SHEAR DESIGN

Internal Forces and Stresses due to Bending and Shear

(b) Internal forces on section A-A.

$V d x=d M$

$$
V=\frac{d M}{d x}
$$

Slope of moment $=$ shear
(c) Internal forces on portion between sections $A-A$ and $B-B$.

(a)

Shear in Reinforced Concrete Beams

Generally, we try to design beams, so they will not fail except in extreme loading. If they fail, they should fail in flexure. Shear failure takes place suddenly (fairly brittle) and without warning.
Check shear and add shear reinforcement to ensure flexure failure, which is preceded by cracking and large deflections.

Shear in Reinforced Concrete Beams without Stirrups

Consider beam to be homogeneous, isotropic, and elastic to gain some insight.

Crack progression in rectangular beams

(1) flexural cracks
(2) flexural-shear cracks
(3) Shear cracks

Kai Li, EIT, LEED GA, Ph.D. Candidate

Normal, shear, and principal stresses in homogeneous uncracked beam.

(a) Principal compressive stress trajectories in an uncracked beam.

Principal compressive stress trajectories and inclined cracks. (Photograph courtesy of J. G. MacGregor.)

(b) Photograph of half of a cracked reinforced concrete beam.

Kai Li, EIT, LEED GA, Ph.D. Candidate

Total Shear Strength, $\boldsymbol{V}_{\boldsymbol{n}}$

Nominal shear strength, V_{n} is the summation of concrete and steel components.

$$
V_{n}=V_{c}+V_{s}
$$

Strength Design:

$$
\phi V_{n} \geq V_{u} \quad \phi=0.75
$$

Concrete shear strength, V_{c}

Strength of a beam without stirrups is related empirically to the quality of concrete. For design:

$$
V_{c}=2 \sqrt{f_{c}^{\prime}} b_{w} d \text { (psi) }
$$

Stirrups/hoops in beams

Functions:
To provide tensile resistance across shear cracks
To carry a portion of the shear force
To hold longitudinal reinforcement in place (during casting)
To provide confinement (especially in columns, and 135° hooks)
Hoops (or closed stirrups) are required where torsion or cyclic load reversals are expected.
Shapes:

ACI 318 Design Model for Shear: Assume 45° shear cracks

$A_{v}=(\#$ of legs crossing the crack $) A_{s}$
$V_{s}=\sum A_{v} f_{y}=n A_{v} f_{y}=\frac{A_{v} f_{y} d}{s}$
$\mathrm{n}=\mathrm{d} / \mathrm{s}$
Kai Li, EIT, LEED GA, Ph.D. Candidate

Shear Design Procedure:

a) Estimate the required shear strength (Draw shear demand, V_{u} diagram using factored loads)

$$
\phi V_{n} \geq V_{u} \quad\left(V_{n}=V_{c}+V_{s}\right)
$$

b) Compute concrete component, V_{c}

$$
V_{c}=2 \sqrt{f_{c}^{\prime}} b_{w} d
$$

c) Check to see if stirrups required:
(Determine the region where stirrups required)

- No stirrups needed, if $V_{u}<\frac{\phi V_{n}}{2}$
- Minimum stirrups, if $V_{u} \geq \frac{\phi V_{n}}{2}$
- $\phi V_{s}=V_{u}-\phi V_{c}$
(Under distributed loading, the critical section is at a distance, d away from the support)
d) Maximum stirrups:

$$
V_{s}=\frac{V_{u}-\phi V_{c}}{\phi} \leq 8 \sqrt{f_{c}^{\prime}} b_{w} d
$$

If V_{u} requires more V_{s} than this, make beam bigger!
e) Design stirrups:

$$
A_{v, \min }=\frac{50 b_{w} s}{f_{y}}, s_{\min } \approx 4 \mathrm{in} .(\text { sometimes less })
$$

Either select A_{v} and find s; OR select s and find $A_{v} \quad V_{s}=\frac{A_{v} f_{y} d}{s}$
f) Spacing limits:

- If $V_{s} \leq 4 \sqrt{f_{c}^{\prime}} b_{w} d, \quad s \leq d / 2$ or 24 in . (whichever is smaller)
- If $4 \sqrt{f_{c}^{\prime}} b_{w} d \leq V_{s} \leq 8 \sqrt{f_{c}^{\prime}} b_{w} d \quad s \leq d / 4$ or 12 in.

g) Practical aspects and other limitations

- \#3 bars are smallest size stirrups (\#3 or \#4 common)
- Typical spacing increment is 1 in . (maximum 2-3 different spacings)
- $\quad 1^{\text {st }}$ stirrups at $s / 2$ from support face (commonly, start @ 2 in from support face)
- Anchor stirrups at ends.

Shear Analysis Example

What is the maximum factored shear force, V_{u} allowed on this member?
$f_{c}{ }^{\prime}=4000 \mathrm{psi}, f y=40,000 \mathrm{psi}$
$V_{c}=2 \sqrt{f_{c}^{\prime}} b_{w} d=\frac{2 \sqrt{4000}(14)(22.5)}{1000}$
$V_{c}=39.8 \mathrm{kips}$
$V_{s}=\frac{A_{v} f_{y} d}{s}=\frac{2(0.11)(40)(22.5)}{12}=16.5 \mathrm{kips}$
Maximum $V_{u}=\phi V_{c}+\phi V_{s}=0.75(39.8+16.5)$

$$
V_{u}=42.2 \mathrm{kips}
$$

Shear Design Example

The distributed dead load shown includes weight of the beam. Beam width, $b=16$ in., $d=20 \mathrm{in} ., f_{c}^{\prime}=4000 \mathrm{psi}, f_{y}=60,000 \mathrm{psi}$.
Design stirrups and sketch the stirrup pattern.

1) Draw V_{u} diagram $w_{u}=1.2(1.7)+1.6(2.1)=5.4 \mathrm{k} / \mathrm{ft}$ $P_{u}=1.2(24)=28.8 \mathrm{kips}$

$$
\begin{aligned}
V_{u, \max } & =11(5.4)+28.8 / 2 \\
& =59.4+14.4 \\
& =73.8 \mathrm{kips}
\end{aligned}
$$

$$
\begin{aligned}
V_{u}^{*} & =73.8-\frac{20}{12}\left(5.4 \frac{\mathrm{k}}{\mathrm{ft}}\right) \\
& =64.8 \mathrm{kips}
\end{aligned}
$$

2) Are stirrups required?
$\phi V_{c}=\phi 2 \sqrt{f_{c}^{\prime}} b_{w} d=0.75(2) \sqrt{4000}(16)(20)$
$\phi V_{c=3} 30.4 \mathrm{kips} \rightarrow \frac{\phi V_{c}}{2}=\frac{30.4}{2}=15.2 \mathrm{kips}<64.8 \mathrm{kips}$
So, stirrups are required
3) Stirrups required to (within the x length from support face):
$\frac{73.8-15.2}{5.4}=10.85 \mathrm{ft}$ from support face

Location where $V_{u}=\phi V_{c}$
$\frac{73.8-30.4}{5.4}=8.04 \mathrm{ft}$ from support face
4) Within the length between d distance from the support face and x (i.e., for $1.67 \mathrm{ft} \leq \mathrm{x} \leq 8.04 \mathrm{ft}$), the required shear strength from stirrups is:
$\begin{aligned} \phi V_{s} & =V_{u, \max }-\phi V_{c}-m x \\ & =73.8-30.4-5.4 x=43.4-5.4 x\end{aligned}$
5) Assume No. 3 stirrups with two legs
$A_{v}=0.11$ in. ${ }^{2}(2)=0.22$ in. ${ }^{2}$
required $s^{*}=\frac{\phi A_{v} f_{y} d}{\left(r e q^{\prime} d \phi V_{s}^{*}\right)}=\frac{0.75(0.22)(60)(20)}{64.8-30.4}=5.76 \mathrm{in}$.
Use 5 in.
6) Maximum spacing according to ACI 318 code:
$4 \sqrt{f_{c}^{\prime}} b_{w} d=4 \sqrt{4000}(16)(20)=81 \mathrm{kips}$
$V_{s}^{*}=\frac{\phi V_{s}^{*}}{\phi}=\frac{r e q^{\prime} d \phi V_{s}}{\phi}=\frac{64.8-30.4}{0.75}=45.9 \mathrm{kips}<81 \mathrm{kips}$
$s_{\max }=\mathrm{d} / 2$ or 24 in., $\mathrm{d} / 2=10 \mathrm{in}$. (controls)
Also, $s_{\max }=\frac{A_{v} f_{y}}{50 b_{w}}=\frac{0.22(60,000)}{50(16)}=16.5 \mathrm{in}$.

Summary:
@ $x=1.67 \mathrm{ft}, \mathrm{s}=5 \mathrm{in}$.
@ $x=8.04 \mathrm{ft}$ to midspan, $s=10 \mathrm{in}$ (max spacing)
Between $x=1.67 \mathrm{ft}$ and $8.04 \mathrm{ft}, \rightarrow$ function of x

7) Required s as a function of x

Req'd $s=\frac{\phi A_{v} f_{y} d}{\left(\mathrm{req}^{\prime} \mathrm{d} \phi V_{s}\right)}=\frac{0.75(0.22)(60)(20)}{43.4-5.4 x}=\frac{198}{43.4-5.4 x}$
8) Find x (distance from support face) for 10 in max spacing
$10(43.4-5.4 x)=198 \rightarrow x=4.37 \mathrm{ft}$
$x>4.37 \mathrm{ft} \rightarrow \mathrm{s}=10 \mathrm{in}$.
$x<4.37 \mathrm{ft} \rightarrow \mathrm{s}=5 \mathrm{in}$.

Kai Li, EIT, LEED GA, Ph.D. Candidate
$f_{c}{ }^{\prime}=4000 \mathrm{psi}$
$f_{y}=60,000 \mathrm{psi}$

The 10 - ft-span cantilever beam carries two ultimate (factored) point loads and factored distributed load of $5 \mathrm{kips} / \mathrm{ft}$ (including beam's own weight).

Design the shear reinforcement along the length of the beam. Sketch the stirrup pattern.

SOLUTION:

1) Draw V_{u} diagram

Kai Li, EIT, LEED GA, Ph.D. Candidate
2) Are stirrups required?
$\phi V_{c}=\phi 2 \sqrt{f_{c}^{\prime}} b_{w} d=0.75(2) \sqrt{4000}(12)(18.5)=21.06 \mathrm{kips}$
$\frac{\phi V_{c}}{2}=10.53$ kips $<V_{u}^{*} \rightarrow$ Therefore, stirrups are required.
\int For $V_{u}<\frac{\phi V_{c}}{2} \rightarrow$ No stirrups required,
For $\frac{\phi V_{c}}{2} \leq V_{u}<\phi V_{c} \rightarrow$ Minimum stirrups required
For $V_{u}>\phi V_{c} \rightarrow$ shear reinforcement is required
3) Stirrups required to (between support face and $\phi V_{c} / 2$):
$x=4+\frac{40-10.53}{5}=9.89 \mathrm{ft}$

Location where $V_{u}=\phi V_{c}$:
$y=4+\frac{40-21.06}{5}=7.79 \mathrm{ft}$
4) At d distance away from the support face, required shear strength provided by stirrups:

Required $\phi V_{s}^{*}=V_{u}^{*}-\phi V_{c}=72.3-21.06=51.24 \mathrm{kips}$
5) Assume No. 3 stirrups with two legs
0.11 in. ${ }^{2}(2)=0.22$ in. ${ }^{2}=A_{v}$
$\phi V_{s}=\frac{\phi A_{v} f_{y} d}{s} \rightarrow s^{*}=\frac{\phi A_{v} f_{y} d}{\phi V_{s}^{*}}=\frac{0.75(0.22)(60)(18.5)}{51.24}$
$s^{*}=3.57 \mathrm{in} . \quad$ Use $s^{*}=3.5 \mathrm{in} . \quad$ if $s^{*}<s_{\max }$
6) Maximum spacing according to ACI 318 code:
$\begin{array}{ll}V_{s}^{*}=\frac{\phi V_{s}^{*}}{\phi}=\frac{51.24}{0.75}=68.32 \mathrm{kips} \quad & >4 \sqrt{f_{c}^{\prime}} b d=56.16 \mathrm{k} \\ & <8 \sqrt{f_{c}^{\prime}} b d=112.32 \mathrm{k}\end{array}$
$\rightarrow s_{\max }=\min \left(\frac{d}{4}\right.$ or 12 in.$\left.\right) \rightarrow s_{\max }=\frac{d}{4}=\frac{18.5}{4}=4.625 \mathrm{in}$.
Also, $s_{\max }=\frac{A_{v} f_{y}}{50 b}=\frac{0.22(60,000)}{50(12)}=22 \mathrm{in}$.
At critical section use $\mathrm{s}^{*}=3.5$ in. \#3 stirrups @3.5 in. o.c.

4') At point B:

Design shear, $V_{u}=60 \mathrm{kips}>\phi V_{c}$
Required $\phi V_{s}=V_{u}-\phi V_{c}=60-21.06=38.94 \mathrm{kips}$
$V_{S}=\frac{38.94}{0.75}=51.92 \mathrm{kips}$
5')
$s=\frac{A_{v} f_{y} d}{V_{s}}=\frac{0.22(60) 18.5}{51.92}=4.70 \mathrm{in}$.
$V_{s}<4 \sqrt{f_{c}^{\prime}} b d=56.16 \mathrm{k} \rightarrow s_{\max }=d / 2=9.25 \mathrm{in}$.
Can use $s=4.5$ in. at B

4") Part BC:

$V_{u}=40 \mathrm{kips}>\phi V_{c}$
$V_{s}=\frac{V_{u}-\phi V_{c}}{\phi}=\frac{40-21.06}{0.75}=25.25 \mathrm{kips}<4 \sqrt{f_{c}^{\prime}} b d \quad\left(s_{\max }=9.25 \mathrm{in}\right.$. controls $)$
$s=\frac{A_{v} f_{y} d}{V_{s}}=\frac{0.22(60) 18.5}{25.25}=9.67 \mathrm{in}$.
For BC, use \#3 @9 in.

TORSION

$$
T_{n} \geq T_{u}
$$

$T_{u}=$ factored torsion

After cracking, torsion is resisted by stirrups, longitudinal bars, and concrete compression diagonals
(a) Thin-walled tube analogy

Figure 5.40 Torsional failure of web-reinforced beam after spalling of cove (Collins and Mitchell, Ref. 5.11).

(b) Space truss analogy

ACI STANDARD/COMMITTEE REPORT

COMMENTARY

Figure 8-1 Examples of prestressed concrete structures with significant torsion.
Kai Li, EIT, LEED GA, Ph.D. Candidate

Development length and Splices

- We have assumed plane sections remain plane: $\varepsilon_{\mathrm{s}}=\varepsilon_{\mathrm{c}}$
- This requires bond between steel and concrete
- Design must ensure that adequate bond exists
- Provide required development length

(a) Forces on bar.

(b) Forces on concrete.
(c) Components of force on concrete.
(d) Radial forces on concrete and splitting stresses shown on a section through the bar.

Bond Mechanics

* Chemical adhesion: weak
* Friction: weak
* Bearing against deformation: strong

Bearing against deformation creates a radially outward force on concrete \rightarrow concrete splitting

Strength depends on:

1. Cover, and spacing
2. Concrete strength, $f_{c}{ }^{\prime}$, top/bottom, LWC
3. Length
4. Bar size
5. Transverse steel
6. Epoxy, coating

Fig. 8-32
Failure of a tension lap splice. (Photograph courtesy of J. G. MacGregor.)
Kai Li, EIT, LEED GA, Ph.D. Candidate

Prepare for mid-term
T-beam Example
Calculate design moment of this irregular shape T-beam as shown below. Use $f_{c}^{\prime}=4 \mathrm{ksi}, f_{y}=60 \mathrm{ksi}$.

- Check ACI Code limits:

$$
\begin{aligned}
& A_{s, \min }=0.0033 b_{w} d \\
& A_{s, \min }=0.0033(16)(23)=1.26<A_{s}, \mathrm{OK}
\end{aligned}
$$

$$
A_{s, \min }=\frac{3 \sqrt{f_{c}^{\prime}}}{f_{y}} b_{w} d \geq \frac{200}{f_{y}} b_{w} d
$$

$N_{T}=A_{S} f_{y}=4(60)=240$ kips (Assuming steel yields!)
$N_{c f}=0.85 f_{c}^{\prime}(8)(2)=54.4$ kips $<N_{T}$ (N.A is within web $\left.a>h_{f}\right)$
$N_{c w}=N_{T}-N_{c f}=240-54.4=185.6$ kips
$N_{c w}=\left(a-h_{f}\right) 0.85 f_{c}^{\prime} b_{w} \Rightarrow a=\frac{185.6}{0.85(4)(16)}+2=5.42 \mathrm{in}$.
$c=\frac{a}{0.85}=6.38 \mathrm{in}$.

$M_{n}=Z_{w} N_{c w}+Z_{f} N_{c f}$

$$
Z_{f}=d-\frac{2}{2}=22 \mathrm{in}
$$

$$
M_{n}=(185.6)(19.3)+(22)(54.4)=4770 \text { in }-\mathrm{k}
$$

$$
\phi M_{n}=0.9(4770)
$$

$$
\phi M_{n}=4293 \text { in }-\mathrm{k}
$$

