ATRO.Q

when added to RV1 .
THEOREM 1. Every one-one function has an inverse.
THEOREM 2. Every graph determines a function.

THEOREM 3. Countable union of countable sets is countable.

THEOREM 4. The countable intersection of dense open subsets of R is

dense.




(u Theorems of Strength ID(< ()

The theorems below are equiconsistent with ID(K ) when added to

RV1 .
THEOREM 1. Every nonempty bounded set of reals has a least upper bound.
THEOREM 2. Every open set is sequentially open.

THEOREM 3. Every bounded closed set of reals has a least upper bound.,

THEOREM 4. Every indexed family of open sets covering the unit interval

contains a finite subcover,

THEOREM 5. The set of interior points of-every set exists.

|
|
|




