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Abstract
By adolescence, students are learning more abstract and complex concepts, such as those of algebra
and geometry. It is tempting to introduce these concepts through concrete, familiar instantiations that
might deeply engage students in the learning process and possibly facilitate initial learning. However, a
primary goal of acquiring mathematical concepts is the ability to apply structural knowledge outside the
learning situation and there is evidence that concrete instantiations can hinder transfer. This chapter
addresses how successful analogical transfer is influenced by characteristics of the learning and target
domains. We discuss results of a series of studies demonstrating that learners are more able to transfer
mathematical structure from a learned generic instantiation than from a learned concrete instantiation.
We suggest that concrete instantiations of abstract concepts communicate more extraneous
information than their more abstract, generic counter parts. This extraneous information is retained in
the learner’s representation of the concept and hinders subsequent transfer. Implications for abstract

learning in adolescence and young adulthood are discussed.



The period from adolescence to young adulthood is a time when mathematical reasoning and
problem-solving become more sophisticated. In the preschool and elementary school years, much of
children’s mathematical knowledge concerns numbers and arithmetic. By adolescence, children are
acquiring more abstract and complex concepts such as those of algebra and geometry. For most
students, the acquisition of this knowledge is not without its difficulties. How should mathematical
concepts, such as probability theory, exponential growth, and rates of change, be introduced to
students to ease these difficulties and best promote their acquisition and application to real world
problems?

One possibility is that such concepts are well acquired through concrete instantiations such as
contextualized, real-world examples. Concrete approaches to learning have been advocated not only
for very young children, but also for older learners, such as adolescents and adults (see Anderson,
Simon, & Reder, 1996, for a review). Support for such approaches often stems from the belief that
because cognition is bound to specific situations teaching abstractions is ineffective. Alternatively,
students might learn more effectively through more abstract, generic instantiations of mathematics that
present a minimal amount of extraneous information, such as traditional mathematical notation
involving generic symbols not tied to specific situations. For example, acceleration is defined as the rate
of change of velocity with respect to time. Students could learned the concept of acceleration through a
concrete context of gravitational acceleration affecting falling objects or instead through the generic
expression of where is acceleration, is change in velocity and is change in time.

In order to evaluate the effectiveness of concrete and generic instantiations, several questions
should be considered. What is the definition of a concrete instantiation? What constitutes successful
acquisition of a mathematical concept? How does learning a particular instantiation shape the internal

representation of a mathematical concept and influence the learner’s ability to transfer mathematical



knowledge to novel analogous situations? In this chapter, we discuss the results of a series of studies
conducted to address these questions. We begin by presenting an interpretation of concrete and
abstract instantiations of mathematical concepts and an overview of previous findings on analogical

transfer.

Concreteness

In every day practice, the term concrete is typically used in contrast to abstract often to differentiate
what can and cannot be directly experienced by our senses. These terms can be used in seemingly
different situations. For example, there would be little disagreement that the concept “cat” is more
concrete than the concept “infinity.” This is a comparison of the concreteness of two different
concepts. Concreteness can also be compared between instantiations of the same concept; there would
also be little disagreement that a real cat is a more concrete instantiation of the category “cat” than a
schematic outline. Do these examples point to the same way of defining concreteness across different
situations? We suggest that the answer is “yes.” In both cases, concreteness could be measured by the
amount of information (or the amount of entropy reduction) communicated by a given concept or
instantiation. Under this view, the concept “cat” communicates the presence of a feline animal and all
the known facts associated with cats, assuming that one has prior knowledge of cats. At the same time,
the concept “infinity” communicates much less information (in fact, any set could potentially be
infinite), thus leaving a great deal of uncertainty. Similarly, a real cat leaves less uncertainty than a
schematic outline which does not communicate information such as color, size, or age. Therefore in
both cases, the former is substantially more concrete than the latter.

For instantiations of a fixed concept such as “cat,” if concreteness can be measured by the amount
of communicated information, then concrete and abstract are not dichotomous; rather, they lie on a

continuum over which the amount of communicated information varies. Specifically, for a given



concept, instantiation A is more concrete than instantiation B, if A communicates more information than
B. Furthermore, an instantiation of a concept (e.g., a particular cat) is often represented by a symbol
that communicates information either perceptually by the amount of detail in the physical stimuli or
verbally by providing descriptions with different amounts of detail. Perceptually communicated
concreteness often results in greater perceptual richness of an instance, which could be measured by
physical properties such as contrast and spatial frequency.

To elaborate this point, consider the concept of person and how possible symbols can communicate
different degrees of information. For example, images in Figure 1 communicate increasing amounts of
information from left to right. Little could be said with certainty about the left-most instantiation of a
person; this most abstract, generic instantiation communicates only numerosity —the fact that there is
a single individual. At the same time, much could be said about the rightmost instantiation. Namely, this
is a specific person, she is a young female, and she was born to an Asian parent. There would be even
more information that could be retrieved from memory if the photograph depicts someone you know.

It seems that a more abstract instantiation is a better symbol denoting the entire group than a more
concrete instantiation (for example, an outline of a cat can denote any cat, whereas a picture of small
white kitten can hardly denote a large black cat). This is because a more concrete instantiation
communicates much more information, part of which could be extraneous to the concept in question.
As a result, a stick figure can symbolize any person, yet a young school girl may not well symbolize any
person because it communicates additional information such as age and gender, which is nonessential
to the concept of person. Similarly, a concrete instantiation may be a poor symbol for another concrete
instantiation that does not share the same superficial features. Therefore, a school girl is not a good
symbol for a middle-aged man; and a middle-aged man is not a good symbol for a school girl.

By the same reasoning, generic instantiations may serve as better symbols when attempting to

communicate new, to-be-learned information about a given concept. For example, the lifetime risk of



heart disease regardless of gender would probably be better communicated with a stick figure or
generic example of the general population than with a picture of a young girl. Similarly, a photograph
of a young girl would not make a good symbol when communicating information about a specific subset

of the general population, such as the prevalence rate for prostate cancer in middle-aged men.

Nature of Mathematical Concepts and their Instantiations

Just as many everyday object concepts and their instantiations can vary in the amount of communicated
information, mathematical concepts and their instantiations can also vary in the degree of
communicated information. However, there are critical differences between mathematical concepts
and concepts such as cat or person. Most everyday concepts are ill-defined (see Solomon, Medin, &
Lynch, 1999) in the sense that their definitions can vary across cultures, individuals, and time.
Furthermore, everyday concepts such as cat are grounded in perceptual similarity and are acquired with
little effort through encounters with instances of the concept (Kloos & Sloutsky, 2008). For example,
most cats tend to have common observable features: similar size, four legs, whiskers, and pointed ears,
and young children acquire this concept easily. Mathematical concepts, however, have precise
definitions based on their relational structure. For example, exponential growth is defined as the

change in quantity according to the following formula:

for a variable and constant, where is the exponential function and is the initial value of . Therefore,
the concept of exponential growth is defined by the relational pattern between, , , etc. Instances of
mathematical concepts specify additional information beyond the defining relational structure.
Instantiations of exponential growth would specify particular values of the constants and . More
concrete instantiations would convey more information; perhaps growth of a particular population of

wild Eastern Cottontail rabbits living in the Midwestern United States.



Therefore, for mathematical concepts, instances can be vastly dissimilar, sharing little or no directly
observable similarities. For example, in addition to describing populations of rabbits, exponential
growth/ decay can describe the metabolism of medication in the body and the temperature of a cooling
cup of coffee. Because superficial features can vary widely, it is often difficult to spontaneously
recognize instances of the same concept. As a result, the acquisition of such concepts is often difficult
for both children and adults and typically requires some supervision (e.g., Kloos & Sloutsky, 2008), which
may take the form of explicit instruction that begins with an initial instantiation.

One goal of learning mathematics is the ability to appropriately apply mathematical knowledge to
novel situations. Therefore, an effective instantiation must promote two processes: learning of the
instantiation and transfer of defining relational structure to a novel structurally analogous, or
isomorphic, situation. For example, successfully acquiring the concept of exponential growth from
learning about growth of a rabbit population would imply that knowledge of exponential growth would
be recognized and applied to (at least some) novel analogous situations, such as monetary growth of

investments.

Analogical Transfer

How likely is it that structural knowledge will transfer outside of the learned situation? The past twenty
years have produced a consensus on some aspects of analogical transfer. First, spontaneous analogical
transfer is notoriously poor. This finding has been documented in numerous studies with both adults
and children (e.g. Gick & Holyoak, 1980, 1983; Goswami, 1991; Novick, 1988; Reed, Dempster &
Ettinger, 1985; Reed, Ernst, & Banerji, 1974; Simon & Reed, 1976). Second, a factor that mediates
transfer is similarity of the base and target domains. Transfer to similar instances, or near transfer, is
more likely to occur than transfer to dissimilar instances, or far transfer (Holyoak & Koh, 1987; Holyoak

& Thagard, 1997; Ross, 1987, 1989). High surface similarity between the base and the target domain



can facilitate spontaneous retrieval of prior knowledge (Gentner, Rattermann, & Forbus, 1993). For
example, college students who learned solutions to probability story problems were more likely to
remember solution strategies and formulas when presented with novel isomorphic problems that
involved similar storylines (e.g. both study and test problem involved mechanics randomly choosing cars
to work on) rather than dissimilar storylines (e.g. study problem involved mechanics choosing cars and
test problem involved scientists choosing computers) (Ross, 1987, 1989).

Finally, there is evidence that during successful analogical transfer, the reasoner aligns the learned
and novel domains according to common structures (Gentner, 1983, 1988; Gentner & Holyoak, 1997;
Holyoak & Thagard, 1989). Similarity can also affect transfer by affecting the process of structural
alignment. Because similar elements are easier to align than dissimilar elements (Gentner, 1983, 1988;
Gentner & Markman, 1997; Markman & Gentner, 1993), structural alignment is facilitated when similar
elements play identical structural roles across the learning and transfer domains. As a result, transfer is
more successful when similar elements hold analogous roles in both domains (e.g. for probability
problems, both study and test problems involve students choosing teachers) (Ross, 1987, 1989; see also
Reed, 1987 for related findings). However, when similar elements hold different structural roles across
domains (e.g. study problem involves students choosing teachers and test question involves teachers
choosing students), learners tend to misalign structure by matching common elements (Ross, 1987,
1989) and consequently transfer fails.

While surface features can affect both recall of previous domains and alignment between two
domains, there is also evidence that they can influence the manner in which learners interpret the
structure of a domain. In a series of studies involving algebra word problems, Bassok and her colleagues
have demonstrated that students often interpret structure through the context in which it is presented
(see Bassok, 1996, 2003 for summaries). When undergraduate students with no prior knowledge of

probability theory were asked to solve permutation problems, their spontaneous solutions typically



reflected semantic symmetry or asymmetry of the elements of the problem (Bassok, Wu, & Olseth,
1995). For example, some problems involved m secretaries assigned n computers. In everyday
scenarios, secretaries and computers often play asymmetric semantic roles because they are different
types of entities and secretaries may use computers. Participants generally placed them in asymmetric
arithmetic roles, often involving m in the numerator and n in the denominator (e.g. ). Students tended
to generate categorically different solutions to isomorphic problems involving elements that are
interpreted as semantically symmetric. For instance, when given problems involving m doctors working
with n doctors, participants tended to place m and n in structurally symmetric roles (e.g. ).

The behavior of interpreting structure through semantics of the context can often be a smart
approach to problem solving because mathematics is often used to model the structure of real-world
situations and therefore semantic structure often correlates with mathematical structure. For example,
it is probably more expected to add a number of roses and a number of tulips, but to divide a number of
roses by a number of vases. The downside of using context to interpret structure occurs when
attempting to transfer between two isomorphs that do not share a common structural interpretation.
For example, when students learned solutions to permutation problems in a semantically asymmetric
context (such as tulips to vases), they successfully transferred solution strategies to novel asymmetric
problems, but failed to do so to symmetric problems (such as tulips and roses) (Bassok, Wu, & Olseth,
1995). Not only did participants fail to transfer, they were very confident that the two problems differed
in their mathematical structure.

Transfer failure attributed to different structural interpretations has also been demonstrated
between continuous and discrete models of change (Bassok & Olseth, 1995). For example, the change
in the volume of water in a pool would be continuous (able to take on any real number within some
range of numbers), while the change in people in a pool would be discrete (limited to only a subset of

values within a range of numbers, in this case whole numbers). In one study, undergraduate students



were taught solutions to word problems and then given novel problems in a different context. All the
problems involved constant rates of change and could be solved by the same solution strategy. The
contexts included populations, money, and basic physics. What differed between base and target
domains was not only the cover story, but whether the change was interpreted as continuous or
discrete. For example, some contexts involved the rate at which ice is melting from a glacier, while other
contexts involved the rate at which ice is regularly delivered to a restaurant. When both base and target
domains shared the type of change (continuous or discrete), transfer was much more likely than when
the domains differed in type of change. Furthermore, an asymmetry was found in which transfer was
more likely to occur from a discrete-change domain to a continuous-change domain than the reverse.
These findings demonstrate that learners often interpret structure through context and their
interpretations can lead to transfer failure when novel isomorphs have contexts that appear to be
structurally different.

One way of facilitating successful transfer from concrete instantiations is through explicit
comparison of multiple instances. Several studies involving both children and adults have demonstrated
better performance on relational tasks after comparing two instances than after learning only one
instance or learning two instances sequentially (e.g. Catrambone & Holyoak, 1989; Gentner & Namy,
2004; Gentner, Loewenstein, & Hung, 2007; Gentner, Loewenstein, & Thompson, 2003; Gick & Holyoak,
1983). Adults who learned negotiation strategies (such as compromise on all issues versus trade-off on
specific issues between two parties) were more successful transferring learned strategies to novel
situations when they first compared and noted similarities of two examples relative to those who only
read and summarized the examples separately (Gentner, et al., 2003). There is also some evidence of
better conceptual and procedural knowledge of mathematical equation solving after middle school
students compared two examples, particularly when the examples presented different solution

methods, than after learning examples in succession (Rittle-Johnson, Star, & Durkin, 2009). The process



of comparison can highlight common relational structure (Kotovsky & Gentner, 1996) and result in the
construction of an abstract schematic representation of knowledge (Catrambone & Holyoak, 1989; Gick
& Holyoak, 1983). Schematic knowledge representations can in turn promote subsequent transfer (Gick
& Holyoak, 1983; Novick & Holyoak, 1991; Ross & Kennedy, 1990).

Taken together, prior research suggests that learners can form representations of abstract concepts
including mathematical concepts through learning concrete instantiations, but these representations are
far from purely abstract. A purely abstract representation, like mathematical definitions themselves,
would contain nothing beyond the structural relations. However, internal representations contain
considerable superficial information retained from the learning context. The existence of this
information in a representation is not necessarily a bad thing, per se. This information may be harmless
in the case of a teacher being able to illustrate multiple examples of mathematical models of real-world
phenomena. This information may, in some instances, be helpful because it may facilitate transfer to
analogous, superficially similar situations. The negative impact occurs when non-essential information is
interpreted as essential. The learner incorporates this information into the representation of the
concept, and, as a result, transfer fails when potential transfer domains lack this extraneous
information. Learning and comparing multiple instances can highlight common relational structure. The
highlighting of common relations likely lessens the representational weight of any one set of superficial
features and as a result a schematic representation is formed. However, an abstract schema does not
appear to supplant mental representations of individual exemplars. As Medin and Ross (1989) have
suggested, abstract and specific knowledge coexist, with reasoning often case-based and induction often

conservative.

Support for the Use of Concrete Material in Teaching



The previously discussed studies have investigated analogical transfer from a variety of concrete
instantiations. In educational practice, the use of concrete instantiations presenting teaching
mathematics is wide spread. There are several arguments supporting this practice (see McNeil & Uttal,
2009; Uttal, Scudder, & DelLoache, 1997 for discussion). First, some developmental theories posit that
development proceeds from the concrete to the abstract (e.g. Bruner, 1966; Montessori, 1917; Piaget,
1970) and therefore teaching and learning should follow the same sequence (see McNeil & Uttal, 2009
for discussion). Second, concrete instantiations may be more engaging for the learner than more
abstract, generic instantiations. Certainly, engagement in learning is necessary. Third, some concrete
instantiations may tap prior knowledge and therefore facilitate initial learning.

There is some evidence that mathematical problem solving can be more accurate when presented in
familiar, concrete contexts than when presented as decontextualized, symbolic mathematics. For
example, adolescent Brazilian street vendors were able to solve arithmetic problems in the contexts of
their sales, but were unable to solve the same problems presented as symbolic mathematics (Carraher,
Carraher, & Schliemann, 1985). Yet, evidence of the effectiveness of concrete instantiations in teaching
formal mathematics is not unequivocal (Sowell, 1989; Uttal, O’Doherty, Newland, Hand, & Deloache,
2009; Uttal, Liu, & DelLoache, 1999). For example, one study demonstrated that algebra students were
more successful solving simple story problems than analogous mathematical equations (Koedinger, &
Nathan, 2004), often using informal strategies such as guess and check to arrive at accurate solutions.
However, for more complex problems, the reverse was the case; students were more successful solving
symbolic equations than solving word problems (Koedinger, Nathan, & Alibali, 2008). Therefore,
concrete contexts may sometimes provide an advantage over decontextualized symbolic mathematics
for problem solving. It is important to note these findings were demonstrated for learning and problem-
solving in a single context. At the same time, for mathematical concepts, an important goal of learning

is not only to acquire knowledge and problem-solving ability in a particular context, but to transfer the



acquired mathematical knowledge to multiple novel contexts. Thus, while students may sometimes
more accurately solve problems with concrete instantiations than analogous symbolic instantiations, the
guestion remains, how likely is it that students will transfer the mathematical structure learned from

concrete instantiations versus generic instantiations?

Concreteness as Perceptual Richness

As discussed earlier, one dimension of concreteness is perceptual richness. Perceptual richness can
hinder transfer of relations for both children and adults. One line of evidence comes from studies of
young children’s symbol use (DeLoache, 1991, 2000). Successful symbol use requires transfer of
relations from one domain to another. For example, to effectively use a map as a symbol for a real
location, one must recognize the common relations between entities on the map and their real-world
analogs. In one study, children aged two and three years were shown the location of a toy in either a 3-
dimensional scale model or a 2-dimensional picture and then asked to retrieve a real toy in an analogous
location in a real room. Perhaps counter-intuitively, those who were shown the picture were more
successful than those who were shown the more realistic concrete model. A similar advantage for
more generic material was found for pre-linguistic infants who were better able to extend labels from
generic, perceptually sparse objects to perceptually rich objects than the reverse (Son, Smith, &
Goldstone, 2008)

Not only does perceptual richness hinder young children’s ability to transfer simple relations, it also
can hinder adults’ ability to transfer acquired knowledge of more complex structures. In one study
(Goldstone & Sakamoto, 2003), undergraduate students learned the principle of competitive
specialization which explains how individual agents self-organize without a central plan. When students

learned through a scenario of ants foraging for food, transfer to a novel isomorph was more successful



when the ants and food were depicted more abstractly as dots and patches than when the depictions
resembled ants and apples.

The studies discussed thus far varied the perceptual richness of the same instantiation. In contrast,
we wanted to investigate the effect of concreteness, including perceptual richness, varied across
different instantiations of the same mathematical structure. This is analogous to real-world scenarios in
which mathematics may transfer between instantiations of different degrees of concreteness such as
generic symbolic notation and perceptually rich, scientific applications. In a series of studies, we varied
the concreteness of the learning instantiation to consider its effect on transfer of mathematical
structure. We chose a simple mathematical concept that we could instantiate in a variety of different
ways which would appear novel to our study participants. The concept was that of a commutative
mathematical group of order 3. This is a set of three elements, or equivalence classes, and an associated
operation that has the properties of associativity and commutativity. In addition, the group has an
identity element and inverses for each element (see Table 1 for properties). In our experiments, training
was presented via computer and consisted of explicit presentation of the group rules using the elements
of the given instantiation, questions with feedback, and examples. After training, participants received a
multiple-choice test of novel complex questions.

In our first experiment, we considered concreteness as perceptual richness of the elements and
context. Undergraduate students were trained and tested with an abstract, generic instantiation and a
perceptually rich, concrete instantiation (Sloutsky, Kaminski, & Heckler, 2005). The generic instantiation
was described as a written language involving three simple, monochromatic symbols in which
combinations of two or more symbols yield a predictable resulting symbol. Statements were expressed
as symbol 1, symbol 2 2 resulting symbol. The concrete condition presented an artificial phenomenon
involving images of three colorful, three-dimensional shapes. Participants watched movies of two or

more shapes coming into contact, then disappearing, and a resulting shape appearing. For both



instantiations, the resulting symbol or shape was specified by the mathematical structure. After training
and testing of one instantiation, participants were trained and tested with the other instantiation. We
found that participants successfully learned both instantiations, with no difference in mean test score on
the generic instantiation no matter which instantiation they learned first. However, there was a marked
difference in mean test score on the concrete instantiation, with participants who were initially trained
with the generic instantiation scoring higher on the concrete test than participants who were initially
trained with the concrete instantiation. In other words, learning the concrete instantiation resulted in
no improved learning of the generic instantiation. On the other hand, learning the generic instantiation
resulted in better performance on the concrete instantiation, suggesting that participants were able to
transfer their knowledge from the generic to the concrete instantiation.

In a second experiment, we considered the effects of perceptual richness on initial learning.
Participants learned an instantiation of a group that had different levels of concreteness: (a) generic
black symbols; (b) colorful, patterned symbols; (c) classes of colorful, patterned symbols; or (d) classes
of real objects. After training, participants were given a test of novel questions on the same
instantiation. While all participants learned the rules, those who learned with the generic symbols
scored significantly higher than did the other participants, with no differences across these three
conditions (Sloutsky, et al., 2005). Therefore, the mere addition of patterns and color lowered learning.
Similar negative effects of perceptual richness were demonstrated in another recent study: Children
aged 10-12 years made more errors on word problems involving money when they were given real bills
and coins to help them solve the problems than children who were not given real money (McNeil, Uttal,
Jarvin, & Steinberg, 2009).

The results of these experiments indicate that perceptual richness that is irrelevant to the to-be-
learned concept hindered both learning and transfer. However, not all concreteness is irrelevant. Some

concreteness may help to communicate relevant structure by tapping prior knowledge or by presenting



perceptual information that is correlated with structure. This “relevant concreteness’” would most likely

facilitate learning of a novel concept, but its effect on transfer has not been clear.

Relevant Concreteness

To investigate the effects of such relevant concreteness, we instantiated the concept of a
mathematical group in a context involving familiar objects that might facilitate learning of the group
rules (Kaminski, Sloutsky, & Heckler, 2005). In this case, the elements of the group were three
measuring cups (see Table 2). Instead of learning arbitrary rules of symbol combinations, participants

were told that they needed to determine a leftover amount of liquid when different measuring cups

were combined (see Table 2). For example, combining @and @resulted in <I;PIeftover. We
compared learning this instantiation with learning a generic instantiation. This generic instantiation was
described, as in our earlier studies, as the rules of a symbolic language. Training consisted of explicit
statements of the rules and one example. After training, participants answered a series of multiple-
choice questions. The following are example questions from the generic learning condition.

(1) What can go in the blanks to make a correct statement?

_ ¢ _0-> 0

(2) Find the resulting symbol:

‘o0N >

The concrete condition presented the analogues of these questions. All training and testing was
isomorphic across conditions. Participants in both conditions successfully learned the instantiation, but
under the minimal training that they received (only one statement of the rules and one example), the
relevantly concrete instantiation did have an advantage over the generic (81% vs. 63% correct, with

chance = 38%).



To test whether this advantage would exist for transfer, we gave participants slightly more detailed
training including explicit examples and questions with feedback. Subsequently, as in the previous
experiments, participants were tested and then presented with a novel isomorphic instantiation of
mathematical group. This novel instantiation was intentionally concrete and contextually rich, as are
many real-world instantiations of mathematics, and was described as a children’s game from another
country. Specifically, participants were asked to figure out the rules of the game. In the game, children
point to a series of objects, then the child who is “it”’ points to a final object. This child wins if he or she
points to the correct object according to the rules (see Table 3). Participants were told that the rules of
the game were like the rules of the system they had just learned (i.e., either the concrete or the generic
instantiation). Then, participants were shown a series of examples from which the rules could be
deduced. After seeing the examples, a multiple-choice test, isomorphic to the test of the learning
domain, was given. The results revealed that with the slightly protracted training, there was no
difference in learning scores across the two conditions (78% vs. 75% for the concrete and generic
conditions respectively). However, there was a striking difference in transfer. Participants in the
concrete condition had an average test score of 54% correct, while the average score in the generic
condition was 79% (with chance being 38%).

Because structural alignment is an essential component of successful analogical transfer, we wanted
to know whether participants in each condition were able to align structure between the learning and
transfer instantiations. As an indication of alignment, participants were asked to match analogous
elements across domains. In the generic condition, 100% of participants were able to do so, while only
25% of participants in the concrete condition made the correct match. Because there were three
elements, we would expect chance performance to result in 33% accuracy. Therefore, those who

learned the concrete instantiation scored no better than guessing.



Why were participants in the concrete condition unable to align structure across the learning and
transfer domains? There are two possibilities. First, perhaps learners in the concrete condition formed a
representation of that instantiation that did not contain the relevant mathematical structure. Itis
possible that these participants were accurate on the test of the concrete instantiation because the
familiar elements and context allowed them to “bootstrap” their way to correct answers without truly
acquiring the mathematical structure. This possibility is reminiscent of the findings of Koedinger and
Nathan (2004) in which algebra students are often successful on simple story problems by using
informal strategies without resorting to formal algebraic solutions. The second possibility is that the
representation of the concrete instantiation did contain structure, but that structure was tightly tied to
the elements and context such that learners were unable to recognize it in novel situations.

To test the possibility that transfer from the concrete instantiation failed due to difficulty aligning
structure and not due to failure to represent structure, we conducted another experiment which was
identical to the previous with one exception. Prior to the transfer test, we showed half of the

participants the matching of analogous elements across domains. In the concrete condition, half were

told @ is like = , @ is like Q , Q is like é . In the generic condition, half were told the
analogous alignments between the generic elements and transfer elements. The goal was to assist
learners with structural alignment by telling them the correspondence of analogous elements. We found
that when concrete learners were given the correspondence, they transferred as successfully as the
generic learners (83% accuracy for both condition). For generic learners, there was no significant
difference in transfer scores as a function of being given the element correspondence, suggesting that
they were able to spontaneously align structures between the learning and transfer domains (Kaminski,
Sloutsky, & Heckler, unpublished data). The fact that concrete learners were successful when assisted

with structural alignment also indicates that structure was acquired during learning. If they had not



actually learned the mathematical rules, it is highly unlikely that they would perform so well on difficult
transfer questions by simply being given a matching of elements.

It seems that when acquiring a novel mathematical concept through a concrete context, structural
knowledge is represented but tied to the learning context in a way that in inhibits its spontaneous
recognition in other situations. To consider this possibility more carefully, we tested whether learned
structure could be recognized when instantiated with novel elements. Participants were trained with
either the concrete or generic instantiation of the mathematical structure as in the previous studies.
After training, instead of being presented with the transfer domain and a test of complex questions,
participants were given a structure discrimination task. On each trial, participants were presented with
a set of three expressions. They were told that each set is from a new system and were asked whether
the new system followed the same type of rules as the system they had previously learned. Four types
of trials were used. Table 4 shows examples of each type, as expressed for the concrete condition. For
the generic conditions, the analogous statements were expressed with the generic black symbols. Six
trials involved the same elements as the learning phase and the same relational structure (E+/R+). Six
trials involved the familiar elements, but different relational structure (E+/R-). Six trials involved novel
elements and the familiar relational structure (E-/R+). Another six trials involved both novel elements
and novel relations (E-/R-). To measure discriminability, we calculated the number of correct “same
structure” responses (on R+ trials) minus the number of incorrect “same structure” responses (on R-
trials). We measured discriminability separately for familiar elements and novel elements. For familiar
elements, participants in both conditions were highly accurate (90% correct). However, there were
dramatic differences when it came to novel elements. Accuracy in the generic condition was 78%, while
accuracy in the concrete condition was only 26% (Kaminski, Sloutsky, & Heckler, 2006-a; Kaminski &

Sloutsky, unpublished data).



These findings suggest that although structure is represented when learning a concrete
instantiation, the most salient aspect of the representation is the superficial, contextual information and
not the important structural information. In a follow-up study, we asked participants after learning
either the concrete or the generic instantiation to write down what they recalled about what they had

learned. We then counted the number of statements referring to structure such as reiteration of rules

(e.g. ‘,‘_> ‘ or combining <'@and @ has <1;PIeftover) and the number of statements

referring to superficial elements such as “it was about the discovery of a symbolic language” or “it was
about liquid in cups”. We found that those who learned the generic instantiation made nearly four
times as many structural comments as those who learned the concrete instantiation. The responses of
the concrete participants contained approximately twice as many references to the superficial as
references to structure. The opposite pattern was observed for generic participants; they made
approximately three times as many references to structure as references to superficial (Kaminski &
Sloutsky, in preparation). These results support the argument that the representation of the concrete
instantiation was overwhelmed by superficial information. At the same time, it seems that structure is
salient in the representation of the generic instantiation. These findings parallel ideas of Fuzzy-Trace
Theory which posits that transfer succeeds when learners have formed “gist” knowledge
representations that do not contain detailed information and not verbatim knowledge representations
(Reyna & Brainerd, 1995; Wolfe, Reyna & Brainerd, 2005).

As mentioned previously, one way of highlighting relational structure and improving transfer is
through learning multiple instantiations of the same concept, particularly when learners compare
instantiations. Given that a generic instantiation allows the learner to spontaneously recognize and
transfer structure, we hypothesized that learning a generic instantiation may be a more efficient route
to a representation that allows for successful transfer than learning multiple concrete instantiations.

We tested this hypothesis by assigning learners to conditions in which they learned one, two, or three



concrete instantiations or one generic instantiation (Kaminski, Sloutsky, & Heckler, 2008). We used the
previously described concrete and generic instantiations and two other concrete instantiations. The two
additional concrete instantiations involved pizzas and tennis balls and were designed, as was the
measuring cup scenario, to tap everyday knowledge in familiar contexts. We equated the amount of
training and testing across condition; all participants were presented with the same rules and the same
number of examples, questions with feedback, and test questions. After learning, participants were
given the same transfer task used in our previous experiments. We found a clear transfer advantage for
learning a single generic instantiation. Participants in the generic condition had approximately 78%
accuracy, while participants in the concrete conditions scored little or no better than chance of 38%.

In two follow-up experiments we attempted to highlight structure between learned instantiations
(Kaminski et al., 2008). First, we considered whether giving participants the correspondence of
analogous elements across two concrete learning instantiations would help integrate the
representations of each and increase the salience of the common structure. This manipulation resulted
in no improvement on transfer; scores were again no different than chance. Second, we asked
participants after learning two concrete instantiations to compare them, match analogous elements,
and write down any observed similarities. All participants correctly matched elements, but the
distribution of transfer scores was bimodal. Approximately 44% of our participants scored highly on the
transfer test (95%). However, the remaining participants did not do well (51%). Therefore, the act of
explicit comparison may help some learners transfer, but may not help others. Additionally, those who
did transfer well scored very highly on their initial test of learning. Yet not all who scored highly on
learning succeeded in transferring after comparison. Therefore, successful learning is a necessary, but
not sufficient, condition for successful transfer after comparison.

Given that concrete instantiations may have an advantage for initial learning and generic

instantiations can have an advantage for subsequent transfer, we considered a possible “best of both



worlds” scenario. We compared transfer after learning the concrete instantiation and then the generic
instantiation to transfer when learning only the generic instantiation. Participants in both conditions
successfully transferred, but those who learned only the generic significantly outperformed those who
learned both (84% vs. 65%) (Kaminski et al., 2008).

Taken together these findings suggest that learning a generic instantiation of a mathematical
concept can be an efficient, direct route to a schematic knowledge representation which can allow for
successful transfer. Relational structure is the salient aspect, while elements and other superficial
features can be interchanged with those of other instantiations. On the other hand, the course of
forming such a representation from learning concrete instantiations is not as efficient, requiring learning
more than one instantiation with less likelihood of subsequent transfer than after learning a single
generic. When only one concrete instantiation is learned, superficial information dominates the
representation which in turn interferes with transfer. Even when two and three concrete instantiations
were learned in sequence, transfer failed, thus suggesting that these representations were stored
independently of each other and not integrated. The fact that learning a concrete followed by a generic
instantiation resulted in less transfer than learning a single generic suggests that superficial information
remained in the representation interfering with successfully applying structural knowledge to the

transfer domain.

The Problem with Concreteness

Why is extraneous information in the learning context so damaging for transfer? One possibility is that
superficial information diverts attention from the relevant relational structure. Attentional resources are
limited, and there is evidence suggesting that superficial features and relational structure may compete
for attention (Goldstone, Medin, & Gentner, 1991; DelLoache, 1991; Uttal et al., 1999). Goldstone and

colleagues (Goldstone et al., 1991) have suggested that when making similarity comparisons between



two situations, attention is split into two separate pools, one for relational similarities and one for
superficial similarities. As one pool gets larger, it pulls attention toward itself and away from the other
pool.

For concrete instantiations the superficial features are salient and attention grabbing. Therefore, it
is possible that attention is allocated to these superficial features (and away from relational structure)
not only during similarity comparisons, but also in the formation of representations of conceptual
knowledge. When attempting to transfer, the learner needs to distinguish relevant from irrelevant
information and inhibit the irrelevant. At the same time, generic instantiations have less superficial
information, and therefore attention can be focused more easily on relevant relational structure.

The results we have discussed in this chapter involved undergraduate college students. It is possible
that college students can successfully learn generic instantiations and transfer structural knowledge, but
that younger learners may need a concrete instantiation to begin to grasp an abstract concept.
However, young children are less able than adults to control their focus of attention (Dempster &
Corkill, 1999; Napolitano & Sloutsky, 2004). Therefore, if the difficulty with concrete instantiations is
due to extraneous information diverting attention from relevant structure, then concreteness may be at
least as detrimental for younger children’s transfer as it is for older students. To test this possibility, we
taught 11-year-old children either the concrete or the generic instantiation and presented them with
the transfer domain, as in our earlier experiments. Participants in both conditions successfully learned,
but those who learned the concrete instantiation scored higher than those who learned the generic
(82% vs. 66% correct). However, for the learners in the concrete condition, transfer scores were only
marginally above the chance score of 38% (47% correct), whereas transfer scores for the generic
condition were significantly above chance (61% correct) (Kaminski, Sloutsky, & Heckler, 2006b). These
results suggest that although the concrete instantiation was easily learned, it created an obstacle for

children to align structure and successfully transfer. These findings further support the argument that



concrete instantiations hinder transfer because the extraneous information diverts attention from

relevant structure.

Summary

Our research has compared learning of a novel mathematical concept through concrete instantiations or
through a single generic instantiation. We found that relevant structure can be acquired from either
concrete or generic instantiations, but the manner in which it is internally represented by the learner is
categorically different in each case. Concrete instantiations communicate abundant extraneous
information which may pull attention away from the relevant relational structure. The result is a
representation in which the superficial is salient. This salient superficial information obfuscates the
analogy between learned and novel isomorphs because the learner is unable to recognize structure in
the novel situation. As a result, transfer fails. Successful transfer from concrete instantiations requires
additional measures such as directly aligning structure for the learner across instantiations or asking the
learner to compare multiple instantiations. However, potential transfer domains are not always known a
priori making direct alignment often impossible, and comparison may not always result in success.

At the same time, it seems that relational structure is the salient aspect of representations formed
from generic instantiations. Consequently, learners spontaneously recognize structure and successfully
transfer. Generic instantiations of mathematics, such as traditional symbolic notation, can be powerful
educational tools providing efficient routes to portable knowledge representations. Knowledge gleaned
from such instantiations can be applied to analogous situations that may appear on the surface to be

quite dissimilar.

Discussion



The appeal of concrete learning material is certainly understandable. Concrete instantiations of
mathematical concepts are often perceptually rich and attractive. They can perhaps generate a level of
initial engagement and interest for students that generic symbols may not. Some concrete
instantiations may be familiar and tap prior knowledge to provide a leg-up in the learning process. Yet
the very aspects of concrete instantiations that make them engaging may also render them ineffective
at promoting transfer.

The complete story of how concreteness influences learning, transfer, reasoning, and problem-
solving of the mathematical knowledge over the lifetime of an individual is likely a complex one. The
results of the research discussed here pinpoint some of the difficulties learners encounter with concrete
instantiations of novel concepts. In educational practice, the advantages of choosing concrete learning
material over more generic material need to be weighed carefully against the disadvantages, especially
for adolescents and young adults who must acquire abstract concepts. In particular, two important
guestions should be addressed. First, what is the goal of the educational material at hand? If the goal is
to learn a single domain, some concrete contextualization may not be a big obstacle. If the goal is to
acquire knowledge which can be applied to a variety of superficially dissimilar situations, then the
results of our studies suggest that generic material has a clear advantage. Second, what are the possible
options for the learning material? In other words, concrete compared to what? For example, story
problems about the acceleration of a thrown baseball are more concrete than analogous, strictly
symbolic problems, but less concrete than actually measuring the acceleration of a real ball.

If the goal of learning is to acquire knowledge that can be broadly transferred, then generic
instantiations are powerful. For mathematical concepts, an important aim of education is such broad
transfer. Mathematics is expected to be successfully applied to many real-world situations. Some of
these situations may be foreseeable, such as planning personal finances, and so it is reasonable to

include such concrete instantiations in the course of formal learning. However, the manner in which



mathematics can be applied to less understood situations is not necessarily foreseeable. For example,
this is the challenge faced by many scientists as they venture into previously unexplored areas: to
recognize consistent relational structure among elements, and transfer structural knowledge from a
known analogous domain or model those situations with mathematical expressions. Those faced with
the challenge of understanding the structure of unfamiliar domains may be well equipped by having

acquired mathematical knowledge in adolescence and young adulthood through generic instantiations.
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Figure 1: Possible symbols for the concept person
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Table 1: Principles of Commutative Mathematical Group

A commutative group of order 3 is a closed set of three elements and a binary operation (denoted +) with the

following properties:

Associative

Foranyelementsx,y, z: ((x+y)+2z)=(x+(y+2))

Commutative

For any elements x, y: x+y=y+x

Identity

There is an element, |, such that for any element, x: x+1=x

Inverses

For any element, x, there exists another element, y, such that x+y =1




Table 2: Generic and Concrete Instantiations of a Mathematical Group

Generic Concrete
(Symbolic language) (Combining measuring cups of liquid)

s | @) ¢ Ry D2

Specific
Rules: ~ is the identity @is the identity

e.g. 0 ~ " 0 €.8. @ and @ have @ remaining

. . > . <‘;Pand EP have @ remaining

0 ’ > . 2 and =2 have Q remaining

. ’ > ~ Qand @ have @ remaining

Table 3: Instantiation of a Commutative Mathematical Group used for the Transfer Domain.

" |
Elements: e Q é
Operands Result
(Children pointed to these) (The winner pointed to this)
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Table 4: Example statements used for the structure discrimination task

same structure E+/R+ different structure E+/R-
22 | 2P
PP | 2P
2?2 | 2.2

same structure E-/R+ different structure E-/R-
00-4 | 0d-0
dbd-0| dd-0

od-=|d=-4




