CSE 2321: Homework 13 Solutions

1. (a) Two vertices \(u, v \) of a graph are \textit{adjacent} if there exists an edge \((u, v)\).

\begin{center}
\begin{tikzpicture}
 \node (u) at (0,0) {u};
 \node (v) at (1,0) {v};
 \draw (u) -- (v);
\end{tikzpicture}
\end{center}

(b) A \textit{self-loop} is an edge \((u, u)\).

\begin{center}
\begin{tikzpicture}
 \node (u) at (0,0) {u};
 \draw (u) to [loop above] (u);
\end{tikzpicture}
\end{center}

(c) A \textit{multi-graph} can have multiple edges between the same two vertices and self-loops.

\begin{center}
\begin{tikzpicture}
 \node (u) at (0,0) {u};
 \node (v) at (1,0) {v};
 \node (w) at (2,0) {w};
 \node (x) at (3,0) {x};
 \node (y) at (4,0) {y};
 \node (z) at (5,0) {z};
 \draw (u) -- (v);
 \draw (v) -- (w);
 \draw (u) -- (x);
 \draw (y) -- (z);
\end{tikzpicture}
\end{center}

(d) If \((u, v)\) is an edge in a graph, \((u, v)\) is \textit{incident} to vertices \(u \) and \(v \).

\begin{center}
\begin{tikzpicture}
 \node (u) at (0,0) {u};
 \node (v) at (1,0) {v};
 \draw (u) -- (v);
\end{tikzpicture}
\end{center}

(e) An \textit{acyclic} graph has no simple cycles.

\begin{center}
\begin{tikzpicture}
 \node (u) at (0,0) {u};
 \node (v) at (1,0) {v};
 \node (w) at (2,0) {w};
 \node (x) at (3,0) {x};
 \node (y) at (4,0) {y};
 \node (z) at (5,0) {z};
 \draw (u) -- (v);
 \draw (v) -- (w);
 \draw (w) -- (x);
 \draw (x) -- (y);
 \draw (y) -- (z);
\end{tikzpicture}
\end{center}

(f) A \textit{connected} graph is a graph in which every vertex is reachable from all other vertices.

\begin{center}
\begin{tikzpicture}
 \node (u) at (0,0) {u};
 \node (v) at (1,0) {v};
 \node (w) at (2,0) {w};
 \node (x) at (3,0) {x};
 \node (y) at (4,0) {y};
 \node (z) at (5,0) {z};
 \draw (u) -- (v);
 \draw (v) -- (w);
 \draw (w) -- (x);
 \draw (x) -- (y);
 \draw (y) -- (z);
\end{tikzpicture}
\end{center}
(g) An *Eulerian cycle* is a cycle through the graph which visits every edge once.
 e.g. \((w, x, y, z, w)\)

(h) An *Eulerian path* is a path through the graph which visits every edge once.
 e.g. \((w, x, y, z, w, y)\)

(i) A *Hamiltonian cycle* is a cycle through the graph which visits every vertex once
 (with the exception of the starting vertex).
 e.g. \((w, x, y, z, w)\)
(j) A *Hamiltonian path* is a path through the graph which visits every vertex once.
e.g. \((w, x, y, z)\)

\[\text{Diagram showing a Hamiltonian path} \]

(k) A *bridge* is an edge that is not contained in any cycle.

\[\text{Diagram showing a bridge} \]

(l) A *complete graph* is a graph in which every pair of vertices is adjacent.
Example for 7 vertices:
(m) A bipartite graph is a graph in which the vertices can be partitioned into two sets V_1 and V_2 such that for every edge (u, v), u is in one of the sets and v is in the other.

Example for 7 vertices:

2. By Euler’s theorem, the sum of degrees of each vertex is double the number of edges in a graph. Therefore, a graph with 242 degrees total has 121 edges.

3. (a) $(0, 0, 1, 1, 1, 1, 4, 4)$ is not a degree sequence. There are 4 degree vertices. The minimum number of vertices (outside of themselves) that these two must be connected to is 6. Therefore, all 8 vertices are connected. However, the degree sequence has 2 vertices of degree zero, contradicting this.

(b) $(0, 2, 2, 2, 2, 4, 4, 4)$ is a degree sequence. Consider the following graph: