
 
 
 
 

 Double Entry Bookkeeping and Error Correction 
 
 
 
 
 
 
 
 
 

 by 
 Anil Arya 

 John Fellingham 
 Doug Schroeder 
 Richard Young 

 
 Ohio State University 

 June 1996 
 
 
 
 
 
 
 
 
The authors wish to thank Jonathan Glover and participants at the Case-Western Reserve 
University accounting workshop, especially Ted Christensen, Julia Grant, and Gary 
Previts. 
 
 



 
Double Entry Bookkeeping and Error Correction 

 
 

1. Introduction  

 The purpose of accounting is often thought of as providing information regarding 

the value of the firm and its assets  -- this view has led us on excursions in capital 

markets and agency.  But in general, we can think of utilizing for valuation purposes any 

piece of information (accounting or non-accounting). 

 This paper studies accounting more narrowly.  What is unique about the structure 

of accounting information?  We begin with the premise that the distinguishing feature of 

accounting information is that it is produced via the double entry bookkeeping system. 

 The beauty of double entry bookkeeping is in some circles well-appreciated.  One 

of the favorite quotes of many accountants is reproduced in Ijiri (1982). 

 "What advantage does he derive from the system of bookkeeping by double 
entry!  It is among the finest inventions of the human mind."  (Johann von 
Goethe, 1824) 

 One of the advantages of double entry bookkeeping is its ability to detect errors.  

If the balance sheet doesn’t balance, then at least one error has occurred.  Relying only on 

the balancing property of the balance sheet, though, will not accomplish any of the 

following. 

1. Identify the amount of the error. 
2. Identify in which account a single error occurred. 
3. Detect the existence of two errors which counterbalance each other. 

 
 There are, however, error detecting and correcting capabilities embedded in the 

structure of double entry bookkeeping which can accomplish all of the preceding goals.  

The purpose of this paper is to examine the properties of the double entry system using 

some fundamental results from linear  algebra and coding theory. 
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 Surely there are other important features of a double entry system besides its error 

detecting abilities.  For instance, often it is argued that accounting efficiently accumulates 

and communicates economic information such as income or cost.  But this paper 

purposely offers no economic implications or applications.  Rather, the exercise is treated 

as the examination of intellectual questions surrounding the double entry system of 

accounting.  In this paper we do not apply economics; it’s just accounting. 

 Finally, it has been noted that accounting research has made significant progress 

on the use of information in various economic settings.  But the information remains 

fairly general and the distinctive characteristics of accounting information are hard to see 

(Demski 1990).  The analysis herein imposes the structure unique to the double entry 

accounting system and explores its logical consistencies. 

 A summary of what is accomplished herein follows.  We formally establish the 

link between linear algebra and the double entry bookkeeping system: the system 

transforms a vector of numerical values corresponding to transaction amounts to a 

financial statements vector through matrix multiplication.  The matrix is called a 

generator matrix (it is used to generate financial statements).  This representation of 

double entry bookkeeping allows us to simultaneously apply coding theory and linear 

algebra's nullspace to the analysis of the relationship between transactions and account 

balances.  We show how to construct a parity check matrix directly from the generator 

matrix.  Our main results demonstrate how the parity check matrix can be used to detect 

and correct errors which can not be corrected and may not even be detected by the usual 

trial balance check.  (The trial balance check would be a subset of possible checks 

performed via the parity check matrix.)  The idea is that there are more restrictions on the 

relations among the transaction which are captured by the generator matrix.  These 

restrictions are then exploited by the parity check matrix, allowing for detection and 

correction of errors. 
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 The paper is organized as follows.  Section 2 establishes the equivalence of a 

bookkeeping system and matrix representation in linear algebra.  In addition, we define 

double entry bookkeeping.  Section 3 introduces the link between the concept of a 

nullspace in linear algebra and the error correcting abilities of a double entry 

bookkeeping system.  Section 4 presents our main theorem on the detection and 

correction of up to two errors.  Section 5 applies these ideas to an expansive example.  In 

addition, implications for the design of bookkeeping systems are discussed.  Section 6 

concludes the paper. 

2. Generator Matrix 

 In this section we define some terms which allow us to think carefully about 

bookkeeping systems.  The definitions logically imply that we can use a linear algebra 

representation of a bookkeeping system.1 

 For concreteness, we utilize a simple numerical example which we will refer to 

throughout the paper.  Suppose a firm: (1) sells some stock, (2) uses the proceeds to buy 

equipment, (3) uses the equipment to generate cash revenue and (4) recognizes 

depreciation expense.  These activities would result in a simple set of financial 

statements; a balance sheet with two assets (cash and equipment, along with a contra 

asset) and two equities (capital stock and retained earnings), and an income statement 

with one revenue and one expense (depreciation).  Since retained earnings on the balance 

sheet can be calculated from the income statement, the financial statements can be 

viewed as a vector consisting of six elements: cash, equipment, accumulated 

depreciation, capital stock, sales and depreciation expense. 

 Suppose stock is sold for $100, equipment is purchased for $80, and cash revenue 

is $30.  Also, let the depreciation expense be $20.  Then the transactions vector is 

defined as: t = [ 100   80   30   20 ]. 
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 We are now ready to formally define a bookkeeping system. 

Definition.  A bookkeeping system is defined as a transformation, g, which takes a (row) 

vector of transaction amounts, t, and transforms it into a vector of financial statement 

account balances, a.  (We assume opening balances of zero, purely for exposition 

purposes.2)   The bookkeeping transformation has the following two properties. 

 1. g(α t) = α g(t) for any scalar α. 
 2. g(t1) + g(t2) = g(t1 + t2) for any two transaction vectors t1 and t2. 

 The first property says that if all the transaction amounts are doubled, say, then all 

account balances must be doubled as well. This can be thought of as relying on a 

numeraire such as dollars.  If the numeraire is changed to half dollars (multiply t by 2), 

then the account balances on the financial statements must also be multiplied by two. 

 The second property states that the effect on the account balances is the same 

even if a transaction is separated into two or more parts.  For example, the effect on 

accounts receivable is the same whether one collection of $100 occurs, or if the cash 

collection is divided into two parts: $40 and $60.  This property is operationalized by the 

running balances in the T-accounts  and by our indifference between making multiple 

journal entries versus a single composite entry. 

 The logical equivalence of a bookkeeping transformation and a generator matrix 

is established in Proposition 1. 

Proposition 1.   For all bookkeeping systems there exists a generator matrix G such 

that t . G = a.  That is the account vector is obtained by premultiplying the generator 

matrix by the transaction vector. 

                                                             
1  We note that there exist a number of linear algebraic developments of bookkeeping systems in the 

accounting literature.  Examples include Mattessich (1964), particularly chapters 3 and 4, and Ijiri (1967, 
1975). 

2  Working with changes in account balances (assuming zero opening balances) is more general than it 
may appear.  To incorporate balances, let account balance at time i+1 and i be ai+1 and ai.  And let 
transactions in period i be defined by ti.  Then ai+1 = ai + ti+1.G.  At some point opening balances are zero: a0 
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Proof: The bookkeeping system is defined so as to be a linear transformation.  The 

equivalence of a linear transformation and matrix multiplication is a standard result in 

linear algebra.  See, for example, Theorem 8 in Lay (1994, 80), or Strang (1988, 116-

121).     
Use Word 6.0c or later to           

view Macintosh picture.             

  

 The generator matrix, G, has the number of rows equal to the number of 

transactions, m.  The number of columns is equal to the number of financial statement 

accounts, n.  G consists of 1’s (when the account increases), -1’s (when the account 

decreases), and zeroes (no change).  Each row of G effectively records a journal entry.  

And pre-multiplying G by t produces account balances a.3 

 Given the definition of a bookkeeping transformation (and a fixed set of accounts) 

it is logical to impose further structure on the rows of G.  In particular, any transaction 

which affects the same two accounts will be recorded as a single (summary) journal 

entry, leading to the definition below. 

Definition. A transaction is a row of G which can not be expressed as a scalar 

multiple of any row.  

 The G matrix is thus an efficient way to characterize the double entry property, 

defined below. 

Definition.   A bookkeeping transformation is double entry if every row of G has two 

non-zero entries, that is, every transaction affects precisely two accounts. 

 This definition is not as restrictive as it may appear.  Composite journal entries, 

those that affect more than two accounts, can be reproduced by a set of entries that each 

affect only two accounts.  Our representation of a double entry bookkeeping system 

simplifies the analysis herein, without altering its substance. 

                                                             
= 0.  So a1 = a0 + t1.G = t1.G.  And a2 = a1 + t2.G = (t1 + t2).G.  Since all transactions satisfy the linearity 
property, closing balances will as well. 
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 At this point we continue with our small accounting cycle example to illustrate 

the development. The double entry system transforms the four element transaction vector 

into a six dimensional account space. The generator matrix for this example is as follows. 

  Cash Equip  Acc     Cap Sales Dep  
    Dep Stock  Exp 
 

  

  

G =

   1     0     0     1     0      0  
−1     1     0     0     0    0
  1     0     0     0     1    0
  0     0     1     0     0    1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

   (transaction 1)
   (transaction 2)
   (transaction 3)
   (transaction 4)

  

The matrix transformation from transactions amounts to account balances is as follows: 

t . G = a, where we recall t = [ 100   80   30   20 ]. 

  Premultiplying G by t means we are weighting the rows of G by the transaction 

amounts.  Alternatively, we are taking the inner product of t with each column of G.  

Each such inner product calculates an account balance, just as we do with a T-account.  

For example, the calculations in the T-account for cash are accomplished by taking the 

inner product of t with the first column of G.  

 [100   80   30   20] . [ 1   -1   1   0] = 100 - 80 + 30 + 0 = 50 

        Cash  
 100 | 80 
  30 |  
  50 | 

 
Thus, the calculation of the financial statements is accomplished by matrix 

multiplication. 

  t . G = [ 50   80   20   100   30   20 ] 

Below they appear in more familiar form. 

                                                             
3 One can see that the types of transactions and the desired accounts affect the construction of G.  We shall 

see that G can be constructed so as to affect the ability to detect and correct errors. 
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              Statement of Financial Position 

Cash  50 Capital Stock  100 
Equipment  80 Retained Earnings  10 
Acc. Dep.  20   
Assets  110 Equities  110 
 

                     Income Statement 
 Revenue 30 
 Depreciation 20 
 Income 10 
 
 It will be quite useful to retain the transaction vector when transforming it into 

account balances.  This is accomplished by concatenating G with an m-dimensional 

identity matrix, denoted Im : t . [Im | G] = [t | a].  We refer to [Im | G] as the augmented G 

matrix, and [t | a] as the transaction-account vector.  In our example, [t | a] = [ 100   80   

30   20   50   80   20   100   30   20 ]. 

3. Constructing the Nullspace of Augmented G 

 Our purpose is to develop a systematic method of determining whether the stated  

account balances are consistent with the stated transactions.  There are two ways to check 

for consistency.  One way is to see if [t | a] lies in the row space of augmented G.  (Recall 

that if the transactions and account balances are consistent they must satisfy t.[Im |G] = 

[t | a].)  An indirect but equivalent way is to check if any vector that is orthogonal to the 

rows of augmented G is also orthogonal to [t | a].4  Perhaps surprisingly, the latter 

approach is generally more useful. 

 The set of vectors orthogonal to augmented G is itself a subspace, and is called 

the nullspace of augmented G.  Since to check [t | a] using the latter method we must 

compare to this subspace, it is useful to find its basis.  We then form a matrix consisting 

                     
4 See Strang (1988), p. 139. 
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of the vectors that together form a basis for the nullspace.  In  Proposition 2 we explain 

how to construct a basis for the nullspace of augmented G. 

Proposition 2.  A  matrix H whose vectors form a basis for the nullspace of 

augmented G can be constructed as follows: 

H = [ - GT | In ]. 

Proof: To demonstrate that H is a basis for the nullspace, we must show that  H has the 

following properties:  (1) its rows are linearly independent and (2) it spans the nullspace 

of augmented G. 

 The first statement follows from the fact that H contains an identity matrix of 

dimension n.  The second statement follows from a fundamental theorem of linear 

algebra.  See, for example, Strang (1988).  In general, the dimension of the nullspace of a 

matrix is equal to the number of columns less its rank.  In augmented G, the number of 

columns is m+n and its rank is m.  (The rank of augmented G is m since it has an identity 

matrix of size m.)  Hence, the dimension of the nullspace of augmented G is equal to 

m+n-m=n.  To show that H spans the nullspace of augmented G we need to simply show 

that H consists of n linearly independent rows each of which is orthogonal to rows in 

augmented G.  By construction there are n rows in H and, as stated above, they are 

independent.  All that remains is to prove that these n rows are orthogonal to the m rows 

in augmented G.   From the rules of block matrix multiplication, the following statement 

is true: 

 
  
H•[Im | G]T = −GT In[ ]•

Im

GT
⎡ 
⎣ 

⎤ 
⎦ 

= [0], where [0] is an n by m matrix of zeros. 
Use Word 6.0c or later to           

view Macintosh picture.             

 

 In the coding theory literature,  H is referred to as a parity-check matrix.  See, for 

example,  Theorem 7.6 in Hill (1986).   There is an important corollary to Proposition 2, 

which we will make use of when we discuss error detecting and correcting in the next 

section. 
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Corollary 1.  None of the m+n columns of H can be expressed as a scalar multiple of 

any of its other columns. 

Proof:  The proof follows directly from these facts: 

(1) The last n columns are the identity matrix. 
(2)  The first m columns (- GT) have two entries each, and are not scalar multiples 

by definition of a transaction. 
Use Word 6.0c or later to           

view Macintosh picture.             

 

 For the example the parity check matrix, H, is as follows. 

  
     Transactions Cash Equip. Acc. Dep. Cap. Stk. Sales Dep.  

-1  1 -1 0 1 0 0 0 0 0  Cash 

0 -1 0 0 0 1 0 0 0 0  Equip. 

0 0 0 -1 0 0 1 0 0 0  Acc. Dep. 

-1 0 0 0 0 0 0 1 0 0  Cap. Stk. 

0 0 -1 0 0 0 0 0 1 0  Sales 

0 0 0 -1 0 0 0 0 0 1  Dep. 
    

Note that H is orthogonal to 
tT
aT
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
, i.e.: 

 H •
tT

aT
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
=  

−1  1 -1   0 1 0 0 0 0 0
  0 -1  0   0 0 1 0 0 0 0
  0   0   0 −1 0 0 1 0 0 0
−1   0   0   0 0 0 0 1 0 0
  0   0 -1   0 0 0 0 0 1 0
  0   0   0 −1 0 0 0 0 0 1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

•

100
80
30
20
50
80
20
100
30
20

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

=

0
0
0
0
0
0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 

 
 One way accountants can check for errors is through the use of a trial balance, 

which we can capture within our framework by a balancing vector.  The logic behind the 

trial balance is second nature to accountants.  Net assets (assets minus liabilities) are 
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wealth, and they are logically equal to capital.  The trial balance ensures that an increase 

in net assets is accompanied by either net asset decreases or capital increases in the same 

amount.5 

 The net assets/capital classification scheme can be imposed within our system 

(although we do not require it).6  The idea of a trial balance check exploits this property of 

the typical bookkeeping system, and is a special case of a balancing vector, which we 

describe below in linear algebra terminology. 

Definition. A  balancing vector is a vector b such that b . aT = 0. 

 Any balancing vector, should it exist, would be only one of many vectors in the 

nullspace of G, that is, G.bT = 0.  Hence, the (nullspace) approach for checking 

consistency among transactions and account balances can do whatever the trial balance 

can do, plus more.  This is stated formally in Corollary 2. 

Corollary 2.  The balancing vector augmented by m zeroes, [0 | b], resides in the row 

space of H. 

Proof.  The account vector a lies in the row space of G.  By definition, b is orthogonal to 

a, which implies it is orthogonal to rows of G.  In turn, this implies [0 | b] is orthogonal to 

augmented G, i.e.,  [0 | b] lies in the nullspace of augmented G.  From Proposition 2, the 

rows of H form a basis for the nullspace of augmented G.  Hence it follows that [0 | b] 

can be expressed as a linear combination of the rows of H.   
Use Word 6.0c or later to           

view Macintosh picture.             

 

 For our example, consider b = [1   1   -1   -1   -1   1].  Observe that b . aT = 0, and 

further [0 | b] is a linear combination of all the six rows in H with the weights as given by 

b.  Also note that we have judiciously chosen b --  the positive 1’s represent assets and 

                     
5  The existence of this system has been attributed to an aversion to negative numbers (Ijiri 1982). 
6  Our definition of G is more general than that usually imposed by accountants.  For example, the journal 

entry increase debt - increase capital would be allowed under our definition of a bookkeeping system.  
But this would violate an accountant's trial balance. 
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expenses; the negatives are equities and revenues.  Thus, this particular balancing vector 

produces the same effect as the trial balance: it ensures "debits equal credits." 

 The balancing vector's place in accounting is important, as it is used to allow 

separation of wealth (net assets) and capital (Ijiri, 1982).  But we do not delve into these 

issues, as: (1) the balancing vector is not necessary for our main results and (2) we 

promised not to talk about economics (so we won't). 

  In general then, if the financial statements have been prepared correctly, 

H.[t | a]T = 0.  What if they had not been prepared correctly?  We can further exploit 

properties of H to detect and even correct the errors. 

4. Error Detecting and Correcting 

 In this section, we study the correction and detection of errors.  Auditors examine 

the firm's transactions and accounts balances, and are interested in whether the account 

balances are correct.  One check is to see if the account balances and transactions are 

consistent, that is, do they satisfy t . G = a? 

 We must be careful about what we mean by an error.  Let us denote the actual 

transactions vector by t.  Then we say the account balances are correct if they satisfy t . G 

= a.  Let the stated transaction vector and account vectors be denoted by t' and a'.  The 

auditor walks in to the firm and observes t' and a', and is interested in whether the account 

balance is correct: is a' = a?  How can the auditor tell?  One way to spot a problem with 

the financial statements is to see if they are consistent with the transactions as presented -

- that is, does t' . G equal a'?  If not, the auditor knows errors occurred.  Either t' ≠ t, or a' 

≠ a, or both.  Further, if an error occurred, the auditor may be interested in correcting the 

errors.  It turns out that the bookkeeping system (by itself) can be useful in determining 

why an error occurred, and even sometimes in correcting it. 

 For now we restrict ourselves to zero, one, or two errors.  As mentioned, if there 

were no errors, t' . G = a'.  If one error occurs, it is in either the a portion or the t portion 

of the vector [t' | a']: either t' ≠ t or a' ≠ a.   If two errors occur, two elements of the 
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observed vector [t' | a'] have been written down incorrectly.  Either two elements of the 

account vector are written down incorrectly (a' ≠ a and t' = t), two elements of the 

transactions vector have been written down incorrectly (t' ≠ t and a' = a), or one element 

of each is incorrect (t'≠t and a'≠ a). 

 Suppose the transaction-account vector contains a single error.  Continuing the 

numerical example, consider a transaction-account vector which looks like this. 

[t | a] = [ 100   80   30   20   50   92   20   100   30   20 ] 

By comparing to the Statement of Financial Position (correctly) constructed earlier, we 

see there's an error of 12 in the equipment account.  (The sixth entry is 92 = 80 + 12).  

Using the trial balance can detect the existence of an error (the balance sheet doesn’t 

balance), but the amount and position of the error can not be determined.  Use of the 

entire nullspace, defined by the parity check matrix H, however, can accomplish both.  

Thus, the error can be corrected immediately. 

 The first step is to multiply the transaction-account vector by H.  The result, 

s= H •
tT

aT
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
, is termed a "syndrome" in the coding jargon.7 

 

  

s = H 

100
80
30
20
50

80 + 12
20
100
30
20

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

=  H 

100
80
30
20
50
80
20
100
30
20

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

+  H 

0
0
0
0
0
12
0
0
0
0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

=  H 

0
0
0
0
0
12
0
0
0
0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

=

0
12
0
0
0
0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 

 For this one error case the syndrome, s, is the product of an error amount times a 

particular column of H.  If we can identify which column s is a scalar multiple of, the 
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position of the error is determined.  This is not a complicated task, and for the example 

can be done by inspection.  The syndrome has a single non-zero entry, the second.  Only 

one column of H has only a non-zero second entry.  Thus, the column of H in question is 

the sixth.  Correction of the error is accomplished by subtracting 12 from element 6 

(equipment) of the transaction-account vector: 92 - 12 = 80. 

 Error correction was successful in the example because the syndrome resided in 

the subspace of only one column of H.  This allows us to (easily) identify the transaction 

or the account in which the error occurred. 

 The theorem below summarizes this and the rest of our main results on the error 

detecting and correcting properties of a double entry bookkeeping system. 

Theorem.  In a double entry bookkeeping system, any single error in the transaction-

account vector can be detected, identified, and corrected using the syndrome method.  

Furthermore, up to two errors in the transaction-account vector can be detected using the 

syndrome method. 

Proof: For the one error case, from Corollary 1 none of the columns in H are scalar 

multiples of any other, and so the syndrome will always reside in only one column.  

Hence, the location and magnitude of one error is detectable from the syndrome.  Now 

consider the two error case.  We need only show that it is not possible for two errors to 

yield a zero syndrome.  Two errors in transactions will not yield a zero syndrome because 

no two transaction columns are scalar multiples.  One error in transaction and one error in 

account will not yield a zero syndrome, as transaction columns have two non-zero entries 

while account columns have only one.  Two errors in accounts will not yield a zero 

syndrome, because account columns are linearly independent. 
Use Word 6.0c or later to           

view Macintosh picture.             

 

                                                             
7  A syndrome is a set of symptoms of an illness.  Here we are identifying and curing the illness (correcting 

the error) by first identifying the syndrome. 
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 Consider the case when there are up to two errors but the balance sheet balances.  

Below is the stated transaction-account vector. 

[t | a] = [ 100   80   30   20   40   90   20   100   30   20 ] 

It is clear that the balance sheet balances: total assets = total equities = 150.   However, 

the syndrome is not zero: 

    s= H •
tT

aT
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
 =  

−10
  10
  0
  0
  0
  0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

. 

 While the error has been detected, comparison of the syndrome to columns of H 

narrows down the possible source of the error.  In this case there are only two 

possibilities.  First, there may be a single error in the transaction 2 amount, since the 

syndrome is -10 times the second column of H.  That is, the equipment purchase may 

have been 90, and not 80.  Second, there may errors in both the cash and equipment 

account, since the syndrome is -10 times column 5 plus 10 times column 6.  That is, the 

cash account is understated by 10 and the equipment account is overstated by 10. 

 It is interesting to compare the syndrome method of error detection and correction 

with merely checking whether or not the balance sheet balances.  As noted in Corollary 2 

any balancing vector must reside in the row space of H, hence any information contained 

in the balancing vector is surely contained in the syndrome. 

 In the one error case the syndrome will be non-zero and the balance sheet will not 

balance (if the error is in the financial statements).  The balance sheet check can not 

identify the location or the sign of the error.  The syndrome, on the other hand, can do 

both.  In the two error case, it is possible for the balance sheet check to be fooled.  Two 

errors may be counterbalancing and the balance sheet may actually balance.  The 
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syndrome is not so easily fooled.  The syndrome can not possibly be zero in the presence 

of two errors! 

 It is useful to remark on our assumption that there are two or fewer errors. 

Suppose that a transaction t' and account balances a' are supplied to the auditor.  If it is 

true that t '. G = a', the bookkeeping system provides no evidence by itself that there is an 

error.  It is possible for three errors to occur and for the syndrome to be zero.  One 

obvious case is when a transaction amount is changed along with the two corresponding 

financial statement accounts.  For example, if a credit sale transaction is overstated by 10, 

and both sales and accounts receivable are overstated by 10, the bookkeeping system is 

not helpful, since the erroneous transactions and account vectors, say, t' and a', satisfy t' . 

G = a'.  Thus, three errors may in some cases go undetected.  This is of course why 

internal control systems are monitored by the auditor, in addition to checking transactions 

against accounts.  The accountant must look beyond the bookkeeping system if he wishes 

to catch strategically placed errors that exceed two in number. 

5. Bookkeeping System Design - An example 

 In this section we consider a slightly more expansive example that allows us to 

illustrate some complications we could not address in the small example used so far.  We 

can address problems with detecting errors when G consists of rows that are scalar 

multiples of each other.  In addition, we can discuss issues associated with bookkeeping 

system design.  In particular, we show how judiciously increasing the number of accounts 

can increase the error correcting capability of a double entry bookkeeping system. 

 We choose as a basis for our example Problem 2-4 in Hartman, Harper, Knoblett 

and Reckers (1995).  There are 12 transactions, i.e., m=12. 

 1. Cash sales $1500. 
 2. Purchase equipment $41 for cash. 
 3. Purchase merchandise $2021 on credit. 
 4. Depreciation $18. 
 5. Credit sales $610. 
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 6. Payment for credit purchases $2016. 
 7. Collections from customers $606. 
 8. Sale of capital stock $11. 
 9. Cost of goods sold $1992. 
 10. Cash dividend $21. 
 11. Tax expense $40. 
 12. Taxes paid $36. 
 
 There are seven financial statement accounts (n=7).     
  Cash 
  Receivables 
  Inventory 
  Long-term assets (net) 
  Current payables 
  Long-term Debt 
  Shareholders Equity 
 
 Based on the 12 transactions and irrespective of the amounts, the 12 by 7 

generator matrix, G, is as follows. 

  G =

  1   0   0   0   0 0   1 
−1   0   0   1   0 0   0
  0   0   1   0   1 0   0
  0   0   0 −1   0 0 −1
  0   1   0   0   0 0   1
−1   0   0   0 −1 0   0
  1 −1   0   0   0 0   0
  1   0   0   0   0 0   1
  0   0 −1   0   0 0 −1
−1   0   0   0   0 0 −1
  0   0   0   0   1 0 −1
−1   0   0   0 −1 0   0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 

 
 Based on the transactions, the 1 by 12 transaction vector is as follows. 

 t = [ 1500   41   2021   18   610   2016   606   11   1992   21  40   36 ] 

The correct financial statements are as follows. 
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t . G = [ 3   4   29   23   9   0   50 ] 

 Unlike the previous example, some of the rows in G are scalar multiples of each 

other.  For example, row 1 is the same as row 8 and is the negative of row 10.  The 

bookkeeping system as designed uses one stockholder's equity account.  As such, it does 

not completely distinguish between increases in cash due to sales of stock and those due 

to cash sales.  In addition, it does not completely distinguish cash outflows due to 

dividends from these two transactions. 

 Thus, the Theorem must be modified slightly in the case where G has rows that 

are scalar multiples of each other. Detecting and correcting errors in transactions 

becomes problematic.  However, errors in financial statement accounts can still be 

detected and corrected. 

Proposition 3.  Suppose there are rows in G which are scalar multiples of each 

other.  Then the following are true: (1) any single error in the financial statement account 

vector can be detected, identified, and corrected using the syndrome, (2) any single error 

in the transaction vector can be detected, and (3) if there are one or two errors in the 

transaction-account vector, then any errors in the financial statement account vector can 

be detected using the syndrome method. 

Proof: Consider the case of up to one error.  If the syndrome is zero, neither the financial 

statements nor the transactions have an error.  If the syndrome has only one non-zero 

entry, e in, say, the ith position, the transactions are correct, but there is an error in the ith 

financial statement account.  To correct, subtract e from the account balance.  If the 

syndrome has more than one non-zero entry, because of double entry, the syndrome will 

necessarily have exactly two non-zero entries, both of the same magnitude.  In this case 

the financial statements are correct, the error is in one of the transactions. 

 Now consider the case of up to two errors.  Suppose there is an error in a financial 

statement account.  There are three possible cases: (1) there is an error only in a financial 

statement account (i. e., no errors in the transactions), (2) there is an error in a financial 
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statement account and an error in a transaction amount, and (3) there are errors in two 

financial statement accounts. 

 For the first case the syndrome has one non-zero element.  In case two the 

syndrome has either one or three non-zero elements.  For case three the syndrome has 

two non-zero elements.  Hence, if there is an error in a financial statement account, the 

syndrome is necessarily non-zero.  The proposition is the contrapositive of this statement. 

  

 
Use Word 6.0c or later to           

view Macintosh picture.             

 

 To demonstrate Proposition 3, consider the following example.  One error has 

been made in a financial statement account (current payables). 

[t | a] = [ 1500  41  2021  18  610  2016  606  11  1992  21  40  36  3  4  29  23  20  0  50 ] 

Detection and correction proceeds as follows. First calculate the syndrome.  As an aside, 

note that the balance sheet test indicates that an error has occurred, but is no help in 

identifying the location or the sign of the error. 

  s = −GT I7[ ]•
tT

aT
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
=

 0
 0
 0
 0
11
 0
 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 

 The syndrome has only one non-zero element, 11, in the fifth place.  Hence, from 

Proposition 3 the current payables have been overstated by 11.  Hence, the correct 

amount in the current payables account is 20 - 11 = 9. 

 Let us explore what happens when there is an error in the transactions.  Now, by 

Proposition 3, we are able to detect but not correct the error.  Suppose an error of $200 

occurs in the cash sales transaction amount.  Then the transaction-account is as follows. 
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 [t | a ] = [ 1700   41   2021   18   610   2016   606   11   1992   21  40   36   3   4   29   23   9   0   50] 

 The syndrome is: 

  s = −GT I7[ ]•
tT

aT
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
=

−200
     0
     0
     0
     0
     0
−200

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

. 

There are two non-zero entries, so we know the financial statements are correct as 

submitted.  The syndrome also tells us that one of the transactions is off by $200.  The 

possibilities are that transaction 1 is overstated by $200, or that transaction 8 is overstated 

by $200, or even that transaction 10 is understated by $200. 

 The reason the syndrome is unable to distinguish the location of the error is that 

the columns in H, and the corresponding rows in G for the above transactions, are scalar 

multiples of one another.  One way to remedy the situation is to add two additional 

accounts.  In this case a capital stock account (see transaction 8), and a dividends account 

(for transaction 10) would do the trick.  The new G matrix with the last two columns 

denoting capital stock and dividends, would look as follows.  (In the G matrix below the 

seventh column is shareholders equity less capital stock and dividends.) 
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  G =

CS Div
  1   0   0   0   0 0   1 0 0
−1   0   0   1   0 0   0 0 0
  0   0   1   0   1 0   0 0 0
  0   0   0 −1   0 0 −1 0 0
  0   1   0   0   0 0   1 0 0
−1   0   0   0 −1 0   0 0 0
  1 −1   0   0   0 0   0 0 0
  1   0   0   0   0 0   0 1 0
  0   0 −1   0   0 0 −1 0 0
−1   0   0   0   0 0   0 0 1
  0   0   0   0   1 0 −1 0 0
−1   0   0   0 −1 0   0 0 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 

 
 In this modified G matrix rows one, eight and ten are no longer scalar multiples of 

one another.  The syndrome is  

     

−200
      0
      0
      0
      0
      0
−200
      0
      0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 

 
and the only column of H (row of G) within which it resides is the first one, i.e., the first 

transaction is $1500.  Now both detection and correction are possible. 

 Attempts to avoid negative numbers has been supplied as a reason for the 

development of the double entry bookkeeping system (Peters and Emery, 1978).  This 

has resulted in the existence of many accounts (rather than two: net assets and capital).  

Ijiri (1982) states that negativity avoidance increases control over the data: "It is more 

effective from the control standpoint to monitor not just net balance but gross amounts of 
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positive and negative entries separately.  Therefore, sales and sales returns are recorded 

separately, properties and accumulated depreciation are controlled by separate accounts, 

and netting of treasury stock and capital stock is prohibited." (p. 5) 

 This is just what we have accomplished by splitting the capital account into 

capital stock and dividends.  Rather than simply subtracting from cash and capital, we 

subtract from cash but increase another account, dividends.  Our analysis shows that 

controllability is increased in that more errors can be detected.  This increase occurs 

because adding accounts can increase the rank of the generator matrix. 

 The exercise gives some guidance to the problem of how many and what accounts 

should be included in the bookkeeping system.  Observe that the sum of the last three 

columns in the above G matrix is the same as the shareholders equity column in the G 

matrix we presented earlier.  To the extent that error detection and correction is an 

objective, it may be helpful to add additional accounts, so as to usefully disaggregate.  

Disaggregation helps with error detection and correction, since additional accounts 

destroy the multiplicative similarity of the rows of G (and columns of H).8  In other 

words, it is desirable to have a situation where the rows are not scalar multiples of each 

other. 

6. Conclusion 

 An unresolved issue is whether accounting has sufficient intellectual depth to 

support excursions not grounded in economics.  This paper views the double entry 

bookkeeping system as the accountant's territory, and analyzes its properties using linear 

algebra and coding theory.  The double entry bookkeeping system is modeled as a 

generator matrix that transforms a transactions vector into a financial statements account 

vector. 

                     
8 The concept of accounting aggregation is a pervasive theme in Demski (1994).  (See in particular, pages 

90-91.) 
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 The Theorem implies that once a generator matrix is specified, single error 

correction and double error detection in transactions and financial statement accounts can 

always be achieved by a double entry bookkeeping system.  Our analysis has implications 

for bookkeeping system design, as we show that judicious selection of accounts can 

enhance its inherent error detection and correction abilities. 

 Error correcting abilities may become even more important with the increasing 

amount of accounting information being transmitted electronically.9  With this in mind, 

the advisability of increasing the number of entries (triple-entry bookkeeping?) may be an 

interesting question to investigate. 

                     
9  The error correcting ability of the bookkeeping system is similar to error correcting codes used to send 

photographs from distant points in the solar system.  Remarkably clear and impressive images are 
received even though the messages are subject to significant natural interference. 
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