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The intention of this Opening Talk to the Gent Logic Group 
led by Andreas Weiermann, is to be INSPIRATIONAL, with some 
substantial definitions and statements of results. 
 
I am just getting familiar with ZOOM so I apologize in 
advance for any problems that may occur.  
 
WHAT IS TANGIBLE INCOMPLETENESS? 
 
Well I assume we all know what Incompleteness is. It refers 
to the unprovability of a sentence and its negation, in 
some of our standard formal systems in f.o.m. = foundations 
of mathematics.  
 
Tangibility is a semiformal term that refers to the level 
of concreteness of the sentence in question. From the 
technical point of view, there has evolved a precise 
hierarchy of levels of Tangibility. Here is a description 
of this standard hierarchy, but with a not too common 
discussion of the very bottom levels.  
 



	 2	

Let's start at the top and work our way down. Until we get 
fairly low down in this hierarchy, it is standard to use 
the usual set theoretic framework without change. Actually 
we start a little higher, with classes. The strongest base 
framework here is MKC = Morse Kelly class theory with the 
global axiom of choice.  This is stronger than NBG = von 
Neumann Bernays Gödel theory of classes.  
 
When I discuss below the Tangible Incompleteness starting 
at the lower levels of V(ω+1), in section 5 below, a very 
good reference is the Introduction to my BRT book, 
maintained at https://u.osu.edu/friedman.8/foundational-
adventures/boolean-relation-theory-book/ 
 
1. QUANTIFICATION OVER ALL CLASSES. An interesting example: 
For any partition of the two elements sets into two pieces, 
some proper class has all of its two element subsets in the 
same piece. Here we would classify in the usual way 
according to alternating blocks of like quantifiers over 
classes after being put into appropriate prenex form, 
ignoring the "mere" quantification over sets. This example 
is naturally ∀∃. Show that this statement is not provably 
equivalent to any ∃∀ statement over MKC. 
 
2. QUANTIFICATION ONLY OVER ALL SETS. Again put in prenex 
form and classify according to alternating blocks of 
quantifiers. However, here we ignore the "mere" bounded 
quantification. I.e., (∀x ∈ y)(...) and (∃x ∈ y)(...). For 
example, the GCH. Show that GCH is ∀∃∀ and not ∃∀∃. I.e., 
there is no ϕ in ∃∀∃ such that ZFC proves ϕ ↔ GCH. ∀∃∀ 
seems to be something of a threshold here. E.g., show 
"there are arbitrarily large measurable cardinals" is ∀∃∀ 
but not ∃∀∃. Show "there is a measurable cardinal" is ∃∀ 
but not ∀∃.  
 
But here, there is a natural cruder measure and that is to 
treat inclusion like ∈, so that (∀x ⊆ y)(...) is treated as 
a bounded quantifier.  
 
I recently considered statements about the symmetric 
semigroups, which are the semigroups of functions from a 
set into itself under composition. These fit in at this 
level. Also the existence of various large cardinals fit in 
at this level. I don't know if there has been a systematic 
analysis of quantifier complexity along the lines we are 
discussing.  
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3. QUANTIFICATION OVER VARIOUS (V(α),∈), α ≥ ω+3. We say α 
≥ ω+3 because for α ≤ ω+2, this level takes on a very 
different character. Various choices of α have proved to be 
significant. For instance, where α is one of the large 
cardinals, and in particular, the first of its kind. The 
choice α = the first strongly inaccessible cardinal is 
particularly significant, as it corresponds in an 
appropriate way to ZFC, the most important of the f.o.m. 
systems. Another choice of α that has proved significant is 
α = ω1. This is the region that corresponds to proving Borel 
Determinacy (Martin/Friedman). The level α = ω+ω is 
important both technically and conceptually. It corresponds 
to one of the most important of all systems in f.o.m., 
namely ZC = Zermelo set theory with the axiom of choice. 
Also, historically, streamlined versions of Russell's 
theory of types. Also (V(ω+ω),∈) forms a conceptual 
foundation for computer systems such as HOL.  
 
The important set theoretic statement "the continuum is 
real valued measurable" lives here. The continuum 
corresponds to V(ω+1), the measure measures elements of 
V(ω+2), and therefore is essentially a subset of V(ω+2), or 
an element of V(ω+3). Prove that "there is a nontrivial 
countably additive measure on all sets of reals" is an ∃ but 
not ∀ statement over (V(ω+3),∈). Prove that "c is real 
valued measurable" is an ∃∀ but not ∀∃ statement over 
(V(ω+3),∈).  
 
4. QUANTIFICATION OVER (V(ω+2),∈). CH is an ∃ statement 
over (V(ω+2),∈). We are now within the realm of pretty 
familiar mathematics to the majority of professional 
mathematicians, even though the vast majority of them don't 
work in and around CH or related statements.  
 
There is the well known theorem that CH is not a statement 
over (V(ω+1),∈). What do we mean by this?  
 
I think the following results are credited to Solovay. 
Assume ZFC is consistent. 
 
THEOREM 4.1. Let ϕ be a ∀ statement over (V(ω+2),∈). Then 
ZFC does not prove ϕ ↔ CH.  
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THEOREM 4.2. Let ϕ be a statement over (V(ω+1),∈). Suppose 
ZFC proves CH → ϕ. Then ZFC proves ϕ.  
 
THEOREM 4.3. Let ϕ be ∃∀∃ = Σ3 over (V(ω+1),∈). Often just 
written Σ13. Suppose ZFC proves ϕ → CH. Then ZFC refutes ϕ.  
 
THEOREM 4.4. There is a Π1

3 sentence ϕ over (V(ω+1),∈) such 
that ZFC proves ϕ → CH and ZFC + ϕ is consistent.  
 
We now come to the conceptual issue. What EXACTLY do we 
mean when we say that a mathematical statement is at a 
certain level here? I.e., is ∀∃ over a structure M? In all 
the examples above, we were looking at statements not 
proved or refuted in ZFC (over classes, we used MK + GC). 
So placement in a hierarchy means provability. But we so 
often calculate levels in an environment where there is no 
known or even no suspected unprovability, and even often in 
environments where we are trying to classify ACTUAL 
THEOREMS! So how about this cute remark: 
 
1) Every proved theorem is known to be provably equivalent 

to 0 = 0,  
which is at the lowest possible level of complexity of 

statements. 
 
In practice, these calculations of levels are really based 
on this:  
 

2) When we go about putting the statement in logical 
notation 

over the structure M, we know we have equivalence, 
AND that equivalence does not rely on special features 
of the sentence connected with its proof. We see that  

the best we can do is, say, ∀∃, and not ∃∀ -  
or that we cannot make the formalization at all over an 

inherently simpler M,  
no matter what quantifier structure we use. 

 
If we don't point to this kind of semiformal description of 
the classification process, we specifically need to 
confront 1).  
 
Of course, this issue mostly does not arise when we are 
trying to classify an OPEN PROBLEM. With an open problem, 
one can in fact make sometimes interesting positive claims 
that such and such is in class ∀... over M. Here are two 
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well known cases of this, one trivial and one definitely 
not. The Twin Prime Conjecture is Π0

2. Of course one day, 
maybe soon, it will be proved, and we then can face 1). But 
suppose you say, and people often do, that the Twin Prime 
Conjecture is not Π01, then what on earth do you mean? Well 
something at present semi formal along the lines of 2).  
 
The second example is the Riemann Hypothesis RH. It takes 
some number theory to put RH into Π0

1 form. But the number 
theory involved is standard and nowhere near getting close 
to proving RH. So it is totally OK to use it to get RH into 
Π0

1 form.  
 
And we are of course saved completely from such conundrums 
1) when we are armed with powerful stuff like Theorems 4.1 
- 4.4 above relating to CH. Such investigations can be done 
for a fairly long list of mathematical statements in the 
region around the CH level, although I am not sure this has 
been worked out systematically.  
 
CONJECTURE. This conundrum 1) can largely be solved in a 
theoretically interesting way, even when dealing with 
actual theorems.  
 
With the related subject of definability theory - 
classifying the inherent complexity in mathematical notions 
- we don't have such a conundrum. What is clearly relevant 
and of independent interest is a systematic way of pulling 
mathematical objects out of mathematical statements - 
especially when they have been proved! And classifying the 
complexity and relative complexity of these derived 
mathematical objects. We have seen many many exciting cases 
of this.  
 
So here is a possible new topic suitable for the GENT 
series: PULLING MATHEMATICAL OBJECTS OUT OF MATHEMATICAL 
THEOREMS. There is already a lot of work that can be cast 
in this form. But I think there is much more to do on this, 
with a new systematic approach.  
 
Of course, in some ways, this touches on a subject called 
PROOF MINING championed by Kohlenbach, but with a quite 
different overall aim. More about this later.       
 
5. QUANTIFICATION OVER (V(ω+1),∈). The vast bulk of 
mathematical statements, in practice, lie at this level or 
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below. The notation Π1
n, Σ1n, n ≥ 0, has become standard, 

with the superscript 1 signaling that we are quantifying 
over V(ω+1). Actually usually ℘(ω) is used instead of 
V(ω+1), but that one has to add the semiring structure on 
ω. Here with V(ω+1) we need only to use ∈. Real numbers 
correspond to elements of V(ω+1) and integers/rationals 
correspond to elements of V(ω).  
 
At this level, the notation Π1

n and Σ1n has become standard.  
 
At the higher levels we have most notably, Projective 
Determinacy. PD starts being unprovable in ZFC, and at the 
same time, refuting V = L, at statement level Π1

4. Σ11 
Determinacy is Π1

4 because a winning strategy for the Σ11 
side is a Π1

2 property, and for the Π1
1 side is a Π1

1 
property. So existence of a winning strategy is Σ13, and we 
do boldfaced Σ11 Determinacy, which means we are at Π1

4. 
Prove: Σ1n Determinacy is Π1

n+3 and not Σ1n+3 over ZFC.  
 
Borel Determinacy is historically where Tangible 
Incompleteness really started. BD is provable in ZFC. 
Martin used V(ω1) to prove it and I showed this was 
required. Martin first proved BD using large cardinals way 
beyond ZFC. Then I showed that the V(α), α countable, are 
required to prove it. Then Martin proved BD using exactly 
the V(α), α countable.   
 
I consider this BD development the launch of Tangible 
Incompleteness at the very upper end. Incompleteness lower 
down, started to really get launched around 10 years later. 
Note that BD is Π1

3. Prove: BD is not Σ13 over ZC = Zermelo 
set theory with the axiom of choice. There has been 
considerable work done on determining the set theoretic 
strengths of the natural fragments of BD. See 
https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112
/plms/pdr022 and 
http://homepages.math.uic.edu/~shac/Calibrating.pdf 
 
As we descend lower into more Tangible Incompleteness, we 
find my RM = Reverse Mathematics. RM lives within the lower 
logical levels of (V(ω+1),∈). (Higher level RM is being 
developed and is rather different in character).  
 



	 7	

The vast bulk of undergraduate real and complex analysis 
lives in this region. Especially Π1

3 and Π1
2. But they are 

all well known theorems, and so we run into the conundrum 
1) when stating that we cannot do better. Also, treating 
this material of course requires the appropriate 
representation of continuous functions and some related 
concepts like open and closed sets, etc. This is more or 
less handled appropriately and probably needs to be 
revisited, especially for the purposes of the upgrading of 
my present Reverse Mathematics into the more refined Strict 
Reverse Mathematics. Strict Reverse Mathematics - another 
topic perhaps suitable for this Gent Series. The idea 
behind Strict Reverse Mathematics is to not allow coding, 
and indeed to allow no axioms - in the sense that the 
mathematical text being analyzed constitutes a formal 
system in its own right. Of course in the practical 
execution of this idealized Strict Reverse Mathematics 
idea, basic fundamentals about the notions being treated 
are often hidden from view. So it takes some real effort to 
ferret out sought after robustness.  
 
QUESTION: Take "intermediate value theorem for continuous 
functions f:[0,1] → ℜ" or take "every continuous function 
f:[0,1] → ℜ achieves a maximum value". These are Π1

2 and 
Π1

3 and in some sense not better. What do we mean by that? 
Take "every continuous function f:[0,1] → [0,1] has a fixed 
point". This is also Π1

2 and in some sense not better. What 
do we mean by that? 
 
ANSWER? We could take the RM = Reverse Mathematics approach 
and use RCA0 as the base theory for classification, like 
using ZFC that we used for classification higher up above. 
First of all, this does nothing to classify statements 
provable in RM like the Intermediate Value Theorem, which 
is "obviously" Π1

2 and no better. Secondly, what it does is 
shift the classification to the classification of the axiom 
systems used for the reversal. Interestingly, note that 
WKL0, ACA0, ATR0 are all Π1

2 (over RCA0).  
 
But also in this region are statements that are stronger 
than what RM normally deals with, and behaves analogous to 
BD and its fragments in many respects. I am referring to 
the development of mine from the 1980s called Borel 
Diagonalization that exhibits Tangible Incompleteness in 
the fragment of ZFC region between V(ω+1) and V(ω1) - like 
BD. However BD is Π1

3 whereas Borel Diagonalization lives in 
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Π1
2. The original of these says that in any Borel function 

F:ℜω → ℜ with (∀x)(F(x) = F(πx)), some F(x) is a coordinate 
of x. That original one corresponds to Z2. See the 
Introduction to BRT at 
https://u.osu.edu/friedman.8/foundational-
adventures/boolean-relation-theory-book/  
 
Π1

2 statements are important also for RM (Reverse 
Mathematics) in the following way. The systems WKL0, ACA0, 
ATR0 are themselves Π1

2 over RCA0, and that is best possible. 
I.e., they are not Σ12 over RCA0.  
 
When we descend further down in (V(ω+1),∈), we reach levels 
that are greatly significant for f.o.m. and proof theory in 
particular. At the level of Π1

1, the statements can be put 
in the form of a specific recursive tree of finite 
sequences from ω is well founded. We now have an obvious 
measure of how "strong" the Π1

1 sentence is. Namely the 
ORDINAL of that tree. This is a perfect example of 
extraction of mathematical objects from mathematical 
theorems - the ordinal.  
 
QUESTION. How robust is this? If I have a real actual 
theorem T over (V(ω+1),∈) I am not going to present it as 
"here is a recursive tree and I hereby assert that it has 
no infinite path". I don't know about you but I don't 
present actual mathematical results this way. So there has 
to be a conversion into this tree form. But different 
people may get to different trees when doing their own 
personal conversions. Typically, these conversions from the 
same mathematical statement A will be done in RCA0 but maybe 
a bit more, say WKL0 or ACA0. 
 
So we are led to this kind of question. Suppose we prove in 
a weak system the equivalence of recursive tree T1 is well 
founded and recursive tree T2 is well founded. Then what can 
be say about the relationship between the ordinal of T1 and 
the ordinal of T2? Or maybe adjust this to: suppose we prove 
in a weak system, T1 is well founded implies T2 is well 
founded. Then what can we say about the relationship 
between their ordinals? 
 
I am thinking of this kind of issue. The Π1

1 sentence may 
take the form (∀f)(A) where A is not simply Σ01, which would 
readily give the tree, but A is a more complicated 
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arithmetic formula. How robustness now is the assignment of 
an ordinal to the Π1

1 sentence?  
 
I think the answer to this question is essentially known 
but maybe should be revisited. Notice that preservation of 
well foundedness under operations gives rise to various Π1

2 
sentences.  
 
QUESTION. However, can every Π1

2 sentence be viewed in an 
interesting way as a sentence asserting that some operation 
on trees preserves well foundedness?  
 
There is a tremendous treasure trove of Π1

1 theorems. Proof 
theorists get excited of course when the ordinals are 
fairly large. But I would suggest that these ordinals be 
computed even for some rather ordinary commonplace 
mathematical situations. Maybe the answers are little 
ordinals like ω2 or even ω + 35. Still interesting although 
robustness may prevent much ω + 35 excitement.  
 
Of course the most well known treasure trove of Π1

1 theorems 
come out of wqo theory. Like the ordinals of Kruskal's 
theorem and fragments. Like the ordinals of the 
Robertson/Seymour Graph Minor Theorem. Like the ordinals of 
my finite trees under gap condition embeddability. But 
there may be many other places in mathematics where Π1

1 
theorems are in fact lurking and the mathematicians don't 
know enough to notice them and never heard of an ordinal.  
 
QUESTION. Go through the entire math literature and look 
for Π1

1 theorems and calculate their ordinals.  
 
In this regard, maybe some uncountable trees coming out of 
theorems that are not or not obviously Π1

1 might be of great 
interest. I'm thinking of the Nash William infinite tree 
theorem. This is like Kruskal's theorem but for infinite 
trees. What is the ordinal of this statement? See 
http://web.mat.bham.ac.uk/D.Kuehn/bqofinal.pdf Also 
https://www.ams.org/journals/tran/1989-312-01/S0002-9947-
1989-0932450-9/S0002-9947-1989-0932450-9.pdf which seem to 
combine Nash Williams infinite tree theorem and the 
Robertson Seymour graph minor theorem and my extended 
Kruskal theorem. Also Kriz, 
https://www.researchgate.net/publication/265437229_Well-
Quasiordering_Finite_Trees_with_Gap-
Condition_Proof_of_Harvey_Friedman's_Conjecture proves my 
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gap condition theorem with well ordered labels. Also see 
https://arxiv.org/abs/1907.00412  
 
I remember years ago that various wqo statements were 
proved only through bqo and sometimes only the upper bound 
of Π1

2 comprehension sufficed for the proofs. I just sent an 
email to Alberto Marcone asking him if that was still the 
case.  
 
We know we get recursive ordinals out of even uncountable 
trees and hence certain kinds of sentences that are above 
Π1

1. 
 
THEOREM. Let T be a Σ11 tree of finite sequences of reals, 
without parameters. If T is well founded then its ordinal 
is a recursive ordinal. 
 
Proof: The set of all countable subtrees of T is Σ11 and 
gives rise to a Σ11 set of well orderings on ω, which 
according to classical descriptive set theory, must have an 
upper bound that is a recursive ordinal. QED 
 
Theorems like the Nash Williams infinite tree theorem have 
a natural tree, and that natural tree is Σ11 without 
parameters so the above Theorem can be applied.  
 
Believe it or not, I am not yet done talking about the 
lowest level of sentences in (V(ω+1),∈).  
 
The Σ11 sentences sometimes have great importance. These are 
dual to the Π1

1 sentences, and therefore can be reformulated 
to assert that some recursive tree has an infinite path. If 
this associated tree is finitely branching then something 
magical happens. The Σ11 sentence then asserts that a 
particular recursive finitely branching tree has an 
infinite path which is equivalent to the tree being 
infinite. Now if we have no control over the branching, 
then we get only a Π0

2 sentence - but nonetheless a SENTENCE 
OVER (V(ω),∈) - rather than just over (V(ω+1),∈). Because 
we have to say "T is infinite".  
 
And if we have control over the branching, then when we say 
"T is infinite" we actually get a Π0

1 sentence. What kind of 
control are we talking about? The tightest control is of 
course when T is literally a set of finite sequences of 0's 
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and 1's. This is the classic situation where having an 
infinite path is the same as being infinite, and being 
infinite is Π0

1. So called WKL0.  
 
Most generally, we may have a tree of finite sequences from 
ω where we have a recursive function f such that each f(n) 
is an upper bound on all of the integers appearing at or 
below level n in T. Then also T being infinite is Π0

1.  
 
Another category of special Σ11 sentences are those that 
assert or are easily seen to assert that some sentence in 
predicate calculus is satisfiable. Then by the Gödel 
Completeness Theorem, this is Π0

1.  
 
I have discovered a treasure trove of natural Σ11 sentences, 
which we know a priori are Π0

1, and this has nothing to do 
(directly) with controlling tree branching. These are the 
Σ11 sentences that assert the existence of a k-ary relation 
S ⊆ Jk satisfying a first order condition over (J,<,S) with 
constants from J allowed, where J is any rational interval. 
The reason that these are Π0

1 is that they are obviously 
equivalent to the satisfiability of a sentence in first 
order logic and that is equivalent to a Π0

1 sentence by 
Gödel's Completeness theorem.  
 
These Σ11 sentences, which are all implicitly Π0

1 in the 
sense above, are at the heart of Tangible Incompleteness 
and will be discussed over many lectures in this Gent 
series. These sentences are all provably equivalent to the 
consistency of certain large cardinal hypotheses, all much 
larger than strongly inaccessible cardinals, some much 
smaller than measurable cardinals, and some much larger 
than measurable cardinals.  
 
But even though we know that these Σ11 sentences are 
implicitly Π0

1 - i.e., equivalent to Π0
1 sentences - it is 

still crucially important to give competitively natural and 
compelling actual arithmetic equivalents, or even Π0

2 or Π0
1 

equivalents. Fortunately we have made some recent 
breakthroughs along these lines. So this brings us to the 
next section.  
 
6. QUANTIFICATION OVER (V(ω),∈). Here we are talking about 
so called arithmetic sentences, and the normal notation is 
Π0

n, Σ0n, n ≥ 1. A great deal of mathematics is at this level 
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- the so called finite mathematics. The vast bulk of finite 
mathematics is Π0

1, Π0
2, or Π0

3. Let's look at some examples: 
 
Π0

1. FLT is the most famous. There is also Goldbach's 
Conjecture, every even integer > 2 is the sum of two 
primes.  
Π0

2. Twin Prime Conjecture. Close to being proved.  
Π0

3. Falting's Theorem (Mordell's Conjecture) stating that a 
certain effectively given set of Diophantine equations over 
Q each have only finitely many solutions. But here we have 
the conundrum that is equivalent to 0 = 0. But we can now 
talk about mathematical objects associated with 
mathematical theorems. There is the number of solutions 
function. I sort of recall that this function is known to 
be recursive, with low computational complexity. Then there 
is the least numerator/denominator needed to write the 
solutions. And I recall that this function is not known to 
be recursive. Related situations arise with various 
theorems in approximation of algebraic numbers by 
rationals, like Roth's theorem.  
 
We can treat some of this phenomena in terms of provability 
in systems of constructive arithmetic like HA = Heyting 
Arithmetic. This reminds me of a huge project that I would 
like to engage in some time. 
 
QUESTION. Give good necessary and sufficient conditions for 
a sentence in the language of PA to be provable in HA. An 
answer that takes for granted what can be proved in PA is 
acceptable here. Even better is to just use what Π0

1 
sentences can be proved in PA as black boxed.  
 
The above is a huge topic that deserves serious discussion.  
 
Π0

2 sentences occur all the time surrounding Π1
1 sentences. 

There is a good finite form theory. I originally applied 
the basic ideas of finite form theory to Kruskal's theorem, 
and the idea has been applied just about anywhere there is 
a suitable Π1

1 sentences. Finite Form Theory in all of its 
guises is another topic suitable for Gent Series.  
 
Recently I have been developing finite forms of my new Π1

1 
sentences that are implicitly Π0

1 as discussed above because 
they assert the existence of a model of an obvious first 
order sentence. Of course, there is a very crude finite 
form that simply asserts "such and such sentence is 
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consistent in predicate calculus". But one properly seeks 
clear vivid natural simple memorable finite forms. This is 
a substantial topic that will be discussed in this Gent 
series.  
 
One of the categories of Π0

1 forms, by no means the only 
ones, is nondeterministic algorithms. One asks that for all 
suitable initializations, the algorithm can be carried out 
for infinitely many steps without running into a blockade. 
By WKL, this is the same as saying that the algorithm can 
be carried out for any given finite number of steps without 
running into a blockade. When I use the rationals, this 
becomes explicitly Π0

2, but by obvious considerations, one 
can either use well known decision procedures or simply 
bound the numerator/denominator of the rationals used to 
obtain an explicitly Π0

1 form. 
 
These nondeterministic algorithms can be molded into 
subproblems of limited size - namely finding a way to 
execute watered down forms of these nondeterministic 
algorithms for a small number of steps where we know they 
can be so executed because the full algorithm can be 
executed for any finite number of steps. It can be nicely 
arranged that this be a SEARCH problem, and presumably the 
desired short nondeterministic paths can be found by 
EXHAUSTIVE SEARCH. And it does seem evident that no human 
intelligence can see their way through such challenges. So 
in an interesting sense, one is confirming the consistency 
of large cardinals this way. Of course, the possibility is 
that EXHAUSTIVE SEARCH FAILS! The major point is that this 
could happen. And if it DOES, this means one has refuted 
large cardinals using a computer (and the human proof 
linking large cardinals to the nondeterministic computer 
paths).  
 
But CAN WE MOVE DOWN LOWER THAN Π0

1?? 
 
Well no of course. But really YES! 
 
7. Σ SENTENCES OVER (V(ω),∈). These are more commonly 
referred to as Σ01 sentences. Of course, the obvious thing 
about these is that: their TRUTH implies their PROVABILITY!  
 
But how long are these proofs going to have to be?  
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QUESTION. Suppose a Σ01 sentence is provable in a certain 
standard formal system and the size of the proof is n. What 
can we say about the least witness for the Σ01 sentence?  
 
This question should have some interesting answers for 
standard f.o.m. systems using what might be called notation 
systems for integers. Of course, many robustness issues 
should be confronted when making measurements here.  
 
A huge supply of interesting Σ01 sentences come from the 
myriad of Π0

2 sentences which also come from the original Σ11 
sentences through finite form theory. Namely we slowly let 
the outermost quantifier (∀n) grow. n = 1,2,3,4,5,6,7,... . 
See what integer thresholds arise. Some work of mine on 
this is in Rick Smith's article in the book on my work from 
the mid 1980's.  
 
8. SENTENCES OVER (V(n),∈). 
 
Going further down from Σ01 we get to sentences about 
(V(n),∈), where n is a specific positive integer. These 
grow quite fast: 
 
|V(0)| = 0. 
|V(1)| = 1. 
|V(2)| = 2.  
|V(3)| = 4. 
|V(4)| = 16. 
|V(5)| = 65,536. 
|V(6)| = 265,536. 
 
QUESTION. Is the entire mathematical universe properly 
reflected in (V(6),∈)? Or perhaps this becomes more vivid 
in (V(8),∈) and also much easier to achieve there? How do 
we do this? 
 
Here is the kind of thing that I am expecting to fall out 
of PRESENT developments in Tangible Incompleteness. There 
is a nice nondeterministic algorithm that we want to run 
for a handful of steps, say 10 steps. We can prove that it 
cannot be run for 10 steps in about 10 pages of argument 
using a large cardinal axiom. But any such proof in ZFC has 
to have size at least 21000 with abbreviations used. And 
where by estimating some sizes, we see that the statement 



	 15	

in question (cannot be run for 10 steps) is a statement in 
(V(8),∈).  
 
Incidentally, before I forget. We also need a fine tuned 
theory of ABBREVIATIONS. How does that affect actual sizes 
of actual proofs? There is some start by Avigad on this.  
 
ULTIMATELY, we would like to have a single statement with a 
parameter k that lives in even ℘{1,...,1000} where as you 
slowly raise k = 1 the statement corresponds from EFA to 
HUGE and higher to I1. I.e., lengths of proofs keep passing 
one threshold after another as we move from major formal 
system to another.  
 
 
 
  
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
	


