Apple Pest Management Using an Organic Approach

Celeste Welty
Extension Entomologist
Ohio State University

March 2007
Fruit pest management

• Part 1: Overview of strategies & tactics
• Part 2: Putting tactics together in a seasonal program for apples
Pest Management

• **Strategies**
 – Do nothing
 – Eradication
 – Prevention **
 – Suppression *

• **Tactics**
 – Cultural
 – Mechanical *
 – Biological
 – Behavioral
 – Microbial *
 – Chemical
Cultural Controls

- Minimize infestations by choosing appropriate crop management practices

- Categories:
 - Crop location
 - Crop selection
 - How crop is maintained
Cultural Controls

• **Crop location**

 – Do not plant near alternate hosts (or remove alternate hosts)

 Example: blackberry psyllid

 • Winter hosts: pines, spruces, cedars, hemlocks

 • Do not plant blackberries within 1/8 mile of conifers; mile better
Cultural Controls

• Crop selection
 – Choose resistant varieties
 • Not many examples for insects
 • Aphid resistant raspberries
 – Ground cover (between tree rows in orchards)
 • Broadleaf covers better refuge for predatory mites
 • For better biocontrol, use broadleaf rather than grass ground cover
Cultural Controls

• **Crop selection**
 – Intercropping with a refuge planting for natural enemies
 • Adult parasitoids need nectar
 • Adult predators need pollen
 • Plant flowering border at field edge to enhance biocontrol
 • E.g. sweet alyssum by cabbage
Cultural Controls

• How crop is maintained
 – Pruning
 – Mowing
 – Sanitation (‘clean culture’)
 – Fertilizer
 – Plant growth regulators
 – Weed control
 – Irrigation/hosing
Cultural Controls

• How crop is maintained
 —Pruning
 • E.g. pears, summer pruning of water sprouts helps control pear psylla
 • E.g. raspberries: prune out raspberry cane borer and rednecked cane borer in larval stage (in stems)
Cultural Controls

• How crop is maintained
 – Sanitation or ‘clean culture’
 • Collect and compost dropped fruit to destroy pests inside fruit
Cultural Controls

• How crop is maintained
 –Sanitation or ‘clean culture’
 • Collect and compost dropped fruit to destroy pests inside fruit
Cultural Controls

• How crop is maintained
 — weed management
 — E.g.: Tarnished plant bug on strawberry
 • Weeds are also host plants
 • Especially weeds that flower early (before strawberries bloom)
 • Do not disturb (pull, mow) the weeds while your plants are in the susceptible stage
Cultural Controls

• How crop is maintained
 – Mowing between rows

Tarnished plant bug on peach:
 – Move from grassy ground cover & weeds into fruit trees when grass mowed
 – Where insecticides are used, better to spray then mow, not mow then spray
Cultural Controls

• How crop is maintained
 – Fertilizer
 • Some pests like plants with excess nitrogen (e.g. some aphids)
 – Plant growth regulators (PGR)
 • If succulent plant growth is suppressed by PGR, can limit pests (e.g. aphids on apple trees)
Mechanical Controls

• Use mechanical tactics to prevent or delay pests from infesting a site; use tools not needed for purposes other than pest management

• Exclusion

• Removal
Mechanical Controls

• Exclusion by barriers
 – Netting, screening
 – Paper bags
 – Localized shields
 – Copper barrier
Mechanical Controls

• Exclusion by netting
 – Periodical cicada
 – Birds
Mechanical Controls

- Exclusion by paper bags
 - Apples
 - Grapes
Mechanical Controls

- Exclusion by localized shields
 - Wrapping tree trunk with paper to prevent attack by flatheaded borers
Mechanical Controls

• Exclusion by copper barrier
 – Slugs, snails
Mechanical Controls

• Removal trapping
 – Shelter traps
 – Visual traps
 – Scented traps
• Removal by hand
• (Removal by vacuum)
Mechanical Controls

- Removal by shelter traps
 - Tree bands for caterpillars

Gypsy moth

Codling moth
Mechanical Controls

• Removal by scented traps
 – Japanese beetle
Mechanical Controls

• Removal by Visual traps + Scented traps

• Apple maggot:
 – Red sphere
 – Fruit volatile lure
 – Attracts female A.M. flies
 – Use 1 trap per 100 real fruit
Mechanical Controls

• **Hand Removal**
 – For conspicuous pests
 – For pests not too active
 – In relatively restricted area
 – Labor available

• **Limb-jarring (Beating)**
 – Plum curculio
Biological Control

= control of pest by other organisms that act as natural enemies

• 2 main categories:
 — Parasitoids
 — Predators
Natural enemies of pests

• Parasitoids
 – Some wasps
 – Some flies
Predatory Beetles

- Lady beetles
- Ground beetles
- Rove beetles
- Soldier beetles
Lacewings

• Green lacewings

• Brown lacewings
Predatory Bugs

• Stink bugs
 – Spined soldier bug
 – Twospotted stink bug

• Flower bugs
 – Minute pirate bug
 – Insideous flower bug

• Damsel bugs

• Assassin bugs

• Big-eyed bugs
Predatory Flies

• Hover flies (flower flies)

• Aphid midges

• Robber flies
Predatory mites in orchards

- White mites (Family Phytoseiidae)
 - *Neoseiulus fallacis* (=*Amblyseius fallacis*)
 - *Typhlodromus pyri*

- Yellow mites (Family Stigmaeidae)
 - *Zetzellia mali*
 - *Agistemus fleschneri*
Categories of Biological Control

• ‘Natural’ (local species)
• Importation (exotic species)
• Conservation (local species) **
• Augmentation (local species)
Behavioral Control

• Control a pest population by interfering with its normal behavior

• Pheromone mating disruption
 — Male confusion technique
 — Attract-and-kill technique
 — General rule: 5 acre minimum
 — Being used for:
 • Oriental fruit moth (peach)
 • Peachtree borers (peach)
 • Codling moth (apple)
Normal mate finding

Male confusion
Types of Products for Mating Disruption

- Manual dispensers
 - Twist tie (‘rope’)
 - Patch
 - Clip
 - Spiral
- Puffers
- Sprayable micro-encapsulated
Attract-and-kill technique

Example:

• Product ‘Last Call CM’
• Codling moth
• Apple, pear
• Made by IPM Tech
• Manual dispenser pump
• Rate: 1200 droplets per acre
• Claims to work well in small or irregular orchards
Microbial Control

• Control by micro-organisms that cause disease in insect

• **Bacteria**
 — BT sprays
 — (Transgenic BT plants)

• **Viruses**

• (fungi)

• (nematodes)

• (protozoans)
Chemical control

• OMRI-approved insecticides
 – spinosad (Entrust)
 – kaolin (Surround)
 – Soaps
 – Oils
 – Pyrethrins
Tactics that involve products applied in orchard

• Some tactics...
 — Behavioral controls
 — Microbial controls
 — Chemical controls

• Some on OMRI list, some not
OMRI-approved products

• Behavioral control
 – Pheromone mating disruption
• Microbial control
 – virus
 – B.T. (DiPel)
• Chemical control
 – spinosad (Entrust)
 – kaolin (Surround)
 – Soaps
 – Oils
 – Pyrethrins
Part 2
Fruit Crops: Insect/Disease Problems

• Require **least** inputs
 — Blueberries
 — Raspberries
 — Strawberries
 — Grapes

• Require **most** inputs
 — Peaches
 — Apples
Stages of Apple Growth

1. Suckers
2. Green Tip
3. Half-Rich Green
4. Tight Cluster
5. First Rin
6. Full Pink
7. First Bloom
8. Full Bloom
9. Post Bloom
Apple Pest Calendar

<table>
<thead>
<tr>
<th>Month</th>
<th>1C</th>
<th>2C</th>
<th>3C</th>
<th>4C</th>
<th>5C</th>
<th>6C</th>
<th>7C</th>
</tr>
</thead>
<tbody>
<tr>
<td>April</td>
<td>HIG</td>
<td>PK</td>
<td>PF</td>
<td>1C</td>
<td>2C</td>
<td>3C</td>
<td>4C</td>
</tr>
<tr>
<td>May</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>June</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>July</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>August</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **CodlingMoth**
- **Apple Maggot**
- **Aphid (rosy)**
- **Scale (SJS)**
- **Leafroller (RB)**
- **Plum Curculio**
- **Tarn. Plant Bug**

- **European Red Mite**
- **Leafminer (ST)**
- **Leafhopper (WA)**
- **Aphid (green)**
Biological control of apple pests by naturally occurring predators & parasitoids

<table>
<thead>
<tr>
<th>Pest</th>
<th>Enemy</th>
</tr>
</thead>
<tbody>
<tr>
<td>European red mite</td>
<td>Predatory mites</td>
</tr>
<tr>
<td>Green apple aphid</td>
<td>Cecidomyid fly (orange maggot)</td>
</tr>
<tr>
<td>Rosy apple aphid</td>
<td>Hover flies, lady beetles</td>
</tr>
<tr>
<td>Spotted tentiform leafminer</td>
<td>Parasitoid wasps</td>
</tr>
</tbody>
</table>
Apple Pest Management Tactics

• Integrated control
 – Chemical control
 • Needed for codling moth
 • Use selective insecticide
 – Biological control of mites & other foliar pests
 • Conserve natural predators
Codling Moth in Apples

- The key pest in apple fruit
- Young larva enters fruit, tunnels to seeds at core
Codling Moth Life cycle

1st generation in May/June

2nd generation in July/August
Codling Moth Management Overview

- **Cultural**
 - Sanitation: Clean bins
 - Cut down abandoned orchards

- **Behavioral modification**
 - Pheromone mating disruption

- **Microbial sprays**
 - Virus sprays

- **Chemical sprays**
 - Insecticides
Codling Moth in Apples

• Mechanical controls:
 — Trunk bands
 — Fruit bagging
Codling moth management

Factors affecting insecticide efficacy:

• Timing
• Choice of materials
• Spray volume
Insecticide timing for codling moth

• Use 2 sprays per generation
• First spray when eggs begin to hatch
• Second spray 14 days later
Predicting Codling Moth Egg Hatch

- Eggs begin to hatch:
 - About 2 to 3 weeks after moths begin to fly (often Memorial Day +/- 1 week)
 - More exactly, 250 degree-days (base 50F) after moths begin sustained flight
- Rule developed ~30 years ago (Mich. ‘76)
Traps for Codling Moth

• Trap choices:
 — Sticky trap
 — Multi-Pher (bucket) trap

• Use pheromone lure

• ‘Biofix’ is the date that sustained flight begins
Degree-Days (DD)

• Common way to summarize development time
• Can be used to predict insect activity
• For one day, $DD = (\text{average temp}) - (\text{threshold temp})$
• Accumulate DD over consecutive days
Degree-Days Example

<table>
<thead>
<tr>
<th>Day</th>
<th>Temp. max</th>
<th>Temp. min</th>
<th>Temp. avg</th>
<th>DD (base 50)</th>
<th>DD Cumul.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>62</td>
<td>52</td>
<td>57</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>66</td>
<td>50</td>
<td>58</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>58</td>
<td>54</td>
<td>56</td>
<td>6</td>
<td>21</td>
</tr>
<tr>
<td>4</td>
<td>70</td>
<td>56</td>
<td>63</td>
<td>13</td>
<td>34</td>
</tr>
</tbody>
</table>
Insecticide timing for codling moth

• Use 2 sprays per generation
• First spray when eggs begin to hatch (250 degree-days after biofix)
• Second spray 14 days later
Codling Moth, 1996
Pheromone Trapping at O.S.U. Orchard, Columbus

Mean number of moths per trap per day

- April 22
- May 3
- May 15
- May 27
- June 7
- June 19

- pink 4/24
- bloom 5/2
- petal fall 5/9
- 1st cover 5/17
- normal 2nd cover 5/31
- delayed 2nd cover 6/4
- optimal spray 6/4
- 3rd cover 6/14

250 DD
Products for control of apple pests

• OMRI approved products
 – spinosad (Entrust)
 – virus for codling moth (Virosoft CP4; Cyd-X; Carpovirusine)
 – kaolin (Surround)
 – B.T. for caterpillars (DiPel)
 – Pheromone mating disruption if >5 acres
Codling moth granulosis virus

• **Products**
 — ‘Cyd-X’
 — ‘Carpovirusine’
 — ‘Virosoft CP4’

• **Action**
 — Only limited fruit protection
 — Significantly reduces surviving population
CpGV = *Cydia pomonella* Granulosis Virus (or Granulovirus)

- Granules are viral occlusion bodies
- Applied when eggs are hatching
- Granules ingested by young larvae before or during entry into fruit
- Host death within 3-7 days
- Breaks down in UV light
- Half-life 4-8 days
CpGV Orchard Trials: on pears in California 2003 (very high pest pressure)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>% CM infested fruit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imidan/Guthion (3 ap.)</td>
<td>3.7 a</td>
</tr>
<tr>
<td>Entrust (11 ap.)</td>
<td>3.9 a</td>
</tr>
<tr>
<td>Cyd-X (11 ap.)</td>
<td>26.9 b</td>
</tr>
<tr>
<td>Carpovirusineine (11 ap.)</td>
<td>30.5 b</td>
</tr>
<tr>
<td>untreated</td>
<td>70.2 c</td>
</tr>
</tbody>
</table>
CpGV Orchard Trials: apple in NC 2004

<table>
<thead>
<tr>
<th>Treatment</th>
<th>% of fruit with entries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rimon</td>
<td>0.5 a</td>
</tr>
<tr>
<td>Cyd-X</td>
<td>0.8 ab</td>
</tr>
<tr>
<td>Rimon/Guthion</td>
<td>1.3 ab</td>
</tr>
<tr>
<td>Assail/Intrepid</td>
<td>2.3 ab</td>
</tr>
<tr>
<td>Intrepid/Calypso/Spintor</td>
<td>2.8 ab</td>
</tr>
<tr>
<td>Danitol/Guthion</td>
<td>3.0 ab</td>
</tr>
<tr>
<td>Calypso/Intrepid</td>
<td>4.0 ab</td>
</tr>
<tr>
<td>Imidan/Guthion</td>
<td>4.5 abc</td>
</tr>
<tr>
<td>Guthion/Rimon</td>
<td>4.8 abc</td>
</tr>
<tr>
<td>Experimental/Intrepid</td>
<td>5.8 abc</td>
</tr>
<tr>
<td>Assail/Intrepid</td>
<td>6.0 bc</td>
</tr>
<tr>
<td>Calypso/Intrepid</td>
<td>9.8 cd</td>
</tr>
<tr>
<td>untreated</td>
<td>14.5 d</td>
</tr>
</tbody>
</table>

For all: 2 applications for 1st generation, 3 applications for 2nd generation; 14-day interval
‘Surround’
<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF</td>
<td>PlumCurc.</td>
<td>Surround</td>
</tr>
<tr>
<td>1C</td>
<td>CodMoth-1</td>
<td>Entrust</td>
</tr>
<tr>
<td>2C</td>
<td>CodMoth-1</td>
<td>Entrust</td>
</tr>
<tr>
<td>3C</td>
<td>-</td>
<td>virus</td>
</tr>
<tr>
<td>4C</td>
<td>CodMoth-2</td>
<td>Pyganic</td>
</tr>
<tr>
<td>5C</td>
<td>CodMoth-2</td>
<td>Pyganic</td>
</tr>
<tr>
<td>6C</td>
<td>-</td>
<td>virus</td>
</tr>
<tr>
<td>7C</td>
<td>-</td>
<td>virus</td>
</tr>
<tr>
<td>8C</td>
<td>-</td>
<td>virus</td>
</tr>
</tbody>
</table>
San José Scale

- Sucking pest
- Injures fruit & bark
- Overwinters on bark
- Disperses to fruit in crawler stage (starts mid-June)
San José Scale
San José Scale

Insecticide spray options:

• Dormant
 – Oil
 – Lime sulfur

• Post-bloom
 – Insecticidal soap
San José Scale

Management at dormant stage, in late winter or early spring:

• Use oil to smother the overwintering population on bark

• Or use lime sulfur
San José Scale

Oil spray:

• Best control of scale if applied before buds swell

• Prevent damage to tree by applying when temperature above freezing within a day of application

• Apply dilute (2 oz oil in 100 oz water; spray to run-off), cover all bark
San José Scale

• Post-bloom control options that target crawler stage
 – Insecticidal soap
San José Scale

When are crawlers crawling?
• Start about 4-6 weeks after bloom
• Usually in mid-June
• Emergence lasts several weeks
San José Scale

When are crawlers crawling?

• Use black sticky tape (electrical tape)
• Wrap sticky-side out around branch
• Look for tiny bright yellow crawlers
Apple Maggot

- A key pest in northern USA
- Not a pest in southern USA
- Variable in Ohio
Apple Maggot

• Adult fly lays egg on fruit
• Larva tunnels through fruit
• Pupation in soil
Apple Maggot

- Adult female fly attracted to round red object
- Sticky ball trap for mechanical control: 1 trap per 100 real fruit
Plum curculio

• External damage on apples from egg-laying
• Internal damage on plum, peach, cherry, blueberry from larvae tunnelling
Plum curculio

• Not many effective tactics
• Mechanical control:
 – Limb jarring (beating) on first warm humid nights near petal-fall
• Chemical control:
 – Kaolin (‘Surround’) at petal-fall
Cultural control of peachtree borers

• Train trees to form wide angles
• Promote healthy trees
• Avoid practices that injure bark
 – Over load of fruit
 – Improper pruning
 – Mowing injury
 – Fertilizing
 – Damage during harvest
Mechanical control of peachtree borers

- ‘Worming’
- Effective
- Insert knife or wire into entry hole
- Smash the larvae!
- Do in early spring or late fall
- Practical in small plantings