The Gordon-Litherland pairing for knots and links in thickened surfaces

Hans U. Boden
McMaster University

CVCK* Classical knots and virtual knots seminar
Ohio State University
November 23, 2020
Acknowledgements

Collaborators.
This talk is based on joint papers in preparation with Micah Chrisman and Homayun Karimi.

Support.
This research was partially supported by a grant from the Natural Sciences and Engineering Research Council of Canada.
1. **Knot Signature.**
In Cooper [1982 PhD thesis], Mandelbaum-Moishezon [1983], and Cimasoni-Turaev [2007, Osaka J Math], signatures are defined for homologically trivial knots in 3-manifolds.

In Im, Lee, Lee [2010, JKTR] and B-, Chrisman, Gaudreau [2020, Indiana Univ J Math], signature-type invariants are defined on various subcategories of virtual knots and links.

Goal 1: Provide more general definitions of signature invariants for knots and links in 3-manifolds, and for virtual knots and links.
In Greene [2017, Duke Math J], the GL pairing is extended to \mathbb{Z}_2 homology 3-spheres. He used it to give a geometric characterization of alternating links (cf. Howie [2017, Geom Topol]), and a new proof of the Tait conjectures.

Goal 2: Extend the GL pairing to more general 3-manifolds.
Use it to characterize alternating knots and links in 3-manifolds.
There are at least three ways to define the knot signature for classical knots.

1. [Trotter, Murasugi]
Let K be a knot. Choose a Seifert surface F. The Seifert form Θ is given by $\Theta(\alpha, \beta) = \text{lk}(\alpha^-, \beta)$ for $\alpha, \beta \in H_1(F)$. Any matrix V representing Θ on a basis for $H_1(F)$ is called a Seifert matrix. It is well-defined up to unimodular congruence.

The signature of $V + V^T$ is invariant under unimodular congruence and independent of choice of F.

Definition

The knot signature is given by $\sigma(K) = \text{sig}(V + V^T)$.
2. [Kauffman-Taylor] View $K \subset S^3 = \partial B^4$. Push F into D^4, and let M_F be the double cover of D^4 branched along F. Then $\partial M_F = X_2$, the double cover of S^3 branched along K. Note that X_2 is a \mathbb{Z}_2 homology 3-sphere.

The intersection form $Q: H_2(M_F) \times H_2(M_F) \to \mathbb{Z}$ is non-degenerate.

Definition

The knot signature is given by $\sigma(K) = \text{sig}(Q)$.
3. [Gordon-Litherland]
Let F be a spanning surface for K, not necessarily oriented.

Gordon and Litherland define a symmetric, bilinear pairing

$$G_F : H_1(F) \times H_1(F) \rightarrow \mathbb{Z}.$$

Its quadratic form specializes to the Trotter form when F is a Seifert surface and to the Goeritz form when F is the black (or white) surface of a checkerboard coloring.

Let N be a tubular neighborhood of F, and set $\tilde{F} = \partial N$.

Then $\tilde{F} \rightarrow F$ is a double cover (\tilde{F} is connected iff F is not oriented).
Let $\tau: H_1(F) \to H_1(\tilde{F})$ be the transfer map. If α is a simple closed curve on F, then $\tau \alpha$ is the push-off of α in both directions.

Definition

1. The Gordon-Litherland pairing $\mathcal{G}_F: H_1(F) \times H_1(F) \to \mathbb{Z}$ is defined by setting $\mathcal{G}_F(\alpha, \beta) = \text{lk}(\tau \alpha, \beta)$.
2. The Euler number of F is given by $e(F) = -\text{lk}(K, K')$, where K' is a push-off of K missing F.

Remark. If F is oriented, then \mathcal{G}_F coincides with the symmetrized Seifert pairing $V + V^T$ and $e(F) = 0$.

Theorem (Gordon-Litherland (1978, Invent Math))

(i) \mathcal{G}_F is a symmetric bilinear pairing on $H_1(F)$.
(ii) $\sigma(K) = \text{sig}(\mathcal{G}_F) + e(F)/2$.
Checkerboard coloring and incidence number

The GL pairing leads to a simple algorithm for computing the knot signature $\sigma(K)$ from a checkerboard coloring.

Given a checkerboard coloring, let F be the spanning surface from the black regions. It is a union of disks and half-twisted bands.

Enumerate the white disks X_0, \ldots, X_n, they give a system of generators for $H_1(F)$. For each crossing c, set $\eta_c = \pm 1$ as below.

\[
\begin{array}{c}
\eta = 1 \\
\eta = -1
\end{array}
\]
For $i, j = 0, \ldots, n$, let

$$g_{ij} = \begin{cases} -\sum \eta_c & \text{if } i \neq j, \\ -\sum_{k \neq i} g_{ik} & \text{if } i = j. \end{cases}$$

The first sum is taken over all crossings c incident to both X_i and X_j.

The Goeritz matrix is given by $G = (g_{ij})_{i,j=1}^n$. It represents the GL pairing \mathcal{G}_F on $H_1(F)$ with basis $\partial X_1, \ldots, \partial X_n$.
There is also a simple formula for the correction term:

\[e(F) = -2\mu(K), \]

where

\[\mu(K) = \sum_{c \text{ type II}} \eta_c. \]

Here, type is determined by:

- Type I: \(\eta = -\varepsilon = -1 \)
- Type II: \(\eta = \varepsilon = -1 \)
Let Σ be a compact, connected, oriented surface.

We extend the GL pairing to knots in $\Sigma \times I$ and use it to define signatures and determinants.

With more effort, the same results can be proved for links in $\Sigma \times I$.
Asymmetric linking in $\Sigma \times I$

Given disjoint knots J, K in $\Sigma \times I$, define $\text{lk}_\Sigma(J, K)$ to be the intersection of J with a 2-chain B with $\partial B = K + c$ for some 1-cycle in $\Sigma \times \{1\}$.

Then $\text{lk}_\Sigma(J, K)$ counts the number of times J goes over K with sign, where “above” is determined by the positive I direction in $\Sigma \times I$.
Gordon-Litherland pairing in $\Sigma \times I$

Let $p : \Sigma \times I \to \Sigma$ denote the projection map.

Let $F \subset \Sigma \times I$ be a spanning surface for a knot $K \subset \Sigma \times I$.

Define the GL pairing $\mathcal{G}_F : H_1(F) \times H_1(F) \to \mathbb{Z}$ by setting

$$\mathcal{G}_F(\alpha, \beta) = \text{lk}_\Sigma(\tau \alpha, \beta) - p_\star[\alpha] \cdot p_\star[\beta],$$

where $\tau \alpha$ is again the push-off of α in both directions and $p_\star[\alpha] \cdot p_\star[\beta]$ is the algebraic intersection in $H_1(\Sigma)$.

Lemma

The GL pairing $\mathcal{G}_F : H_1(F) \times H_1(F) \to \mathbb{Z}$ is symmetric.

As before, $\text{sig}(\mathcal{G}_F)$ can be combined with a correction term to give a signature invariant for knots in thickened surfaces.
Definition

An S^*-equivalence of spanning surfaces consists of:

(a) ambient isotopy,
(b) attaching (or removing) a 1-handle,
(c) attaching (or removing) a small half-twisted band.

Facts. 1. Every classical knot admits a spanning surface.
2. Any two spanning surfaces for a classical knot are S^*-equivalent.
3. Neither is true for knots in thickened surfaces.
Lemma

If F_1 and F_2 are S^*-equivalent spanning surfaces in $\Sigma \times I$, then

$$\text{sig}(G_{F_1}) + \frac{1}{2} e(F_1) = \text{sig}(G_{F_2}) + \frac{1}{2} e(F_2).$$

Note that if K' is the push-off of $K \subset \Sigma \times I$ which misses F, then $e(F) = -\text{lk}_\Sigma(K, K')$.

Corollary

Suppose $F \subset \Sigma \times I$ is a spanning surface for $K \subset \Sigma \times I$. Then

$$\sigma(K, F) = \text{sig}(G_F) + \frac{1}{2} e(F)$$

depends only on the S^*-equivalence class of F.

Remark. If F is oriented, then $e(F) = 0$ and $\sigma(K, F) = \text{sig}(G_F)$ agrees with the signature of K defined using the Seifert form Θ.
Determinant and nullity

One can also use this approach to define determinant and nullity invariants by taking

\[\det(K, F) = |\det(G_F)| \quad \text{and} \quad n(K, F) = \text{nul}(G_F). \]

Again, \(|\det(G_F)|\) and \(\text{nul}(G_F)\) depend only on the \(S^*\)-equivalence class of \(F\).

Figure: An alternating knot with dual checkerboard colorings.
Let F be the black surface on left and F^* the *dual surface*.

Take basis α, β for $H_1(F)$, then $\mathcal{G}_F = \begin{bmatrix} -3 & -1 \\ -1 & -1 \end{bmatrix}$ and $e(F) = 4$. Thus $\sigma(K, F) = -2 + 4/2 = 0$ and $\det(K, F) = 2$.

Take basis α, β, γ for $H_1(F^*)$, then $\mathcal{G}_{F^*} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and $e(F^*) = -2$. Thus $\sigma(K, F^*) = 3 + -2/2 = 2$ and $\det(K, F) = 1$.
Existence of spanning surfaces $\Sigma \times I$

Fact. For classical knots, spanning surfaces always exist and are unique up to S^*-equivalence ([GL, 1978], [Yasuhara, 2014 JKTR]).

For knots in $\Sigma \times I$ with $\Sigma \neq S^2$, the situation is more complicated. Firstly, existence is not guaranteed.

Proposition

If $K \subset \Sigma \times I$ is a knot in a thickened surface, then TFAE:

(i) K is the boundary of a spanning surface $F \subset \Sigma \times I$,
(ii) the homology class $[K] = 0$ in $H_1(\Sigma \times I, \mathbb{Z}_2)$.

If either (i) or (ii) hold, then it is easy to see that K admits a diagram on Σ which is *checkerboard colorable*.
Uniqueness of spanning surfaces $\Sigma \times I$

Given a knot $K \subset \Sigma \times I$ with coloring ξ, let F be the black surface and F^* the dual surface.

Lemma

Suppose $K \subset \Sigma \times I$ is a checkerboard colorable knot and $g(\Sigma) > 0$.

(i) If F_1 and F_2 are S^*-equivalent spanning surfaces, then $[F_1] = [F_2]$ in $H_2(\Sigma, K; \mathbb{Z}_2)$.

(ii) Any spanning surface is S^*-equivalent to either F or the dual surface F^*.

Remark. F and F^* are not S^*-equivalent unless $\Sigma = S^2$. Thus, signatures, determinants, and nullities take on two possible values.
Virtual knots were introduced by Kauffman [1999, Eur J Comb] as virtual knot diagrams up to generalized Reidemeister moves.

Alternatively, virtual knots can be represented as knots in thickened surfaces up to stable equivalence Carter, Kamada, Saito [2002, JKTR].

Stabilization is the addition of a handle to Σ disjoint from K, and destablization is the removal of a handle.

A knot $K \subset \Sigma \times I$ is said to be **minimal** if it is not isotopic to one that admits a destabilization.

Kuperberg showed that for a virtual knot, any minimal representative $K \subset \Sigma \times I$ is unique up to diffeomorphism of $\Sigma \times I$.
Detecting the virtual genus

Definition

The *virtual genus* of a virtual knot is the genus $g(\Sigma)$ of a minimal representative $K \subset \Sigma \times I$.

Definition

A knot $K \subset \Sigma \times I$ is said to be *cellularly embedded* if $\Sigma \setminus p(K)$ is a union of disks, where $p: \Sigma \times I \to \Sigma$.

Theorem

Suppose $K \subset \Sigma \times I$ is cellularly embedded and checkerboard colorable with coloring ξ. If $\det(K, F) \neq 0$ and $\det(K, F^*) \neq 0$, then K is a minimal representative for its virtual knot.
Chromatic duality

Let $F' = F \#_\tau \Sigma$ be obtained by tubing F to a parallel copy of Σ. Then F' is S^*-equivalent to the dual surface F^* with $e(F') = e(F)$.

Theorem

Let $F \subset \Sigma \times I$ be a spanning surface such that the map $H_1(F) \to H_1(\Sigma \times I)$ is surjective. Set $\mathcal{H} = \text{Ker}(H_1(F) \to H_1(\Sigma \times I))$. Then $\text{sig}(\mathcal{G}_{F'}) = \text{sig}(\mathcal{G}_F|_\mathcal{H})$, the restriction of \mathcal{G}_F to \mathcal{H}.

A similar statement holds for knot determinant and nullity.

This result is useful, as it allows computation of both sets of invariants from the same surface F.

Remark. If K is cellularly embedded and checkerboard colorable, then F and its dual F^* satisfy the hypothesis of the theorem.
Example

Then $G_F = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$, so $\sigma(K, F) = 2$ and $\det(K, F) = 4$.

Since $\mathcal{H} = 0$, it is trivial that $\sigma(K, F') = 0$ and $\det(K, F') = 1$.
Chromatic duality

Using Goeritz matrices, Im, Lee, and Lee defined signature, determinant, and nullity invariants for checkerboard colorable virtual knots [2010 JKTR].

Corollary

If \(K \subset \Sigma \times I \) is checkerboard colored with coloring \(\xi \) with black surface \(F \) and dual surface \(F^* \).

Then the signature from the GL pairing and the Goeritz matrices are dually equivalent. In particular,

\[
\sigma(K, F) = \sigma^{\text{ILL}}_{\xi^*}(K) \quad \text{and} \quad \sigma(K, F^*) = \sigma^{\text{ILL}}_{\xi}(K).
\]

A similar statement holds for knot determinant and nullity.
Fact. Alternating virtual knots are all checkerboard colorable. A diagram is alternating iff every crossing has the same incidence number.

Convention. All crossings have incidence $\eta_c = -1$.

Theorem

If K is an alternating diagram on a surface Σ with black and white spanning surfaces B and W. Then the Gordon-Litherland pairing G_B and G_W are definite and of opposite sign.

Remark. With the above convention, G_B will be negative definite and G_W will be positive definite. Notice that $\det(K, B) \neq 0 \neq \det(K, W)$.

Corollary

If K is an alternating virtual knot diagram, then K has minimal genus.
Theorem

A checkerboard colorable knot K in a thickened surface $\Sigma \times I$ is alternating iff it admits positive and negative definite spanning surfaces.

Remark. This extends the results of Greene and Howie and gives a topological characterization of alternating virtual knots.
B–, Micah Chrisman, and Homayun Karimi
Gordon-Litherland pairing and signatures of virtual knots
in preparation (2020)

B– and Homayun Karimi
A characterization of alternating links in thickened surfaces
arXiv/2010.14030

Homayun Karimi
Alternating virtual knots
Thank you for your attention!