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Abstract— In this paper, a sliding mode based Extremum
Seeking (ES) control scheme is proposed to solve a class of
multivariable optimization problems. This approach recasts the
problem of multivariable ES control into a sequence of single
variable ES control. Our approach is suitable for non-separable
problems, differentiating itself from previous work in this area.
We determine the stability and convergence conditions from the
unidimensional case and derive a sufficient condition for the
multivariable scheme to converge to the vicinity of the optimal
points. We investigate the application of the proposed scheme
to optimize energy production in wind farms. Simulations are
provided to illustrate the theoretical results and demonstrate
its potential use.

I. INTRODUCTION

Conventional control methods address stabilization, regu-
lation, and/or fixed set-point tracking for a given dynamic
system. However, many applications demand optimal set
points, unknown in advance, or that must vary over time,
such as Anti-lock Braking System control facing unpre-
dictable changes in road conditions. In Extremum-Seeking
(ES) control, the objective of the controller is to steer
the system output to follow a non-predetermined optimal
operating point. Fig. 1 illustrates a typical structure of an
ES problem. Several design approaches were developed
during the last two decades [1], [2], [3], [4], [5]. Prior
research has proposed and analyzed Sliding-Mode based
ES control, mainly for single-variable case. Korovin and
Utkin [2] introduce the use of sliding mode extremum
seeking control for static optimization. The main idea is to
select a control law such that the system output tracks a
monotonic decreasing (increasing) function in time towards
the minimum (maximum). Furthermore, Özgüner and his co-
worker generalized the method in the presence of dynamics
[6]. It was successfully applied to a variety of applications
such as: Anti-lock Braking System (ABS) [7], source seeking
[8], and Maximum Power Point Tracking (MPPT) [9].

Multivariable ES literature currently features a variety of
approaches [10]. Krstic and his co-worker propose a mul-
tivariable extension to the periodic perturbations approach
by the use of multi-perturbation signals, provided they have
different frequencies [11], [12]. In their recent work, a
Newton-based ES approach for multivariable problem was
proposed [13]. The Newton-based ES provides an estimate
of the inverse of the Hessian of the objective function and
makes the convergence rate independent of the unknown
Hessian. The use of nonlinear programming was proposed
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Fig. 1. Typical structure of Single Input Single Output Extremum Seeking
problem.

by Teel and Popovic in [3]. The authors introduce a periodic
sampling time to design a discrete-time extremum seeking
controller. More recently, an extension to the single variable
sliding mode ES control for multivariable applications was
introduced [14], [15]. The authors propose the use of multiple
sliding surfaces and different control parameters to search,
simultaneously, for the set of optimal operating points. This
approach works well when there is weak coupling between
the decision variables in the multivariable cost function.

In this paper, we develop and analyze a new control
scheme for a Sliding Mode Multivariable ES control. The
key idea is to recast the problem of n-dimensional ES
control into an n-sequence of one-dimensional ES control.
In contrast to current sliding-mode methods, our approach
sheds the uncoupled-variable requirement. It also counters
the high cost and low efficiency typical of decentralized ES
controllers. However, even if the problem is reduced to a
one-dimensional ES problem, from a stability point of view,
restrictions must be placed on the algorithm to guarantee
the stability of the overall ES system. The reason is that
the sliding mode’s reaching time must be achieved to ensure
convergence towards the minimum. To begin our paper, Slid-
ing Mode ES control is applied to a static mapping to focus
on the forging of the algorithm itself and the convergence
analysis. Next, the developed algorithm engages dynamical
systems. Then, application of the proposed scheme for wind
farm optimization is provided for illustration.

The remainder of the paper is organized as follows: The
problem statements and assumptions are outlined for a static
map in section 2. Section 3 specifies the proposed controller
design, followed by stability and convergence analyses in
section 4. Sliding mode ES for dynamic systems is inves-
tigated in section 5, and section 6 presents an example to
illustrate the proposed controller.

II. PROBLEM FORMULATION

Consider a Multi-input and Single-output (MISO) static
map:

y(t) = J(θ(t)) (1)



Fig. 2. Block diagram of the proposed extremum seeking control.

where θ(t) = [θ1(t) θ2(t) ... θn(t)]T are decision variables
and the function J : Rn→R is a multivariable cost function.

Assumption 2.1: The function J : Rn→R is differentiable
and has a unique minimum at θ ? = [θ ?

1 θ ?
2 ... θ ?

n ]
T and ∂J

∂θi
6=

0 with θi 6= θ ?
i for all i ∈I = {1,2, ...,n}.

Assumption 2.2: The decision variables θ(t) is designed
to satisfy:

θ̇(t) = v(t) (2)

where v(t) ∈Rn is a control input to be specified in the next
section.

With only the measurement of the performance function
J(θ) being available, the problem is to design a control input
v(t) that generates θ(t) which minimizes the multi-variable
cost function J(θ(t)) without prior knowledge of the function
or its gradient.

III. CONTROLLER DESIGN

A. An Extremum Seeking Controller:

The proposed Multivariable Extremum Seeking Controller
is shown in Fig. 2. In this approach, we transform the
multivariable problem into a sequence of single dimensional
ES problems by introducing a periodic search function σ(t).
The design of the control input aims to let the perfor-
mance function track a monotonically decreasing function
and converge to the vicinity of the minimum. Let g(t) be a
monotonically decreasing function of time with

ġ(t) =−ρ, ρ > 0. (3)

Define a sliding mode manifold as

s(t) = J(θ(t))−g(t) (4)

together with the search signal proposed in [6] the variable
structure control is given by

v(t) =−σ(t) k sgn(sin
(

π
s(t)
α

)
) (5)

α , k are positive design parameters, and σ(t) is a search
function to be defined in the next section.

B. Periodic Coordinate Search Function (σ(t)):
In this section we illustrate an example of the periodic

coordinate search function. We start with some definitions:
Definition 1: A function σ(t) is said to be periodic if there

exists a real number p > 0 such that σ(t + p) = σ(t). Any
number p in which the equality holds is called a period.

Definition 2: Let T = [Tl ,Tu] be a given time interval. By
a partition P of T , we mean a finite set of points t1, t2, .., tn,
where Tl = t1 ≤ t2 ≤ t3 ≤ ...≤ tn = Tu. We write ∆ti = ti+1−
ti, ∀i ∈I .

The search function is designed to change the direction of
the search periodically. Using the above definitions, let σ(t)
be a periodic function with period p. Define a time interval
T = [Tl ,Tu] with length equal to p and let the set of points
t1, t2, .., tn be given by a partition P. Let {e1,e2, ...,en} be
the set of natural basis in Rn. Then, the Periodic Coordinate
Search Function is given by:

σ(t) = ei ∀t ∈ ∆ti∀ i ∈I (6)

For simplicity, we choose ∆ti =
p
n∀i ∈ I . By using this

function and for any time t, the controller will search in
one direction for an interval given by ∆t before switching
to search along another direction. This example of the
search function is considered in the rest of this work, unless
otherwise stated.

IV. STABILITY AND CONVERGENCE ANALYSIS

This section is organized as follows: First, we show the
sliding mode existence condition for any given search direc-
tion and we discuss the convergence of the one-dimensional
search. After that, we shall investigate the minimum value of
∆t that guarantees the convergence of the the multivariable
extremum seeking controller to the minimum point in a finite
time.

Theorem 1: For the extremum seeking control input (5)
with the switching manifold (4) and search function (6)
with the ith directional search being active, the sliding mode
existence condition, of keeping s(t) at constant, is satisfied
outside a region characterized by∣∣∣∣ ∂J

∂θi

∣∣∣∣< ρ

k
∀i ∈I (7)

and kept on manifold s(t) = nα with:
• n = 2K when ∂J

∂θi
> 0.

• n = 2K +1 when ∂J
∂θi

< 0.
where n,K ∈ N.

Proof: The detailed proof of this theorem needs much
space. However, the sketch of the proof is provided as
follows:
Define a Lyapunov Candidate Function (LCF) as:

V (t) =
1
2

s2(t).

The derivative of the function V (t) is

V̇ (t) = s(t)ṡ(t)

= s(t)

[
−

n

∑
i=1

∂J(θ(t))
∂θi

θ̇i +ρ

]
(8)



With only the ith search direction being active, V̇ (t) can
rewritten as

V̇ (t) = s(t)
[
−∂J(θ(t))

∂θi
ei k sgn(sin

(
πs(t)

α

)
)+ρ

]
Note that in the neighborhood of s = nα:
• For n = 2K; sgn(sin

(
πs
α

)
) = sgn(s−αn)

• For n = 2K +1; sgn(sin
(

πs
α

)
) =−sgn(s−αn)

thus, under the condition (7), we have

s(t)ṡ(t)< 0

That is, V̇ (t) is strictly negative irrespective of the sign of
∂J
∂θi

and a sliding manifold will be reached in finite time and
kept on manifold s(t) = nα until the controller changes the
search direction.

Proposition 1: For any i∈I let tri < ∞ be a finite sliding
mode’s reaching time for the ith direction and, condition (7)
be satisfied, then for any t ∈ (tri , ti+1] we have J(θ(t)) <
J(θ(tri)).

Proof: According to Theorem 1, sliding mode will be
reached in finite time. To prove that J(θ(t)) is decreasing in
sliding mode, it is suffices to show show that θi(t) converges
to θ ?

i asymptotically. Without loss of generality, suppose that
at the time t = tri the sliding surface s(t)=0 is reached. In
sliding mode, the equivalent control veq can be obtained by
solving the equation ṡ(t) = 0 for v(t). That is,

ṡ(t) =
∂J(θ(t))

∂θi
v(t)+ρ = 0, (9)

which implies,
veq =−

ρ

∂J(θ(t))
∂θi

. (10)

Furthermore, note that under the Assumption 2.1 we have

(θi(t)−θ
?
i )

∂J(θ(t))
∂θi

> 0, ∀θi(t) 6= θ
?
i . (11)

Let θ̂i(t) = θi(t)− θ ?
i , the time derivative of the function

θ̂i(t) is
˙̂
θi(t) = veq(t). (12)

From (10) and (11), it follows that

θ̂i(t)
˙̂
θi(t)< 0. (13)

Using this result and the fact that by the search direction (6),
we have

θ j(tr) = θ j(t), ∀ j 6= i

therefore,

J(θ1(t), ...,θn(t))< J(θ1(tr1), ...,θn(tr1)).

That is, J is decreasing in the ith direction towards a
neighborhood of the minimum, which is characterized by
the region (7) while the ith search is enabled.
Note that, after entering the region (7), it is possible that
either the system output stays inside that region or goes
through it. In the latter case, another sliding mode will

happen and the system will enter the region again on the
sliding mode.

The sliding mode’s reaching time will be used in the
analysis. Therefore, we devote our attention in the next
paragraph to find an expression for the reaching time.
Without loss of generality, let t0 = 0. By Theorem 1, the
nearest switching surface will be reached in a finite time.
Suppose that at t = tr1 , the surface s(tr1) = nα is reached.
Then, for any s(0) we have

|s(0)− s(tr1)|= |s(0)−nα| ≤ α. (14)

Therefore, the reaching time for the first direction can be
found as follows:

|tr1|=
|s(0)− s(tr1)|
|ṡ(t)|

=
|s(0)−nα|

| dJ
dθ1

k sgn(sin
(

πs(t)
α

)
)+ρ|

≤α

ρ
.

(15)

Now, let the value of ∆ti satisfy:

∆ti >
α

ρ
(16)

and consider the initial time for the overall search t0 = t1 = 0,
with σ(t) = [1 0 ... 0]T for all t ∈ [t1, t2]. The sliding mode
will then be enabled with tr1 < t2 for a period given by

∆̂t1 = t2− tr1

in the 1st direction. By Proposition 1 we have

J(θ1(t2), ...,θn(t2))< J(θ1(0), ...,θn(0)).

That is, J(θ(t)) will track the monotonically decreasing
function towards the minimum in the 1st direction before
switching to another direction. The same is true for other
directions in which we can conclude that (12) is a sufficient
condition for the controller to converge towards the vicinity
of the minimum for all directions. With this, we conclude
our analysis with the following theorem:

Theorem 2: For the Multi-input Single-output static map
(1) with control law (5), if the switching function is designed
such that ∆ti > α

ρ
, then J(θ(t)) will stably converge towards

a vicinity of the minimum characterized by (7).

V. MULTIVARIABLE ES FOR SYSTEM WITH DYNAMIC

The extension of the developed approach in previous
sections from static maps to systems with dynamics will be
of a great interest. Let’s consider a Multi-input Single-output
dynamical system:

ẋ(t) = f (x(t),u(t))

y(t) = z(t)
(17)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input,
y(t) ∈ R is the output and z(t) is a cost function described
by the equation:

z(t) = J(x1(t),x2(t), ...,xn(t)) (18)



where each function f : Rn×Rm → Rn and J : Rn → R is
smooth, continuous, and differentiable with respect to its
arguments. Then, for the extension of the developed approach
from static maps to systems with dynamics, the following
assumptions about system (17) are required:

Assumption 5.1: There exists a smooth control law:

u(t) = α(x(t),θ(t))

to stabilize system (17), with θ(t) designed to satisfy

θ̇(t) = v(t)

and v(t) being a variable structure control input given by the
control input (5).
With this, the closed loop system

ẋ = f (x(t),α(x(t),θ(t)))

has equilibrium, which is a function of θ(t).
Assumption 5.2: There exists a smooth function l : Rn→

Rn such that

f (x(t),α(x,θ(t))) = 0,

if, and only if,

x(t) = l(θ(t)).

Assumption 5.3: There exists θ ∗(t) ∈ Rn such that:

∂

∂x
(J ◦ l)(θ ∗(t)) = 0

and
∂ 2

∂x(t)
(J ◦ l)(θ ∗(t))> 0.

This assumption ensures that the function z(t) has a mini-
mum at θ(t) = θ ?(t).

Assumption 5.4: The dynamical system (17) is much faster
than the controller dynamic. That is,∣∣∣∣ d

dt
x(t)
∣∣∣∣� ∣∣∣∣ d

dt
θ(t)

∣∣∣∣.
This is to ensure a time scale separation between the
stabilization control and the optimizer. It follows that the
stability and the convergence analysis of the ES control
with dynamics is analogous to the static map case. Fig. 3
illustrates the control scheme in the presence of dynamics.

VI. ILLUSTRATIVE EXAMPLE: WIND FARM POWER
CAPTURE MAXIMIZATION

To illustrate the application of the proposed controller, we
consider a problem of maximizing the total power production
of a wind farm. The wind farm model will be briefly
overviewed in the next section. Then, using the developed
scheme, we will run simulations to validate the results and
assess the performance of the scheme.

Fig. 3. ESC for system with Dynamic.

A. System Model and Problem Formulation

We consider a wind farm consisting of n wind turbines.
Let θi be the control parameter of turbine i. Here, θi is the
Axial Induction Factor (AIF) of turbine i, which takes values
in
[
0, 1

2

]
. The power produced by the wind turbine i is given

by

Ji(θ) =
1
2

ρairAiCp(θi)Vi(θ)
3, (19)

where ρair is the density of the air, Ai is the area swept by
blades of turbine i, Cp(θi) is the power efficiency coefficient,
which is given by

Cp(θi) = θi(1−θi)
2, (20)

and Vi(θ) is the wind speed at turbine i which is given by

Vi(θ) =V∞

(
1−
√

∑
j<i

(θ jC
[

j, i
]
)2

)
, (21)

where V∞ is the free stream wind speed and C ∈ Rn×n is a
matrix depending on the farm layout, which is based on the
Park model [16]. Note that in a wind farm, it is difficult to
accurately model the coupling between the wind turbines due
to the interaction between the wind-turbine wake aerodynam-
ics and the dynamics of the turbines. Therefore, it is assumed
that we can only measure the total power production, which
is given by

PTotal(θ1,θ2, ...,θn) =
n

∑
i=1

Ji(θ1,θ2, ...,θn) (22)

and the problem is to maximize the wind farm total produced
power by manipulating the AIF, without knowing the explicit
forms of the function PTotal .

B. Simulation Results

We consider three turbines, n = 3, as shown in
Fig. 4, with identical diameter, D = 77m, located at
{(0,0),(0,5D),(0,10D)} and a fixed air density ρair =
1.225kg/m3, with free stream wind speed equaling 8m/s.
Simulations are carried out using MATLAB. ES parameters
are set as ρ = 500, α = 0.5, ∆t = 0.1s and k = 0.5. Note
that the optimal solution for individual turbines can be
obtained from equations (19) and (20). That is, we have
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Fig. 4. Illustration of the Wind Farm layout considered for simulation.

d
dθ

Cp = 0 ⇐⇒ θ = 1
3 . Therefore, it is natural to set all

θi =
1
3 . On the other hand, if we consider the optimal solution

for the total power generated by all three turbines, we have:

PTotal = J1 + J2 + J3

=
1
2

ρA(Cp(θ1)V 3
∞ +Cp(θ2)V2(θ1)

3

+Cp(θ3)V3(θ1,θ2)
3).

(23)

Optimizing the above equation using a numerical optimizer
yields

θ
∗ = (0.232,0.208,0.333).

The total power at θi =
1
3 is considered as a baseline to

assess the benefit of using the proposed ES scheme. Fig.
5 shows that sliding mode is reached in a finite time after
each switch. Fig. 6 demonstrates that starting initially with
optimal setting for individual turbine θ(0) = ( 1

3 ,
1
3 ,

1
3 ), the

proposed control steers the farm power output to a vicinity
of the maximum power generation. Next, to examine the
effect of the switching time ∆t on the convergence of the
total power, we run the simulation for different values of ∆t.
According to Theorem 2 above, it is sufficient to consider a
switching time greater than α

ρ
= 1×10−3 sec. Fig. 7 depicts

the simulation results for different values of ∆t. It is evident
that condition (11) is sufficient to guarantee convergence of
the total power to a vicinity of the maximum.

VII. CONCLUSION

We proposed a Sliding Mode ES control scheme for
multivariable optimization. The strategy of reducing the
problem to a sequence of single variable ES has been
considered to solve this class of problems. Stability and
convergence analysis are discussed. The controller was suc-
cessfully implemented to solve the ES problem for wind
farm optimization. Simulations show that this method is
independent from accurate turbine power modeling and wind
measurement. Future research will include the development
of ES controllers for constrained optimization and the adap-
tation of different search signals for complex applications.
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[6] Y. Pan, Ü. Özgüner, and T. Acarman, “Stability and performance
improvement of extremum seeking control with sliding mode,” In-
ternational Journal of Control, vol. 76, no. 9-10, pp. 968–985, 2003.

[7] S. Drakunov, U. Ozguner, P. Dix, and B. Ashrafi, “Abs control using
optimum search via sliding modes,” IEEE Transactions on Control
Systems Technology, vol. 3, no. 1, pp. 79–85, 1995.

[8] L. Fu and U. Ozguner, “Extremum-seeking control in constrained
source tracing with nonholonomic vehicles,” IEEE Transactions on
Industrial Electronics, vol. 56, no. 9, pp. 3602–3608, 2009.

[9] A. H. Alqahtani and V. I. Utkin, “Self-optimization of photovoltaic
system power generation based on sliding mode control,” in IECON
2012-38th Annual Conference on IEEE Industrial Electronics Society,
pp. 3468–3474, IEEE, 2012.

[10] M. A. Rotea, “Analysis of multivariable extremum seeking algo-
rithms,” in American Control Conference, 2000. Proceedings of the
2000, vol. 1, pp. 433–437 vol.1, Sep 2000.

[11] K. B. Ariyur and M. Krstic, “Analysis and design of multivariable
extremum seeking,” in Proceedings of the 2002 American Control
Conference, vol. 4, pp. 2903–2908 vol.4, May 2002.

[12] K. B. Ariyur and M. Krstic, Real-time Optimization by Extremum-
seeking Control. John Wiley & Sons, 2003.

[13] A. Ghaffari, M. Krstic, and D. Neic, “Multivariable newton-based
extremum seeking,” in 2011 50th IEEE Conference on Decision and
Control and European Control Conference, pp. 4436–4441, Dec 2011.

[14] A. J. Peixoto and T. R. Oliveira, “Extremum seeking control via
sliding mode and periodic switching function applied to raman optical
amplifiers,” in 2012 American Control Conference (ACC), pp. 5377–
5382, June 2012.

[15] S. F. Tolue and M. Moallem, “Multivariable sliding-mode extremum
seeking control with application to alternator maximum power point
tracking,” in Industrial Electronics Society, IECON 2016-42nd Annual
Conference of the IEEE, pp. 229–234, IEEE, 2016.

[16] J. R. Marden, S. D. Ruben, and L. Y. Pao, “A model-free approach to
wind farm control using game theoretic methods,” IEEE Transactions
on Control Systems Technology, vol. 21, no. 4, pp. 1207–1214, 2013.



0 100 200 300 400 500

Time (s)

0.15

0.2

0.25

0.3

0.35

0.4
(a)

1

2

3

0 100 200 300 400 500

Time (s)

1.7

1.75

1.8

1.85

1.9

1.95

2

T
o

ta
l 
P

o
w

e
r 

(M
W

)

(b)

P(t)

P
Max

P
i
=1/3

Fig. 6. Simulation results on Power maximization of three turbines.(a) Convergence of the axial induction factors θi. (b) The Evolution of the total power
produced by the farm.

0 100 200 300 400 500

Time (s)

1.75

1.8

1.85

1.9

1.95

P
T

o
ta

l (
M

W
)

t=0.6 ms

0 100 200 300 400 500

Time (s)

1.75

1.8

1.85

1.9

1.95

P
T

o
ta

l (
M

W
)

t=0.8 ms

0 100 200 300 400 500

Time (s)

1.75

1.8

1.85

1.9

1.95

P
T

o
ta

l (
M

W
)

t=1.0 ms

0 100 200 300 400 500

Time (s)

1.75

1.8

1.85

1.9

1.95

P
T

o
ta

l (
M

W
)

t=1.2 ms

(a) (b)

(c) (d)

Fig. 7. Simulation results on Power maximization of three turbines with different switching time.


