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1. A piece of metal has a cutoff wavelength of λcutoff = 450 nm. Consider illuminating
this piece of metal with two different wavelengths of light: a λ1 = 500 nm beam and a
λ2 = 400 nm beam. For each of the two beams, find:

(a) The maximum kinetic energy of ejected electrons.

We can only eject an electron if the illuminating beams are energetic enough. Because
E = hf = hc/λ, we can only eject an electron if λilluminating ≤ λcutoff . So, for λ1 ,which
is greater than λcutoff , we eject no electrons.

However, for λ2, which is less than λcutoff , we do eject electrons. The energy of these electrons
is given by:

E = hf − φ = hc/λ− φ
That is, we take the incoming energy of the photon (hc/λ), subtract off the energy required to
bind the electron (φ, the work function) and we are left with the kinetic energy of the electron.

E = hf − φ =
hc

λ2
− hc

λcutoff
= hc

( 1

λ2
− 1

λcutoff

)
= (6.626× 10−34 J · s)(3× 108 m/s)

( 1

400× 10−9
− 1

450× 10−9

)
=⇒ E2 = 5.21× 10−20 J = 0.344 eV

(b) What is their speed?

Because λ1 never ejects electrons, it does not make sense to speak of their speed. For λ2,
we will simply solve using our kinetic energy formula from 1250:

E =
1

2
mv2 =⇒ v =

√
2E

m
=

√
2 · 5.21× 10−20 J

9.11× 10−31 kg
=⇒ v2 = 3.48× 105 m/s

(c) What is their de Broglie wavelength?
Again, because λ1 never ejects electrons, it does not make sense to speak of their de Broglie
wavelength. For λ2, we can apply the de Broglie wavelength formula

λ =
h

p
=

6.626× 10−34 J · s
9.11× 10−31 kg · 3.48× 105 m/s

=⇒ λ2,dB = 2.09× 10−9 m = 2.09 nm

2. An electron, a proton, and a photon each have a wavelength of 0.24 nm. For each one,
find the momentum, the energy, and, where relevant, the accelerating voltage needed
to achieve that wavelength:
The momentum calculation is the same for all three particles. We employ the de Broglie relation:

p =
h

λ
=⇒ pp = pe =

6.626× 10−34 J · s
0.24× 10−9 m

=⇒ pp = pe = pγ = 2.76× 10−24 kg m/s

Now, let’s specialize to the massive particles first. For a massive particle, we can apply that p = mv

and E = 1
2
mv2, to find: E = 1

2
p2

m
. So:

Ee =
1

2

p2e
me

=
1

2
· (2.76× 10−24 kg m/s)2

9.11× 10−31 kg
=⇒ Ee = 4.044× 10−18 J = 25.24 eV

Ep =
1

2

p2p
mp

=
1

2
· (2.76× 10−24 kg m/s)2

1.67× 10−27 kg
=⇒ Ep = 2.206× 10−21 J = 0.014 eV



Because these are massive particles, they can be brought to this energy by an accelerating potential,
given by E = q∆V :

|∆Ve| =
Ee
qe

=
4.044× 10−18 J

1.602× 10−19 C
=⇒ Ve = 25.24 V

|∆Vp| =
Ep
qp

=
2.206× 10−21 J

1.602× 10−19 C
=⇒ Ve = 0.013 V

For the photon, the massless particle, the calculation is more straightforward:

Eγ = hf =
hc

λ
=

(6.626× 10−34 J · s)(3× 108 m/s)

0.24× 10−9 m
=⇒ Eγ = 8.28× 10−16 J = 5.68 keV

(Which is termed a “soft x-ray” in the astrophysics community, by the way.)

3. What is the de Broglie wavelength of an electron that has 2.0 keV of kinetic energy?
What about an electron with 200 keV of kinetic energy? The second one requires
relativity–why?

For the 2 keV electron, we can apply:

λ =
h

p
=

h

m · v
=

h

m ·
√

2E
m

=
h√

2Em
=

6.626× 10−34 J · s√
2 · (3.2× 10−16 J) · (9.11× 10−31 kg)

=⇒ λ2 keV = 2.74× 10−11 m

We must be more careful for the 200 keV electron, because its velocity is, to first order:

v =

√
2E

m
=

√
2 · 3.204× 10−14 J

9.11× 10−31 kg
≈ 2.65× 108 m/s

which is very near the speed of light.
So, to be relativistically correct, we must apply the relativistic kinetic energy formula to get p:

E =
√

(mc2)2 + p2c2 −mc2 =⇒ p =
1

c

√
(E +mc2)2 − (mc2)2

p =
1

c

√
[3.204× 10−14 J + (9.11× 10−31 kg) · (3× 108 m/s)2]2 − [(9.11× 10−31 kg)(3× 108 m/s)2]2

=⇒ p = 2.64× 10−22 kg m/s

Now, we can plug this correct momenta into the de Broglie equation

λ =
h

p
=

6.626× 10−34 J · s
2.64× 10−22 kg m/s

=⇒ λ200 keV = 2.51× 10−12 m


