
Quantum error correction
Quantum error correction is vital to quantum computing. Qubits are delicate

as any interaction changes them. Since qubits cannot be cloned, a different
kind of redundancy than employed classically is utilized. The qubit of interest
is encoded in a larger bundle of entangled qubits. As with classical computing,
error detection is accomplished via a syndrome in which detectable errors reside
in the nullspace to the code word.

First, we explore principles of quantum error correction with the bit flip
code followed by the phase flip code. Then, we explore the Shor code which
remarkably can correct any arbitrary single qubit error.

Bit flip code

Consider a generic qubit (amplitudes unknown, of course).

|ψ〉 = α |0〉+ β |1〉

Encoding proceeds by creating a three qubit code word.

|ψ00〉 = α |000〉+ β |100〉

Now, apply the permutation matrix Cnot (controlled-not) to the first two qubits.
Then, apply Cnot again to the second and third qubits and encoding is complete.

|ψ3〉 ≡ Cnot23Cnot12 |ψ00〉 = Cnot23 (α |000〉+ β |110〉)

= α |000〉+ β |111〉

If any single qubit, bit flip errors have crept in while processing our qubit,
they are orthogonal to the (un-normalized) entangled state |000〉 + |111〉. Or-
thogonal bit flip states are |001〉+ |110〉 (the third qubit flipped), |010〉+ |101〉
(the second qubit slipped), and |100〉+ |011〉 (the first qubit flipped).

Syndrome (single qubit, bit flip) error detection can be accomplished via
projection measurements. Define four projections roughly corresponding to the
above (un-normalized) orthogonal, entangled states.

P0 = |000〉 〈000|+ |111〉 〈111|

P1 = X1P0X1 = |100〉 〈100|+ |011〉 〈011|

P2 = X2P0X2 = |010〉 〈010|+ |101〉 〈101|

P3 = X3P0X3 = |001〉 〈001|+ |110〉 〈110|

These projections form the eigenstate basis for our observable.

EX = 1 ∗ P0 + 2 ∗ P1 + 3 ∗ P2 + 4 ∗ P3

The eigenvalues (here 1, 2, 3, 4) are the observable measurements and can be any
distinct values.
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Error detection proceeds with measurement. If no errors have occurred with
probability one measurement reveals

〈ψ3|EX |ψ3〉 = 1

and no operation is needed to correct any (single qubit, bit flip) error. Alter-
natively, suppose the first qubit has bit flipped. Then, with probability one
measurement gives

〈ψ3|X1EXX1 |ψ3〉 = 2

Error correction is completed by the inverse bit flip operation applied to the
first qubit, also X1.

X1X1 |ψ3〉 = |ψ3〉

Bit flip error measurements on the second and third qubits are analogous with
a measurement of 3 indicating a bit flip operation on the second qubit and a
measurement of 4 indicating a bit flip operation on the third qubit.

〈ψ3|X2EXX2 |ψ3〉 = 3

〈ψ3|X3EXX3 |ψ3〉 = 4

An alternative measurement basis works in equivalent fashion and proves
instructive for expanding capabilities of the code. This measurement basis uti-
lizes observables Z1Z2 and Z2Z3. Both observables are (Hermitian, unitary)
diagonal matrices with ±1 eigenvalues. The eigenvalues for Z1Z2 in order are
+1,+1,−1,−1,−1,−1,+1,+1 and for Z2Z3 are +1,−1,−1,+1,+1,−1,−1,+1.
Measurements from Z1Z2 followed by Z2Z3 revealing +1,+1 is the same as P0

indicating no bit flip error correction. Measurement equal to +1 from observ-
able Z1Z2 leaves the three qubit code word residing in the subspace spanned
by diagonal positions 1, 2, 7, 8 (recall measurement typically changes the state).
Measurement equal to +1 of this state with respect to observable Z2Z3 results
in the three qubit state residing in diagonal positions 1, 8. Hence, no bit flip of
|ψ3〉 has occurred.

If Z1Z2 reveals−1, the evolved state resides in a subspace defined by diagonal
positions 3, 4, 5, 6. If this is followed by measurement of Z2Z3 equal to +1, then
the evolved state resides in a subspace defined by diagonal positions 4, 5. This
corresponds to P1 and bit flip error is corrected by X1. Alternatively, if −1
from Z1Z2 is followed by −1 again from Z2Z3, then the evolved state resides in
a subspace defined by diagonal positions 3, 6. This corresponds to P2 and is bit
flip error is corrected by X2. Finally, successive measurements equal to +1,−1
result in an evolved state residing in a subspace defined by diagonal positions
2, 7. This corresponds to P3 and bit flip error is corrected with X3.

Phase flip code

The bit flip code does not detect phase flips (amplitude sign changes). However,
a similar code detects and corrects phase flips.
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Since X is the bit flip operator, Z is the phase flip operator, and HXH = Z
(also HZH = X), phase flip syndrome error detection and correction works
analogous to the bit flip code after applyiing H (the Hadamard or qubit split-
ter operator). In particular, we encode |ψ3〉 as HHH |ψ3〉 and likewise the
observable is

EZ = HHHEXHHH

= 1∗HHHP0HHH+2∗HHHP1HHH+3∗HHHP2HHH+4∗HHHP4HHH

Single qubit phase flip errors are detected with this syndrome in analogous
manner to the bit flip code. Detected phase flip errors associated with qubit i
are corrected by inverse operations HHHZi.

Shor code

The foregoing codes are effective at detecting and correcting either a bit flip
error and phase flip error but not both on the same qubit. Fortunately, the
Shor code can handle such errors and much more. In fact, the Shor code can
correct for any arbitrary single qubit error. The Shor code employs a much
longer code word — nine qubits (29 = 512 elements). The qubit is first encoded
with the phase flip code |0〉 → |+ + +〉 and |1〉 → |− −−〉. Then, each of
these qubits is entangled via the bit flip code |+〉 → 1√

2
(|000〉+ |111〉) and

|−〉 → 1√
2

(|000〉 − |111〉)

|ψ9〉 = α |0L〉+ β |1L〉

where |0L〉 ≡ 1
2
√
2

[(|000〉+ |111〉) (|000〉+ |111〉) (|000〉+ |111〉)] and |1L〉 ≡
1

2
√
2

[(|000〉 − |111〉) (|000〉 − |111〉) (|000〉 − |111〉)].
Specifically, encoding can be implemented as follows. Create three blocks of

three qubits. The first block is |ψ00〉 while the second and third blocks are both
|000〉. Apply H1 to each block, then apply Cnot12 followed by Cnot23 to each
block.

Cnot23Cnot12H1 |ψ00〉 =
α+ β√

2
|000〉+

α− β√
2
|111〉

Cnot23Cnot12H1 |000〉 =
1√
2

(|000〉+ |111〉)

Combine the three blocks then apply another set of block-wise permutation
matrices, BCnot, that utilize the leading three qubit block as control (when
also the block omitted is |000〉) and the second three-qubit block as the target
in the same manner as Cnot.1

|ψ9〉 = BCnot31BCnot21∗
1The permutation matrix described by BCnot31BCnot21 is an identify matrix except

elements 8, 8 and 456, 456 are zero with ones in positions 8, 456 and 456, 8 as well as elements
57, 57 and 505, 505 are zero with ones is positions 57, 505 and 505, 57. Of course, this is a
unitary operator.
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(
α+ β√

2
|000〉+

α− β√
2
|111〉

)[
1√
2

(|000〉+ |111〉)
] [

1√
2

(|000〉+ |111〉)
]

=
α

2
√

2
[(|000〉+ |111〉) (|000〉+ |111〉) (|000〉+ |111〉)]

+
β

2
√

2
[(|000〉 − |111〉) (|000〉 − |111〉) (|000〉 − |111〉)]

Briefly, the Shor code employs ten observables.

Z1Z2, Z2Z3, Z3Z4, Z4Z5, Z5Z6, Z6Z7, Z7Z8, Z8Z9

X1X2X3X4X5X6, X4X5X6X7X8X9

The first eight are bit flip error detectors as described above for the bit flip code
in which adjacent measurements indicate which (if any) qubits are bit flipped.
Syndrome measurements and corrections are indicated below.

Z1Z2 Z2Z3 Z3Z4 Z4Z5 Z5Z6 Z6Z7 Z7Z8 Z8Z9 action
+1 +1 +1 +1 +1 +1 +1 +1 I
−1 +1 +1 +1 +1 +1 +1 +1 X1

−1 −1 +1 +1 +1 +1 +1 +1 X2

+1 −1 −1 +1 +1 +1 +1 +1 X3

+1 +1 −1 −1 +1 +1 +1 +1 X4

+1 +1 +1 −1 −1 +1 +1 +1 X5

+1 +1 +1 +1 −1 −1 +1 +1 X6

+1 +1 +1 +1 +1 −1 −1 +1 X7

+1 +1 +1 +1 +1 +1 −1 −1 X8

+1 +1 +1 +1 +1 +1 +1 −1 X9

As the encoding suggests, phase flips occur in blocks of three. As both ob-
servables, X1X2X3X4X5X6 andX4X5X6X7X8X9, are Hermitian, unitary oper-
ators, they have±1 eigenvalues. A measurement equal to−1 fromX1X2X3X4X5X6

followed by +1 from X4X5X6X7X8X9 indicates a phase flip on a qubit in the
first block. This is corrected by Z1Z2Z3. Similarly, a measurement equal to
−1,−1 indicates a phase flip on a qubit in the second block. This is corrected
by Z4Z5Z6. Thirdly, a measurement equal to +1,−1 indicates a phase flip on
a qubit in the third block. This is corrected by Z7Z8Z9.

Consider a random error generated by an un-normalized operator that acts
on qubit i.

Ei = c0Ii + c1Xi + c2Zi + c3XiZi

This includes simple bit flips, phase flips, combinations,2 or any arbitrary angle
applied to a single qubit. The Shor code recovers from any single qubit error
generated from Ei.

2c3XiZi is equivalent to the fourth Pauli operator Yi when c3 =
√
−1.
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Example

Suppose E1 = 1√
2
I1+X1Z1 is applied to |ψ9〉 during encoding of |ψ〉. With prob-

ability 2
3 observable Z1Z2 produces a measurement equal to −1. This evolves

E1 |ψ9〉 (following normalization by
√
〈ψ9|E1E1 |ψ9〉) into a subspace containing

X1X2 |ψ9〉. A measurement of this evolved state by observable Z2Z3 produces
a result equal to +1. Hence, the evolved state resides in a subspace contain-
ing X1 |ψ9〉. The bit flip of the first qubit is reversed by applying the inverse
operation, also X1. However, this does not assure that |ψ9〉 has been recoved.

Since the Shor code is effective at correcting error on a single qubit, for
brevity, we bypass checking for bit flips on other qubits and move on to phase
flips. The evolved state is measured with respect to X1X2X3X4X5X6 which
produces −1. Hence, the state has evolved to reside in a subspace including
phase flips on the first two three-qubit blocks. Measurement of this evolved
state by observable X4X5X6X7X8X9 is +1 indicating the phase flip occurred
in the first three-qubit block. This is reversed by the inverse operation Z1Z2Z3.
Remarkably, this sequence of projections coupled with appropriate inverse op-
erations corrects the error on the first qubit.

Alternatively, if the first measurement utilizing observable Z1Z2 is +1 rather
than −1 (with probability 1

3 ), the above sequence of projections corrects the first
qubit error. This procedure works as follows. The first measurement changes
the state but the subspace in which it resides no longer includes a bit flip of the
first qubit. The remaining measurements in sequence, Z2Z3, X1X2X3X4X5X6,
and X4X5X6X7X8X9 each produce +1 results. Hence, no inverse operations
are applied but the series of projections corrects the error on the first qubit —
|ψ9〉 is recovered.
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