Using multiple tactics to manage pests on vegetables

Celeste Welty
Extension Entomologist
Ohio State University
January 2017
Topics

• Overview of management tactics

• Examples of common pests & options for managing them
 – Vine crops
 – Cole crops
Components of Integrated Pest Management (IPM)

• Monitoring

• Action thresholds

• Multiple tactics
 – Preventive options
 – Remedial options
IPM uses a **combination** of tactics

- Cultural
- Host Plant Resistance
- Mechanical
- Biological
- Behavioral
- Microbial
- Chemical
- Genetic
- Regulatory
IPM uses a combination of tactics

• Cultural *
• Host Plant Resistance
• Mechanical *
• Biological *
• Behavioral
• Microbial *
• Chemical *
• Genetic
• Regulatory
Cultural Controls

• Minimize infestations by choosing appropriate crop management practices
 o What crop is selected
 o Where crop is planted
 o When crop operations occur
 o How field is prepared & planted
 o How crop is maintained
• Trade-offs usually occur
Delayed planting

• **Cucumber beetle**
 – Problem if plant in mid-May
 – Less problem if plant in early June

• **Squash vine borer**
 – Same

• **Bean leaf beetle**
 – Peak populations in May, July
 – Fewer in June
Cover Crops

• Used to protect soil over winter
• Affects onion thrips
 – Overwinters in small grains
 – Does best in wheat
 – Does poorly in rye
Trap cropping

- Lure pest away from main crop to a more attractive crop
- Planting time options
 - Same time
 - 2 weeks early for trap crop
Perimeter trap crop

- Cantaloupe surrounded by Buttercup squash
Cultural control: trade-offs

Example: Straw Mulch

• Benefits
 – Moisture retention
 – Weed suppression
 – Reduces soil splash
 – Reduces fungal spore dispersal

• Makes some pest problems worse
 – cucumber beetles, slugs
Mechanical Controls

• Tactics to prevent or delay pests from infesting a site

• Tactics not needed for purposes other than pest management

• 2 types:
 – Exclusion
 – Removal
Exclusion by barriers

- Row covers **
- Netting, screening
- Paper bags
- Localized shields
- Copper barriers
- Trenches (deep furrows)
- Plant collars
- Fences
Row covers to exclude pests

• **Lightweight**
 – ‘Agri-bon 15’, ‘Insect Barrier’
 – 90% light transmission
 (vs 70-85% for heavier covers for frost protection)
 – Sources:
 • Johnny’s Selected Seed: $67. (10’ x 250’)
 • Gardens Alive: $35. (5’ x 110’)

[Image: Row covers being used on a field, showing a hand under a light cover.]
Row covers to exclude pests

- Beetles on beans
- Leafhoppers on beans
- Worms on cole crops
- Disease vectors:
 - Beetles on cucumbers (before flowering)
 - Aphids
Row covers to exclude pests

• Install on day of planting
• Remove
 – When first flowers appear (cucurbitas)
 – At final harvest (broccoli, beans)
Row covers to exclude pests

• Use with or w/o hoops
• Must be anchored tightly
Mechanical Control by Removal

- By beating/shaking
- Removal trapping
- Removal by vacuum
- Removal by hand
- By aspirator
Removal by beating or shaking

- Hold bucket under plant
- Tap plants with broom
- Then kill pests mechanically
- Repeat daily
- Works for Colorado potato beetle (adults, larvae)
Removal by aspirator

- **Aspirator** = Mouth-operated suction device
- **$8 – 14 from:**
 - BioQuip
 - Forestry Suppliers
 - Gempler’s
- **Good for flea beetles, bean leaf beetle, cucumber beetle**
Removal by hand

• **Labor intensive**

• **Target pests:**
 – Conspicuous pests
 – Pests not too active
 – In relatively restricted area

• **Examples**
 – Spinach leafminer (infested leaves)
 – Hornworms
 – Asparagus beetle (eggs)
 – Japanese beetle
Removal by sanitation

• Collect and destroy/compost:
 – Culled fruit
 – Crop residue (after harvest)

• Plant clean nursery stock
Biological Control

• Control of pest by other organisms that act as natural enemies

• Overview of common natural enemies
 – Predators
 – Parasitoids

• Tactics of biocontrol
Predators

- Develop at expense of more than one prey item
- Predator often larger than prey
- Prey usually killed & consumed quickly
Predators

• Green lacewings
• Lady beetles
• Insidious flower bug
• Damsel bugs
• Hover flies
Parasitoids

• Develop at expense of a single host
• Lay egg in or on host insect
• Host is usually killed slowly
Vertebrate predators eat insects!

- Bats
- Toads
- Birds
- Geese
- Hogs
Biological Control

• Conservation tactics
 – Avoid broad-spectrum insecticides
 – Provide refuge planting

• Augmentation tactics
 – Buy from insectary
 • Rincon-Vitova in California
 – Collect locally, then transfer
Refuge planting for natural enemies

• Adult parasitoids need nectar

• Adult predators need pollen

• Plant flowering border at field edge to enhance biocontrol
Refuge planting for natural enemies

- Phacelia
- sweet alyssum *
- nasturtium
- cilantro
- dill
Augmentation: Collect & transfer

• What to do?
 – Hunt for generalist predators
 – Collect them
 – Transfer them to crop

• Who, where, when?
 – Ladybug larvae on Spirea in May
 – Lacewings & aphid midges on apple leaves in early June
 – Damsel bugs on alfalfa, April-June
Chemical Control

• **Options:**
 – Use no chemicals
 – Use conventional insecticides
 – Use chemicals allowed for organic farms (on OMRI list)
Insect control products on the OMRI List

- **Behavioral control**
 - pheromone mating disruption
- **Microbial control**
 - viruses
 - B.t. (DiPel)
- **Smothering agents**
 - soaps
 - oils
- **Nerve poisons**
 - spinosad (Entrust)
 - pyrethrins (PyGanic)
- **Repellents**
 - kaolin (Surround)
 - neem
 - garlic
Insect control products on the OMRI List

- **Behavioral control**
 - pheromone mating disruption
- **Microbial control**
 - viruses
 - B.t. (DiPel) *
- **Smothering agents**
 - soaps
 - oils
- **Nerve poisons**
 - spinosad (Entrust) *
 - pyrethrins (PyGanic)
- **Repellents**
 - kaolin (Surround) *
 - neem
 - garlic
Insecticides

• OMRI-listed, narrow spectrum
 – viruses (Gemstar)
 – pheromones (CheckMate-TPW)
 – bacteria ($B.t.$: Dipel)

• OMRI-listed, broad spectrum
 – soaps
 – oils
 – botanicals: neem, pyrethrins
 – fungi: Beauveria
Spinosad in ‘Entrust SC’

• **Targets:**
 – Mostly caterpillars
 – Some thrips, beetles, leafminers

• **Expensive!** ($689 for 1 quart at Johnny’s Seeds)

• **Rates 1.5 to 10 fl oz/A** (most 3 - 4 fl oz/A)
Repellent: ‘Surround’

Surround® WP
Crop Protectant

Cucurbit Vegetables
Such as cucumber, summer and winter squash, pumpkin, citron melon, muskmelon, and watermelon

<table>
<thead>
<tr>
<th>PEST</th>
<th>LBS/ACRE</th>
<th>APPLICATION INSTRUCTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cucumber beetle, grasshoppers</td>
<td>25-50</td>
<td>Suppression only*. Start prior to infestation, applying every 5-7 days, with the first two applications 3 days apart.</td>
</tr>
<tr>
<td>Powdery mildew</td>
<td></td>
<td>Suppression only*. Apply every 7-14 days as required to maintain coverage.</td>
</tr>
<tr>
<td>Sunburn and heat stress</td>
<td>25-100</td>
<td>See I D.</td>
</tr>
</tbody>
</table>

*If complete control is needed, consider using supplemental controls.
Microbial Insecticides

- **Bacteria**
 - B.t. (sprayable!): Dipel
- **Viruses**
 - Gemstar
- **Fungi**
 - *Beauveria bassiana* (Mycotrol, Naturalis)
- **Protozoans**
 - *Nosema* (Hopper Stopper; Nolo Bait)
- **Nematodes**
 - *Steinernema carpocapsae* (Millenium)
 - *Heterorhabditis bacteriophora* (Symbion)
What is B.t.?

- A natural soil-borne bacterium
- Species: *Bacillus thuringiensis*
- This bacterium produces crystal-like proteins that kill certain insects
- Found world-wide
- Produced by fermentation methods
- Discovered 1915; used since 1957
How does B.t. work?

• B.t. must be **eaten** by target insect
• B.t. contains **toxins** that are activated by insect’s gut enzymes
• toxins paralyze insect’s digestive tract
• feeding stops within 2 **hours** after eating B.t.
• death takes 1 - 5 days
B.t. products for caterpillar control

- DiPel (Valent)
- XenTari (Valent)
- Biobit (Valent)
- Javelin (Certis)
- Agree (Certis)
B.t. performance

• **Sometimes erratic due to:**
 – Breakdown in U.V. light
 – Reduced toxicity against older larvae
 – Incomplete spray coverage
 – Too long a spray interval

• **Best if:**
 – Target *young* larvae
 – Apply at 3-7 day intervals
 – Get thorough coverage
 • Lot of water (>35 gal/A)
 • Good pressure (60 psi)
Lab bioassays to evaluate insecticide efficacy

- Defoliation
- Mortality
Trends in efficacy

<table>
<thead>
<tr>
<th>spectrum</th>
<th>Exc./Good</th>
<th>Good/Fair</th>
<th>Fair/Poor</th>
</tr>
</thead>
<tbody>
<tr>
<td>broad</td>
<td>pyrethrins + PBO</td>
<td>permethrin</td>
<td>neem seed oil</td>
</tr>
<tr>
<td></td>
<td>carbaryl</td>
<td>malathion</td>
<td>azadirachtin</td>
</tr>
<tr>
<td></td>
<td>esfenvalerate</td>
<td>pyrethrins + oil</td>
<td>capsaicin</td>
</tr>
<tr>
<td></td>
<td>lambda-cyhalothrin</td>
<td></td>
<td>garlic</td>
</tr>
<tr>
<td></td>
<td>cyfluthrin</td>
<td></td>
<td>pyrethrins</td>
</tr>
<tr>
<td></td>
<td>bifenthrin</td>
<td></td>
<td>+soap</td>
</tr>
<tr>
<td>less broad</td>
<td>spinosad</td>
<td>kaolin</td>
<td>in red if on OMRI list</td>
</tr>
<tr>
<td>broad</td>
<td>endosulfan</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>rotenone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>narrow</td>
<td>dicofol</td>
<td>B.T.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>soap</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>oil</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Can biological & chemical control ever be integrated?

• Use **selective** chemical
 – Kills pest but *not* natural enemies
 – Allows natural enemies to help kill pest
 – Example: B.t. (Dipel)

• Use product with very short residual activity

• Example: soap
Tactics for common pests

- Cole crops
- Vine crops
Cole Crop Pests

- Caterpillars
- Thrips
- Flea beetles
- Aphids
- Root maggots
Tactics for cole crop pests

<table>
<thead>
<tr>
<th>Cultural</th>
<th>Biological</th>
<th>Chemical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caterpillars</td>
<td>⋄</td>
<td>⭐️</td>
</tr>
<tr>
<td>Thrips</td>
<td>⋄</td>
<td>⭐️</td>
</tr>
<tr>
<td>Flea beetles</td>
<td>⋄</td>
<td>⭐️</td>
</tr>
<tr>
<td>Aphids</td>
<td>⋄</td>
<td>⭐️</td>
</tr>
<tr>
<td>Root maggots</td>
<td>⋄</td>
<td>⭐️</td>
</tr>
</tbody>
</table>
Cole crops: 3 Caterpillar Species

- Imported cabbageworm
- Cabbage looper
- Diamondback moth
3 Caterpillar Species & their parasitoids

Imported cabbageworm

Cabbage looper

Diamondback moth

Cotesia larvae spinning cocoons

Copidosoma floridanum wasps emerging from one cocoon

Diadegma insulare oviposits on larvae

Cotesia adult wasp
Biological & microbial control of caterpillars on cole crops

• Use the microbial insecticide BT as a selective insecticide, spray or dust
 – ‘DiPel’, ‘Xentari’, etc.
 – Kills caterpillars
 – Does not kill parasitoids
 – Allows natural enemies to help kill pests

• Spinosad also easy on parasitoids

• Plant border of sweet alyssum to attract parasitoids
How are B.t. sprays most effective for cabbageworm control?

- Rate?
- Frequency?
- Time of day?
Cabbage trial, 2012

- cv ‘Bravo’
- Transplanted 18 May
- Scouted weekly for insects
- 1st spray 18 days after planting
- Sprays for 11 weeks
- Harvest 20 August
Cabbage B.t. treatments

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Rate of Dipel DF</th>
<th>Frequency</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Low (0.5 lb/A)</td>
<td>Every 7 days</td>
<td>daytime</td>
</tr>
<tr>
<td>3</td>
<td>Low (0.5 lb/A)</td>
<td>Every 14 days</td>
<td>daytime</td>
</tr>
<tr>
<td>4</td>
<td>High (1.0 lb/A)</td>
<td>Every 7 days</td>
<td>daytime</td>
</tr>
<tr>
<td>5</td>
<td>High (1.0 lb/A)</td>
<td>Every 14 days</td>
<td>daytime</td>
</tr>
<tr>
<td>6</td>
<td>Low (0.5 lb/A)</td>
<td>Every 14 days</td>
<td>evening</td>
</tr>
</tbody>
</table>
Cabbage B.t. trial:
Insect damage at harvest,
mean of 10 heads per plot

- high rate, 7 d, day: 1.98
- low rate, 7 d, day: 2.15
- low rate, 14 d, evening: 2.57
- low rate, 14 d, day: 2.6
- high rate, 14 d, day: 2.62
- untreated: 4.85

P < 0.0001
Cabbage B.t. trial:
Weight (kg) of 3 heads at harvest

- High rate, 7 d, day: 8.57 kg
- Low rate, 7 d, day: 8.53 kg
- Low rate, 14 d, evening: 7.84 kg
- Low rate, 14 d, day: 8.42 kg
- High rate, 14 d, day: 8.12 kg
- Untreated: 7.05 kg

P = 0.33
B.t. trial conclusions

• Frequency more important than rate
 – Every 7 days better than every 14 days
 – Low rate as effective as high rate

• Daytime spray as effective as evening spray
Cabbage caterpillar calendar

<table>
<thead>
<tr>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>Aug.</th>
<th>Sept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imported cabbageworm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diamondback moth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cabbage looper</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cabbage caterpillar calendar & response to insecticides

<table>
<thead>
<tr>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>Aug.</th>
<th>Sept</th>
</tr>
</thead>
</table>

Imported cabbageworm
- Easiest to kill

Diamondback moth
- Usually difficult to kill but varies with population’s history of resistance

Cabbage looper
- Most difficult to kill
Insecticides for caterpillar management on cole crops

<table>
<thead>
<tr>
<th>Insecticide</th>
<th>Imported cabbage-worm</th>
<th>Diamond-back moth</th>
<th>Cabbage looper</th>
<th>Natural enemies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional</td>
<td>Excellent control</td>
<td>Fair control</td>
<td>Good control</td>
<td>Poor survival</td>
</tr>
<tr>
<td>B.t.</td>
<td>Good control</td>
<td>Good control</td>
<td>Fair control</td>
<td>Excellent survival</td>
</tr>
</tbody>
</table>

Thus B.t. works best when diamondback moth or imported cabbageworm is dominant pest.
Insecticide Calendar

• Early & mid-season (April to July)
 – if imported cabbageworm &/or diamondback dominant
 – use only B.t.

• Mid- to late season (August)
 – if cabbage looper dominant pest
 – use Confirm, SpinTor, or Proclaim

• Late season (Sept.-October)
 – if cabbage looper dominant pest
 – use pyrethroids (Baythroid, etc.)
Thrips on Cabbage

<table>
<thead>
<tr>
<th>Less damage:</th>
<th>More damage:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bravo</td>
<td>Azan</td>
</tr>
<tr>
<td>Fresco</td>
<td>Atria</td>
</tr>
<tr>
<td>Cheers</td>
<td>Coleguard</td>
</tr>
<tr>
<td>Titanic 90</td>
<td>Megaton</td>
</tr>
<tr>
<td>KingCole</td>
<td>Upton</td>
</tr>
<tr>
<td>Superkraut</td>
<td>Hinova</td>
</tr>
<tr>
<td></td>
<td>Krautpacker</td>
</tr>
<tr>
<td></td>
<td>Rodolpho</td>
</tr>
<tr>
<td></td>
<td>Superdane</td>
</tr>
</tbody>
</table>

Data on >80 varieties
C.Hoy, K.Scaife, M.Kleinhenz
Cultural controls for thrips

- Select thrips-tolerant variety
- Choose winter cover crop
 - Thrips do best in wheat
 - Thrips do poorly in rye
- Avoid planting near wheat
 - Thrips infestation often follows wheat harvest
Planting date & Cabbage Maggot

• Crop most susceptible if in seedling stage when new adults are laying eggs
• Emergence of the adults:
 – on different calendar dates each year
 – but always at the same time that certain well known plants are flowering

<table>
<thead>
<tr>
<th>GEN.</th>
<th>PLANT</th>
<th>AVG. BLOOM (Ohio)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>yellow rocket</td>
<td>early May</td>
</tr>
<tr>
<td>2</td>
<td>day lilies</td>
<td>late June</td>
</tr>
<tr>
<td>3</td>
<td>Canada thistle</td>
<td>early August</td>
</tr>
<tr>
<td>4</td>
<td>New England aster</td>
<td>early Sept.</td>
</tr>
</tbody>
</table>
Choose planting date to avoid cabbage maggot

• Do not **transplant** during the time that these plants are blooming
• Do not **seed** approximately 2 weeks before these plants are blooming
• Ideal time to seed is toward the tail end of bloom period, because seedlings would appear:
 – just after maggot flies disappear
 – well before the next flight begins
Managing Insect Pests in Commercial Vine Crops
Cucurbit Pests

• Cucumber beetles **
• Aphids
• Two-spotted spider mite
• Squash bug
• Squash vine borer
Cucumber beetles

Important damage:
• Chew seedlings
• Transmit bacterial wilt
• Chew on fruit surface

Less critical damage:
• Chew on flowers
• Larvae chew on roots
Natural enemy of cucumber beetles

• Parasitoid fly, *Celatoria*
• Looks like a small house fly
• Kills adult cucumber beetles
• Common in Ohio
 – Striped cucumber beetle, adults:
 • 0 to 38% in survey 13 farms, 2003 & 2004
 – Spotted cucumber beetle, adults:
 • 4% at 1 site, 2000

• We need to encourage its survival!
Beetle infected with nematodes
Cultural controls & cucumber beetles

• **Plant late (mid-June)**
 – After initial peak invasion

• **Avoid straw mulch**
 – Favors development of larvae in soil
Perimeter trap crop

- Squash more attractive than cantaloupe
Row covers

• Good in recent trials with cantaloupe
Cucumber beetles & conventional insecticides

- **Seed applied systemics**
 - FarMore FI 400 (since 2009)

- **Soil applied systemics**
 - Admire Pro (since 2000) or generics
 - Platinum 2SC

- **Foliar applied**
 - Before flowering:
 - Sevin; Pounce or other pyrethroids
 - During flowering:
 - No good choices due to honey bee toxicity
 - Never spray in morning; best in evening
Admire applied in-furrow provides excellent control of striped cucumber beetle on pumpkin seedlings
Seed Treatment

• For direct-seeded crops

• Advantages
 – Efficacy equal to in-furrow treatment
 – Convenience; easier application
 – Much lower rate of A.I. per acre
 • Compare to in-furrow:
 • ~25 times less (pumpkins at 3,000 seeds/A)
 • ~2 times less (pickles at 45,000 seeds/A)

• Control good during critical cotyledon to 2-leaf stage

• Control not lasting past 2-leaf stage
Cucumber beetle management by mass trapping
Cucumber Beetle Kairomone Trap

- Developed by Trécé Inc.
- Poison bait: cucurbitacin + carbaryl (inside trap)
- Volatile lure: mimic squash flowers
- Most effective before flowers form
Potted squash plants treated with soil drench of Admire
One trapping station = one trap & one box of 3 potted plants treated with Admire
5 traps at the edge of 1 plot
traps 20 ft apart

Last year’s pickle field
Cucumber beetle management options

<table>
<thead>
<tr>
<th>Category</th>
<th>Tactics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cultural</td>
<td>Delay planting (early June)</td>
</tr>
<tr>
<td></td>
<td>Plant early trap crop</td>
</tr>
<tr>
<td></td>
<td>Avoid straw mulch</td>
</tr>
<tr>
<td>Mechanical</td>
<td>Row cover (seedlings)</td>
</tr>
<tr>
<td></td>
<td>Early trap-out</td>
</tr>
<tr>
<td>Biological</td>
<td>Conserve parasitoid (no spray)</td>
</tr>
<tr>
<td>Chemical</td>
<td>Buy treated seed</td>
</tr>
<tr>
<td></td>
<td>Rescue spray</td>
</tr>
</tbody>
</table>
Cucurbit Pests

- Cucumber beetles
- Aphids
- Two-spotted spider mite
- Squash bug
- Squash vine borer
Aphids & Viruses on Cucurbits

• Tactics tested:
 – Stylet oil
 – Row covers
 – Reflective mulch
 – Soil-applied systemic insecticides
 – Foliar insecticides

• All helped control aphids but none affected virus

• Best hope is resistant varieties
Spider Mites

- Tolerable at low density
- Suppressed by natural predators
- Flare up in hot dry weather
- Soft control:
 - Insecticidal soap
 - Hort. Oil
- Chemical control:
 - Agri-Mek or others
Squash Bug: Biological control

• Feather-legged fly
 – *Trichopoda pennipes*
 – parasitoid
 – lays egg on adult or large nymph
 – common in Ohio

• Egg parasitoid wasps
Squash Bug: Cultural control

• Rotate with non-curcurbit crops
• Promote early growth of crop
• * Destroy crop remains
Squash Bug: Mechanical control

• Shelter trap
 – Board trap or shingle trap
 – On ground under squash plant
 – Check daily in early morning
 – Decide how to kill

• Row covers (until flower)

• Hand-pick egg masses
Squash Bug: Chemical control

• Challenges
 – Nymphs more susceptible than adults
 – Hard to contact in canopy
 – Need good spray pressure

• Insecticide choices:
 – Pyrethroids (Ambush, Asana, Baythroid, Capture, Danitol, Permethrin, Pounce) = good
 – Sevin = poor
Squash Vine Borer
Squash vine borer: trap for monitoring

- pheromone lure available to attract adult male moths
- trap helpful with timing insecticide to target hatching eggs
Squash Vine Borer: Chemical Control

• **Timing:**
 – 4 sprays, 1 week apart
 – At time of egg hatch
 – Estimate by catch of moths in trap
 – Peak hatch usually early July

• **Products:** pyrethroid (Ambush, Asana, Baythroid, Brigade, Danitol, Permethrin, Pounce) or EverGreen (pyrethrins + PBO)

• **Direct spray at base** of stems
Squash Vine Borer: Management

• Cultural
 – Plant late for main crop
 – Small planting early as trap crop

• Mechanical
 – Row covers (until flowering)

• Chemical
 – Insecticide
Cucurbit pest management

<table>
<thead>
<tr>
<th>Category</th>
<th>Tactics</th>
</tr>
</thead>
</table>
| **Cultural** | Delay planting (early June)
 Plant early trap crop
 Avoid straw mulch
 Crop rotation |
| **Mechanical** | Row cover (seedlings)
 Shelter traps
 Hand-pick eggs
 Destroy crop remnants
 Early trap-out |
| **Biological** | Conserve natural enemies |
| **Chemical** | Buy treated seed |
Questions?