Improving large-scale greenhouse land cover mapping by

using 3D data from VHR satellite stereo imagery

Abderrahim Nemmaoui*, Fernando J. Aguilar a, Manuel A. Aguilar a, Rongjun Qin b

* Corresponding author: an932@ual.es

a Department of Engineering, University of Almería, Ctra. de Sacramento s/n, La Cañada de San Urbano, Almería 04120, Spain (an932@ual.es, faguilar@ual.es, maguilar@ual.es)

b Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, 218B Bolz Hall, 2036 Neil Avenue, Columbus, OH 43210, USA (qin.324@osu.edu)

Abstract

Agriculture under Plastic Covered Greenhouses (PCG) has represented a step forward in the evolution from traditional to industrial farming. However, PCG-based agricultural model has been also criticized for its associated environmental impact such as plastic waste, visual impact, soil pollution, biodiversity degradation and local runoff alteration. In this sense, timely and effective large-scale PCG mapping is the only way to help policy-makers in the definition of plans dealing with the trade-off between farmers’ profit and environmental impact for the remaining inhabitants.
With the aim to improve large-scale PCG mapping, this work proposes a methodological pipeline based on Digital Surface Models (DSM) produced from VHR satellite stereo imagery. This methodological approach has been tested over a dense greenhouse covered area located at Almeria (Southern Spain) from a WorldView-2 VHR satellite stereo-pair, consisting of three main steps:

i) Automatically producing stereo matching derived DSM from VHR satellite stereo-pairs. In this work, two well-known types of image matching algorithms, such as semi-global matching (SGM) (software RPC Stereo Processor (RSP)) and area-based matching (software PCI Geomatics®), were tested.

ii) Applying an outlier filtering algorithm to the stereo matching derived DSM to subsequently obtain a 1 m grid spacing DSM by using the Gaussian Markov Random Field (GMRF) interpolation method (GMRF DSM).

iii) Automatically filtering terrain points (i.e. bare earth z-values) from the original stereo matching derived DSM to finally obtain a 1 m grid spacing Digital Elevation Model (DEM) by using GMRF interpolation.

Both DSM and DEM vertical accuracy were assessed by means of LiDAR data provided by the Spanish Government (PNOA Programme).

Regarding original DSM completeness results, RSP software produced significantly better scores than PCI Geomatics. Concerning GMRF DSM vertical accuracy, PCI Geomatics and RSP yielded insignificantly different results. The DEM error figures also showed no significant differences. The computed DEM
error figures were highly dependent on DSM-to-DEM filtering error, in turn closely related to greenhouse density and terrain complexity.

The 3D information layer provided through the described methodology could be very valuable as a complement to the traditional 2D spectral information offered by VHR satellite imagery to improve large-scale PCG mapping.

KEYWORDS: Digital Elevation Model, Digital Surface Model, Greenhouse land cover, VHR satellite stereo imagery, Stereo image matching.

1. Introduction

Since the first use of plastic film in agriculture in 1948 (Garnaud, 2000), plastic covering has been used extensively in the cultivation of vegetables around the world. Particularly, plastic covered greenhouses (PCG) can be considered a step forward in the evolution from traditional to industrial farming (i.e. from extensive to intensive farming). PCG present a cover made of transparent plastic film to control the environmental conditions and growth of the crops growing inside. This leads to a significant crop yield increasing under highly controlled growing conditions. For these reasons, greenhouse farming plays an increasing role in modern agriculture, becoming one of the most important agricultural activities in arid and semi-arid regions. Crops under PCG accounted for a total coverage of about 3019 million hectares worldwide in 2016, mainly located in Europe (Mediterranean areas), North Africa, the Middle East and China (Wu et al., 2016). In these areas, PCG increase day by day, thus obtaining timely and accurate information regarding their spatial distribution could make an important contribution to local agricultural management; environmental protection and land use/land cover (LULC)
LULC changes can directly affect the status and integrity of ecosystems. For instance, natural and multifunctional landscapes can be converted into areas of intensive farming, altering the main land-use type and natural character of a region. This is the case of Almeria, south-eastern Spain, a region that is currently hosting the largest concentration of greenhouses in the world, spread across more than 30000 hectares, and being locally known as “The Plastic Sea of Almeria” (Aguilar et al., 2015). The region has undergone major LULC changes over the preceding decades due to the expansion of intensive greenhouse horticulture, making the area one of the most economically prosperous in the country. Furthermore, ecosystems in south-eastern Spain are high in biodiversity and are, because of their location in the driest region in continental Europe, vulnerable to global change impacts. In this sense, management decisions should promote a transition towards sustainable landscape strategies which result in human needs being satisfied while simultaneously maintaining important ecological processes responsible for the delivery of ecosystem services (Quintas-Soriano et al., 2016). This transition requires a thorough knowledge of PCG spatio-temporal distribution where remote sensing seems to be the only feasible approach for understanding its impacts on climate and eco-environment in a large geographic area. This remote sensing derived database can efficiently provide quantitative and qualitative information of great interest for the study of planning, land organization and sustainable development of this kind of extremely complex agro-systems (Aguilar et al., 2007).

However, PCG mapping from remote sensing turns out to be challenging because the spectral signature of the plastic-covered greenhouse can change drastically (Aguilar et al., 2015, 2014a; Tarantino and Figorito, 2012). In fact, different plastic materials with
varying thickness, transparency, ultraviolet and infrared reflection and transmission properties, additives, age and colours are used in greenhouse coverings (M. A. Aguilar et al., 2016). Moreover, as plastic sheets are semi-transparent, the changing reflectance of the crops underneath them affects the greenhouse spectral signal reaching the sensor (Levin et al., 2007). Finally, such plastic materials yield sometimes specular reflections that create sporadically shiny spots that are particularly challenging from an image matching perspective.

Regarding PCG mapping from remote sensing approaches, an increasing scientific literature were produced during the last decade. A comprehensive literature review can be found in Aguilar et al. (2015); M. A. Aguilar et al. (2016); Celik and Koc-San, (2018); Lanorte et al. (2017); Novelli et al. (2016) and Yang et al. (2017), showing that many researchers have tried to improve the accuracy of PCG mapping by applying both pixel-based and object-based supervised image classification algorithms to high and medium resolution satellite imagery and by means of both static and multi-temporal approaches.

Although PCG mapping results could be quite variable, in the main they have usually provided overall accuracies ranging between 85% and 94%. Nowadays it is difficult to overcome those scores without adding new information (i.e. in addition to spectral and texture features) to the features vector employed to feed the classifier.

On the other hand, nowadays geospatial analysis headed up to mapping complex above-ground features (e.g. built-up areas) are emerging, usually requiring digital surface and terrain modelling to produce Digital Surface Models (DSM), which capture the natural and built-up features on the Earth’s surface, and Digital Elevation Models (DEM), which are able to characterize the topography or bare-earth elevation (Li et al., 2005).

Both geospatial products have proven to be relevant in several agricultural applications
The so-called normalized digital surface model (nDSM) is generated by computing the difference between the DSM and the DEM. Since the nDSM excludes the influence of topography, it represents the height of all overlying objects on the terrain, such as buildings, trees and greenhouses. In this way, several researchers have proposed to incorporate this 3D information as a raster layer to improve the overall accuracy classification and extraction of man-made features on built-up areas (Aguilar et al., 2014c; Luethje et al., 2017; Weidner and Förstner, 1995). Recently nDSM have been also used to derive the 3D properties of urban buildings, which represent the three-dimensional nature of living spaces and are needed in population estimation or urban planning (Tomas et al., 2016).

At the same time, the launching of many Very High Resolution (VHR) satellites capable of capturing panchromatic imagery with Ground Sample Distance (GSD) lower than 1 m has opened the greatest possibilities for cartographic applications based on the extraction of DSM and DEM. These products are generated by image matching strategies from VHR satellite imagery stereo pairs or stereo triplets. Current stereo capabilities of VHR satellites, together with their agile pointing ability, enable the generation of geometrically robust (in terms of base-to-height ratio) and radiometrically consistent along-track stereo images which can be acquired for any place on Earth (Aguilar et al., 2014c). In this sense, space-borne images provide a cost-efficient alternative to aerial images and can be obtained regardless of various national over-flight restrictions. Furthermore, their appropriate stereo geometry and radiometric similarity allow obtaining high resolution DSM by i) carrying out an aerotriangulation and bundle adjustment process based on object-to-image geometry provided by the well-known rational
polynomial coefficients (RPC) (Grodecki and Dial, 2003), and ii) generating a DSM from applying automatic stereo matching procedures over previously epipolarly rectified stereo images (e.g. Alobeid et al., 2010). Since RPC are generated without ground data, it is necessary to improve satellite imagery orientation for high accuracy applications by measuring ground control points (GCP) and computing bias-corrected RPC (Aguilar and Mills, 2008; Tong et al., 2010). Additionally, Aguilar et al. (2017) have recently developed an approach for improving the initial direct geolocation accuracy of VHR satellite imagery based on the extraction of 3D GCP from freely available ancillary data at global coverage such as multi-temporal information of Google Earth and the Shuttle Radar Topography Mission 30 m digital elevation model.

It is worth noting that it is easy to find abundant literature about the use of VHR satellite or aerial imagery for DSM generation (Arefi and Reinartz, 2013; Åstrand et al., 2012; Barbarella et al., 2017; Büyüksalih and Jacobsen, 2007a, 2007b, Capaldo et al., 2012a, 2012b; Crespi et al., 2010; D’angelo et al., 2008; Di Rita et al., 2017b, 2017a; Dowman et al., 2012; Ghuffar, 2016; Gong and Fritsch, 2016; Habib et al., 2004; Jacobsen, 2006; Qin, 2016; Reinartz et al., 2014; Tack et al., 2009; Tian et al., 2014; Toutin, 2006a, 2006b; Zhang and Gruen, 2006). However, to the best of our knowledge, few works have been specifically focused on greenhouse covered areas (Aguilar et al., 2014a, 2014b; Celik and Koc-San, 2018).

The main goal of this study is to develop and test a methodological approach to produce high quality DSM and DEM from WorldView-2 along-track stereo pair headed up to improve large-scale PCG mapping. In this sense two software, based on two clearly different stereo image matching approaches, were tested with respect to their ability to produce photogrammetrically derived DSM/DEM over dense greenhouse covered areas.
The rest of this paper is organized as follows. The study area and datasets are described in the section 2. The third section outlines a detailed explanation of the methodological approach devised to produce high quality DSM and DEM from VHR satellite imagery and the pipeline used to assess the performance of the two stereo image matching approaches. The results corresponding to the completeness and characteristics of the residual populations for the stereo-photogrammetrically derived DSM and DEM are presented and discussed in the section 4. Conclusions are provided in the last section.

2. Study Site and Datasets

2.1. Study area

The study area is located in the province of Almeria (Southern Spain), housing the greatest concentration of greenhouses in the world. It comprised a rectangle area of about 8000 ha centred on the WGS84 geographic coordinates of 36.7824°N and -2.6867°W (Fig. 1).

This pilot area presents an elevation ranging between 152.6 m and 214.8 m above mean sea level (Spanish orthometric heights EGM08-REDNAP), with a moderate north-south mean slope of around 4.3%.

Fig. 1. Location of the study site in the province of Almeria (Spain) and the four selected subareas as red rectangles. These subareas are characterized, in addition to PCG, by features such as dry ravines (1), vegetation (2) urban areas (3) and very high concentration of PCG (4). Coordinate System: WGS84 UTM Zone 30.

Within the study area, four representative rectangular test areas of 920 m x 620 m were selected, including different land covers and features such as dry ravines and bare soil (test area 1), vegetation and bare soil (test area 2), urban areas (test area 3) and a
variable density of PCG land cover which reaches the highest density in the fourth test area (test area 4) (Fig. 1).

2.2. WorldView-2 stereo pair

A WorldView-2 (WV-2) along-track stereo pair taken on July 5, 2015, was used. It consisted of 2 Level-2A images (ORS2A) format, dynamic range of 11-bit (without dynamic range adjustment) and 0.5 m GSD (PAN). The off-nadir angle for the two stereo pair images turned out to be 12.6° and 24.6° (Table 1).

Table 1 Characteristics of the panchromatic band for the WV-2 stereo pair.

2.3. Ground truth LiDAR data

The LiDAR data used as ground truth in this study were provided by the PNOA (National Plan of Aerial Orthophotography of Spain) as a RGB coloured point cloud in LAS binary file, format v. 1.2, containing easting and northing coordinates (UTM ETRS89 30N) and orthometric elevations (geoid EGM08-REDNAP). It was taken on September 23, 2015, by means of a Leica ALS60 discrete return sensor with up to four returns measured per pulse and an average flight height of 2700 m. The nominal average point density of the LiDAR campaign was 0.7 points/m², although the finally registered point density of the test area, considering overlapping, turned out to be 0.97 points/m² (all returns).

131 GPS-RTK surveyed GCP evenly distributed over the whole study area were employed to carry out the vertical accuracy assessment of LiDAR data. The standard deviation of the computed LiDAR vertical error, only including open terrain GCP (Aguilar et al., 2008), took a value of 0.14 m, which mean a vertical accuracy higher than...
A local maxima filter algorithm with 2 m neighbourhood size to search for maximum height was applied to the LiDAR point cloud to obtain the corresponding LiDAR-derived point cloud DSM. Additionally, a LiDAR-derived point cloud DEM was produced by automatically filtering ground points using the Improved Progressive TIN Densification (IPTD) filtering algorithm proposed by Zhao et al. (2016). The corresponding IPTD set of parameters was optimized for each test area. The automatically classified ground points were manually edited to achieve a final high-quality point cloud DEM.

The LiDAR-derived point cloud DSM and DEM were finally interpolated to 1 m grid spacing by using the Gaussian Markov Random Field (GMRF) algorithm, following the procedure and the mathematical framework described and tested by F. J. Aguilar et al. (2016). (The GMRF algorithm is freely available at https://www.researchgate.net/publication/312087169_Link_to_code)

The LiDAR-derived grid format DSM and DEM depicted in Fig. 2 were employed as ground truth for the vertical accuracy assessment of the stereo-photogrammetrically extracted DSM and DEM corresponding to the four test areas.

Fig. 2. LiDAR-derived grid format DSM and DEM for the four test areas. Left column: LiDAR-derived DSM. Right column: LiDAR-derived DEM.

3. Methods

The methodological pipeline proposed in this work to provide 3D information potentially useful to improve large-scale PCG mapping from VHR satellite stereo imagery is described in this section. It consisted of the steps shown below.
3.1. Step 1: Stereo photogrammetrically derived DSM

Two different software packages, based on two clearly different types of image matching approaches, were used to stereo-photogrammetrically generate the DSM from WV-2 imagery.

PCI Geomatics v. 2016 (PCI Geomatics, Richmond Hill, ON, Canada) was the first software tested. This software have proven to be accurate and stable (i.e. Rozycki and Wolniewicz, 2007), being that the reason why it has been chosen in several studies and works (i.e. Barbarella et al., 2017; Capaldo et al., 2012a; Di Rita et al., 2017a) as benchmark for others software packages in comparison tests.

PCI Geomatics (PCI henceforth) implements a photogrammetric tool called OrthoEngine devised to produce geospatial products. The OrthoEngine matching algorithm is based on cross-correlation where an automated area-based matching procedure is performed on quasi-epipolar images. Specifically, this procedure is based on a hierarchical (seven steps) sub-pixel mean normalized cross correlation matching method that generates correlation coefficients between zero and one for each matched pixel, meaning zero a total mismatch and one a perfect match. When the correlation coefficient of a matched point is lower than 0.5, this point is rejected, and its height is not computed, meaning a gap and reducing the DSM completeness. Finally, a second-order surface is then fitted around the maximum correlation coefficients to find the match position to sub-pixel accuracy (Cheng, 2015).

The other tested software was RPC Stereo Processor (RSP), initially developed by Qin, (2014) for 3D change detection and land cover classification studies. It was further refined as a standalone software package that performs stereo matching on RPC modelled
space-borne images producing mapping products such as DSM and orthophoto (Qin, 2016). RSP implements a hierarchical semi-global matching (SGM) approach based on the widely known algorithm proposed by Hirschmuller, (2008) to generate the disparity maps after applying an epipolar rectification process to the original stereo images. Note that the classic SGM creates a raster file to store the aggregated cost for each disparity value, thus requiring a lot of memory for computation. Hence RSP provides a hierarchical solution based on running the classic SGM algorithm through pyramid image layers. At the same time, RSP restrains the disparity search in the original resolution within a given range (e.g. [-1000, 1000]) in order to retain high resolution in the coarsest layer of the pyramids (Qin, 2016).

The initial vendor supplied RPC set, derived from satellite ephemeris and star tracker observations, usually contains bias that should be corrected for precise epipolar image generation. A first order affine transformation (six parameters) on the image space was used to obtain bias-corrected RPC at the RPC-based satellite image orientation stage both in the case of PCI and RSP pipelines. Following the recommendations of Åstrand et al., (2012) and Aguilar et al., (2013), 7 GPS-RTK ground points evenly distributed over the working area were selected as GCP. The remaining 124 ground points were used as Independent Check Point (ICP). It is important to keep in mind that the GCP were only marked once on the image space of the PCI project, being later exported to be automatically marked in the RSP project to assure the same conditions at the satellite image orientation phase.

After carrying out the sensor orientation phase, 1 m grid spacing DSM was stereo-photogrammetrically extracted from each one of the two tested approaches. In the case of PCI, hilly terrain and without filling blanks (no interpolation) parameters were chosen. In
the case of the RSP software, the DSM was also extracted without filling blanks.

3.2. Step 2: DSM outlier removal

Potential outliers were automatically removed from the original DSM (presenting blank areas) by adapting the parametric statistical method for DEM error detection published by Felicísimo, (1994). This algorithm takes advantage of probabilistic criteria to apply a parametric procedure based on the assumption that differences between the height of every point and its corresponding neighbourhood mean height follows a normal distribution. In our case, the neighbourhood size was set to 1.5 times the DSM grid spacing.

Once potential outliers were removed (outlier-corrected DSM), the GMRF interpolation method described in F. J. Aguilar et al. (2016) was employed to fill the blank areas and produce a continuous 1 m grid spacing DSM (GMRF DSM).

3.3. Step 3: Automatic DEM extraction from the outlier-corrected DSM

Although several approaches were tested to automatically extract the corresponding DEM from the outlier-corrected DSM obtained in the step 2, the DSM2DTM algorithm implemented in PCI Geomatics turned out to finally yield the best results (data not presented). This algorithm is able to convert a DSM into a bare-earth DEM by obtaining local area minimum/maximum values and then operating a moving polynomial function utilizing the local values in the specified object size parameter (PCI Geomatics, 2016).

The DSM2DTM algorithm was launched by using an iterative python code with two varying parameters to search for an optimal output DEM in each test area. Those parameters were the following:
i) Object size, with values ranging from 50 m to 200 m. It specifies the size of the filters which are used to remove surface features. Typically, the size should be as large as the largest feature (e.g. greenhouse) that should be removed.

ii) Gradient percentage threshold, with values ranging from 5% to 35%. The type of terrain selected was “Hilly” in all cases. Features with slopes less than this threshold will be treated as natural features and will not be removed.

Finally, a 1 m grid spacing DEM was built from the automatically filtered terrain points provided by the DSM2DTM algorithm by applying the GMRF interpolation method (F. J. Aguilar et al., 2016).

3.4. Quality assessment of the extracted GMRF DSM and DEM

The quality of the extracted GMRF DSM and the derived DEM was assessed by computing their completeness and vertical accuracy. In order to study the influence of the dominant land cover on the aforementioned quality indicators, the quality assessment was carried out over the four test areas previously described and depicted in Fig. 1. In each case, the corresponding LiDAR-derived DSM and DEM were used as ground truth, computing residuals as photogrammetric height minus LiDAR height.

The completeness of every original DSM was computed for both the whole study area and for every test area as the ratio between the blank areas (absence of image matching points) and the whole working area (all the DSM 1 m grid spacing points which should have been potentially extracted).

The vertical accuracy statistics of each GMRF DSM and DEM were separately computed for each test area after applying the widely known 3σ rule (Daniel and Tennant, 2001) to remove blunder errors from the residuals populations (z-residuals). In this way,
several statistics such as mean value, standard deviation and 90th (LE90) and 95th (LE95) percentile linear error were computed.

4. Results and discussion

4.1. Original DSM Completeness

The completeness scores of the original DSM produced from PCI and RSP methods were significantly different. In fact, Fig. 3 depicts that the RSP-derived DSM showed a less number of missing image matching points than the one obtained from PCI, especially in those test areas where urban and PCG land cover were more abundant (test areas 3 and 4, respectively. See Fig. 1 and Fig. 3).

Fig. 3. DSM corresponding to the four test areas generated from PCI (left column) and RSP (right column).

Regarding the whole study area, the RSP approach achieved a completeness score close to 95%, while the PCI method only got 85% (Table 2). In the test area 1 (Fig. 3), containing bare soil and dry ravines as the more representative features, the RSP software reached a completeness higher than 99% compared to around 93% achieved by PCI. In the case of the test area 2, which mainly presents bare soil and vegetation land covers, the completeness took values of 99.57% and 94.42% for the RSP and PCI methods, respectively. Regarding the test area 3, predominantly covered by PCG, urban areas and bare soil, the completeness reached a value of 99.25% in the case of the RSP method, offering a significantly lower value of 88.13% in the case of the PCI approach. In the very dense greenhouse covered area labelled as the test area 4, the completeness score of 98.87% provided by the RSP method clearly exceeded the value of 86.65% performed by the PCI method.
It is worth noting that, as a rule of thumb, the higher the greenhouse density, the lower the completeness, especially in the case of the PCI results. Indeed, the RSP method provided better results than the PCI one for the four test areas. The difference in completeness scores between RSP and PCI DSM reached the highest value (around 12%) in the test area 4, which had the biggest concentration of greenhouse land cover (Fig. 2).

4.2. Vertical accuracy

4.2.1. GMRF DSM vertical accuracy assessment

Table 3 shows the results for the GMRF DSM vertical accuracy assessment corresponding to each test area. In general, and regarding random errors assessment, the two tested satellite image matching methods performed quite similar, providing standard deviation and L_{95} values ranging from 0.56 to 0.82 m and 1.34 to 2.10 m, respectively.

The poorest vertical accuracies in terms of DSM random errors were obtained in the case of the test area 4, which presented the highest concentration of PCG.

In relation to systematic errors, the RSP approach showed a higher positive bias than the PCI one, thus slightly overestimating the reference z-values given by the LiDAR-derived DSM in all the test areas, but especially in the test areas 3 and 4 which housed the highest density of PCG. In terms of linear error computed at 90% and 95% percentiles (L_{90} and L_{95}), the results provided by both RSP and PCI approaches can be considered as significantly similar, also rising with the increase of greenhouse land cover density.

Provided that RSP presented a higher completeness in DSM generation than PCI,
their similar results from the vertical accuracy assessment in terms of random errors and a slightly higher bias in the case of RSP seem to point to the fact that RSP is incurring a commission error when working on difficult to match image areas (e.g. some greenhouse roofs presenting glint effect). In other words, PCI matching method turns out to be more reluctant to accept pairs of matching points with weak similarity (measured through cross-correlation coefficient), therefore tending to leave more blank areas and so reducing completeness. On the contrary, RSP can compute the 3D position of those weak matching points, so improving the visual appearance of the compiled DSM but also increasing the probability of incurring vertical error. It is important to highlight that the GMRF interpolation algorithm was able to properly fill the DSM gaps left by PCI method, especially in greenhouse land cover areas, without significantly affecting the final vertical accuracy results, a finding already reported by F. J. Aguilar et al. (2016).

The spatial distribution of GMRF DSM errors is depicted in Fig. 4. The error distribution of RSP and PCI compiled GMRF DSM presented a similar pattern, with the highest vertical error mainly localized along manmade features edges. Most of errors are positive, i.e. stereo-photogrammetrically derived DSM slightly overestimated the true z-values provided by the LiDAR reference DSM. This was expected since photogrammetric points could be considered as the features visual envelope. Finally, most of the working area presented absolute errors lower than 1 m, which can be deemed an adequate result.

Table 3 Vertical accuracy assessment results for the GMRF DSM produced by the PCI and RSP stereo matching methods. Units expressed in meters.

Fig. 4. Spatial distribution of residuals for the GMRF DSM corresponding to the four test areas generated from PCI (left column) and RSP (right column).
4.2.2. **DEM vertical accuracy assessment**

With regards to the automatically filtered and GMRF interpolated DEM, the random errors, measured in terms of standard deviation, were similar for all the test areas and between the two image matching methods tested for DSM production (Table 4). As expected, the computed DEM standard deviation was consistently higher than that estimated in the case of GMRF DSM, ranging from 1.16 to 2.28 m. Indeed, now there are two concomitants sources of error, DSM original error and DSM-to-DEM error (DSM filtering error). However, the test area 1 showed the highest random error value, mainly due to the presence of two relatively deep dry ravines running from North to South.

Also note that the systematic errors depicted a different behaviour in the test area 1 compared to those observed in the other test areas. In fact, the mean error in the test area 1 presented a negative bias, thus underestimating the true elevation provided by the LiDAR derived DEM data. Just the opposite happened in the other test areas. This bias effect was again more pronounced in those DEM filtered from the DSM produced by RSP method, probably because RSP assumes more risk in image matching over cumbersome areas. In the vertical profile shown in Fig. 6 can be appreciated that the filtered DEM extracted from the corresponding PCI generated DSM (similar behaviour was observed in the case of the RSP derived DEM) resulted in an excessively smooth surface along the dry ravine, producing a noticeable decrease in slope on its originally steep flanks and a subsequent underestimation of the elevations provided by the LiDAR-derived DEM. This undesirable effect was due to the way in which the algorithm DSM2DTM, implemented in PCI Geomatics, automatically converts a DSM into a bare-earth DEM by applying a series of filtering steps that remove features such as buildings, greenhouses and
vegetation stands and, at the same time, maintain natural terrain features under a previously set slope threshold. Likely, the slope threshold parameter selected for the test area 1 (35%) should be increased to avoid filtering out the steep gully flanks. In any case, it is beyond the scope of this article to conduct an in-depth study about the optimization of the available DSM-to-DEM filtering algorithms. Only note that the use of spatially adapted parameters could notably improve the final results regarding DEM accuracy.

Table 4 Vertical accuracy assessment results for the DEM extracted from the original DSM produced by the PCI and RSP stereo matching methods. Units expressed in meters.

The spatial distribution of DEM residuals is shown in Fig. 5. As explained above, the test area 1 depicts a general underestimation of the true elevation values mainly located along the two steep flanks of the dry ravines. An opposite case can be seen in the other test areas, where the general tendency would be more prone to overestimate DEM elevations, especially in greenhouse built-up areas. In fact, the higher the greenhouse density, the higher the positive bias in signed DEM residuals (Table 4). In the main, the DSM-to-DEM algorithm produced an insufficient removal of built-up features, especially greenhouses, as compared to the LiDAR derived DEM which may even register some last laser returns onto the greenhouse floor, thus contributing to a better definition of the bare-earth DEM.

Fig. 5. Spatial distribution of residuals for the DEM corresponding to the four test areas derived from PCI DSM (left column) and RSP DSMs (right column).

Fig. 6. Vertical profile crossing one of the dry ravines located at the test area 1. The red points represent the LiDAR-derived DEM, while the blue points take part of the DEM filtered from the PCI DSM.
5. Conclusions

In this work, it is proposed a methodological pipeline to automatically produce valuable 3D information (DSM and bare-earth DEM geospatial products) from VHR stereo imagery in order to improve large-scale PCG mapping. LiDAR derived DSM and DEM were used to carry out the vertical accuracy assessment of the stereo photogrammetrically generated products.

Four test areas were selected containing different density of built-up features such as greenhouses, buildings and vegetation stands. Two software belonging to two clearly different types of stereo image matching algorithms were tested: i) OrthoEngine PCI Geomatics (PCI), based on area-based matching and cross-correlation measurements, and ii) RPC Stereo Processor (RSP), based on a hierarchical semi-global matching approach.

Once the stereo photogrammetrically derived DSM were obtained, and after applying an automatic procedure to remove potential outliers, the GMRF interpolation method was applied to fill blanks and generate the final product consisting of 1 m grid spacing DSM. In the same way, the bare earth z-values void of vegetation and manmade features were automatically produced from the photogrammetrically derived and outlier-corrected DSM. The final 1 m grid spacing DEM were built by applying the GMRF interpolation method. Note that, to the best of our knowledge, this is the first work that addresses the challenge of the generation of DEM products in dense PCG areas from VHR satellite imagery.

With regards to original DSM completeness, the RSP approach yielded significantly better scores than PCI, above all in high dense PCG areas, demonstrating that semi-global matching can extract image matching points even over radiometrically difficult-to-match
image patches (e.g. some greenhouse roofs with a pronounced glint effect). This advantage turns out to be very relevant when dealing with generating DSM in very dense PCG areas.

Concerning vertical accuracy of the GMRF DSM, both PCI and RSP methods yielded similar vertical accuracy results in terms of random errors, with standard deviations ranging from 0.56 to 0.82 m. It must be underlined that a slightly higher positive bias (height overestimation) was detected in the case of RSP as compared to PCI, likely because RSP can incur a commission error when working on difficult to match image patches to achieve higher completeness scores than PCI.

The DEM error figures also showed no significant differences between the two tested approaches regarding random errors, presenting standard deviations ranging from 1.16 to 2.28 m. In relation to the systematic errors, they were much higher than those obtained in the case of GMRF DSM production, again RSP method showing a slightly higher bias than PCI. Summing up, the computed DEM error figures were highly dependent on DSM-to-DEM filtering error, in turn closely related to greenhouse density and terrain complexity. Concerning DSM-to-DEM automatic filtering, the PCI algorithm DEM2DTM usually yielded reasonable results, especially considering that only two parameters were tuned during a trial and error process. However, more spatially adapted parameters would be required to improve the final DSM-to-DEM filtering results. In this sense, it can be concluded that more research should be devoted to improving the filtering tools available to automatically convert a stereo photogrammetrically derived DSM into a bare-earth DEM in the case of PCG areas.

The 3D information provided through the methodological pipeline described in this work could be very valuable as a complement to the traditional 2D spectral
information offered by VHR satellite imagery to improve large-scale PCG mapping and monitoring. This might be accomplished, for example, by computing the normalized digital surface model from the difference between the GMRF DSM and the corresponding DEM to obtain a georeferenced raster layer containing the height of all overlying objects on the terrain, such as buildings, trees and greenhouses.

Acknowledgements

This work was funded by the research project “GreenhouseSat” (Grant Reference AGL2014-56017-R) through the National R+D+i Plan of the Spanish Ministry of Economy and Competitiveness and ERDF funds. It also takes part of the general research lines promoted by the Agrifood Campus of International Excellence ceiA3 (http://www.ceia3.es/en).

References:

Åstrand, P.J., Bongiorni, M., Crespi, M., Fratarcangeli, F., Da Costa, J.N., Peralice, F., Walczynska, A., 2012. The potential of WorldView-2 for ortho-image production within the “Control with Remote Sensing Programme” of...

Crespi, M., Capaldo, P., Fratarcangeli, F., Nascetti, A., Peralice, F., 2010. DSM generation from very high optical and radar sensors: Problems and potentialities along the road from the 3D geometric modeling to the Surface

Computers and Electronics in Agriculture

LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Characteristics of the panchromatic band for the WV-2 stereo pair.</td>
</tr>
<tr>
<td>2</td>
<td>Completeness values for the original DSM extracted from applying the RSP and PCI stereo-matching approaches.</td>
</tr>
<tr>
<td>3</td>
<td>Vertical accuracy assessment results for the GMRF DSM produced by the PCI and RSP stereo matching methods. Units expressed in meters.</td>
</tr>
<tr>
<td>4</td>
<td>Vertical accuracy assessment results for the DEM extracted from the DSM produced by the PCI and RSP stereo matching methods. Units expressed in meters.</td>
</tr>
</tbody>
</table>
Table 1 Characteristics of the panchromatic band for the WV-2 stereo pair.

<table>
<thead>
<tr>
<th></th>
<th>WV-2 Stereo Pair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Images</td>
<td>WV-2 Image 1</td>
</tr>
<tr>
<td>Acquisition Date</td>
<td>July 5, 2015</td>
</tr>
<tr>
<td>Acquisition Time (GTM)</td>
<td>11:02</td>
</tr>
<tr>
<td>Off-nadir View Angle</td>
<td>12.6°</td>
</tr>
<tr>
<td>Collection Azimuth</td>
<td>59.2°</td>
</tr>
<tr>
<td>Collected Col GSD (m)</td>
<td>0.488</td>
</tr>
<tr>
<td>Collected Row GSD (m)</td>
<td>0.480</td>
</tr>
<tr>
<td>Product Pixel Size (m)</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Table 2 Completeness values for the original DSM extracted from applying the RSP and PCI stereo-matching approaches.

<table>
<thead>
<tr>
<th>Method</th>
<th>RSP</th>
<th>PCI</th>
<th>RSP</th>
<th>PCI</th>
<th>RSP</th>
<th>PCI</th>
<th>RSP</th>
<th>PCI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>94.99</td>
<td>85.04</td>
<td>99.42</td>
<td>93.19</td>
<td>99.57</td>
<td>94.42</td>
<td>99.25</td>
<td>88.13</td>
</tr>
</tbody>
</table>
Table 3 Vertical accuracy assessment results for the GMRF DSM produced by the PCI and RSP stereo matching methods. Units expressed in meters.

<table>
<thead>
<tr>
<th>Test areas</th>
<th>Test area 1</th>
<th>Test area 2</th>
<th>Test area 3</th>
<th>Test area 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>RSP</td>
<td>PCI</td>
<td>RSP</td>
<td>PCI</td>
</tr>
<tr>
<td>Mean error</td>
<td>0.15</td>
<td>0.05</td>
<td>0.19</td>
<td>0.06</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.62</td>
<td>0.65</td>
<td>0.59</td>
<td>0.56</td>
</tr>
<tr>
<td>Maximum error</td>
<td>3.43</td>
<td>3.68</td>
<td>3.15</td>
<td>2.92</td>
</tr>
<tr>
<td>L95</td>
<td>1.35</td>
<td>1.55</td>
<td>1.35</td>
<td>1.34</td>
</tr>
<tr>
<td>L90</td>
<td>0.88</td>
<td>0.84</td>
<td>0.90</td>
<td>0.79</td>
</tr>
</tbody>
</table>
Table 4 Vertical accuracy assessment results for the DEM extracted from the DSM produced by the PCI and RSP stereo matching methods. Units expressed in meters.

<table>
<thead>
<tr>
<th>Test area derived from</th>
<th>Test area 1</th>
<th>Test area 2</th>
<th>Test area 3</th>
<th>Test area 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RSP</td>
<td>PCI</td>
<td>RSP</td>
<td>PCI</td>
</tr>
<tr>
<td>Mean error</td>
<td>-1.28</td>
<td>-1.26</td>
<td>0.46</td>
<td>0.27</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>2.28</td>
<td>2.00</td>
<td>1.41</td>
<td>1.36</td>
</tr>
<tr>
<td>Maximum error</td>
<td>6.20</td>
<td>5.61</td>
<td>5.22</td>
<td>4.72</td>
</tr>
<tr>
<td>Minimum error</td>
<td>-8.62</td>
<td>-8.08</td>
<td>-4.34</td>
<td>-4.16</td>
</tr>
<tr>
<td>L95</td>
<td>5.81</td>
<td>5.10</td>
<td>3.59</td>
<td>3.19</td>
</tr>
<tr>
<td>L90</td>
<td>4.90</td>
<td>4.13</td>
<td>2.90</td>
<td>2.72</td>
</tr>
</tbody>
</table>
List of figures

Fig 1. Location of the study site in the province of Almeria (Spain) and the four selected subareas as red rectangles. These subareas are characterized, in addition to PCG and bare soil, by dry ravines (1), vegetation (2) urban areas (3) and very high concentration of PCG (4). Coordinate System: WGS84 UTM Zone 30.

Fig 2. LiDAR-derived grid format DSM and DEM for the four test areas. Left column: LiDAR-derived DSM. Right column: LiDAR-derived DEM.

Fig 3. Stereo photogrammetrically derived DSM corresponding to the four test areas generated from PCI (left column) and RSP (right column).

Fig 4. Spatial distribution of residuals for the GMRF DSM corresponding to the four test areas generated from PCI (left column) and RSP (right column).

Fig 5. Spatial distribution of residuals for the DEM corresponding to the four test areas derived from PCI DSM (left column) and RSP DSM (right column).

Fig 6. Vertical profile crossing one of the dry ravines located at the test area 1. The red points represent the LiDAR-derived DEM, while the blue points take part of the DEM filtered from the PCI DSM.
Fig. 1. Location of the study site in the province of Almeria (Spain) and the four selected subareas as red rectangles. These subareas are characterized, in addition to PCG and bare soil, by dry ravines (1), vegetation (2), urban areas (3) and very high concentration of PCG (4). Coordinate System: WGS84 UTM Zone 30.
Fig. 2. LiDAR-derived grid format DSM and DEM for the four test areas. Left column: LiDAR-derived DSM. Right column: LiDAR-derived DEM.
Fig. 3. Stereo photogrammetrically derived DSM corresponding to the four test areas generated from PCI (left column) and RSP (right column).
Fig. 4. Spatial distribution of residuals for the GMRF DSM corresponding to the four test areas generated from PCI (left column) and RSP (right column).
Fig. 5. Spatial distribution of residuals for the DEM corresponding to the four test areas derived from PCI DSM (left column) and RSP DSM (right column).
Fig. 6. Vertical profile crossing one of the dry ravines located at the test area 1. The red points represent the LiDAR-derived DEM, while the blue points take part of the DEM filtered from the PCI DSM.