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ORIGINAL ARTICLE

Heuristic Thinking and Inference From Observational
Epidemiology

Timothy L. Lash

Abstract: Epidemiologic research is an exercise in measurement.
Observational epidemiologic results usually include a point esti-
mate, a measure of random error such as a frequentist confidence
interval, and a qualitative discussion of study limitations. Without
randomization of study subjects to exposure groups, inference from
study results requires an educated guess about the strength of the
systematic errors compared with the strength of the exposure effects.
Although quantitative methods to make these educated guesses
exist, the conventional approach is qualitative, which reduces the
educated guessing to a problem of reasoning under uncertainty. In
circumstances such as these, humans predictably reason poorly.
Heuristics and resulting biases that simplify the judgmental tasks
tend to underestimate the systematic error, underestimate the uncer-
tainty, and focus the inference on the study’s specific evidence while
excluding countervailing external information. Common warnings
to interpret results with trepidation are an ineffective solution. The
methods that quantify systematic error and uncertainty challenge the
analyst to specify the alternative explanations for associations that
are otherwise too readily judged causal.

(Epidemiology 2007;18: 67–72)

Epidemiologic research is an exercise in measurement. Its
objective is to obtain a valid and precise estimate of either

the occurrence of disease in a population or the effect of an
exposure on the occurrence of disease. Conventionally, epi-
demiologists present their measurements in 3 parts: a point
estimate (eg, a risk ratio), a frequentist statistical assessment
of the uncertainty (eg, a confidence interval, but also some-
times a P value), and a qualitative description of the threats to
the study’s validity.

Without randomization of study subjects to exposure
groups, point estimates, confidence intervals, and P values
lack their correct frequentist interpretations.1 Randomization
and a hypothesis about the expected allocation of outcomes—
such as the null hypothesis—allow one to assign probabilities
to the potential outcomes. One can compare the observed

association with this probability distribution to estimate the
probability of the observed association, or associations more
extreme, under the initial hypothesis. This comparison pro-
vides an important aid to causal inference,1 because it pro-
vides a probability that variation in the outcome distribution
is attributable to chance as opposed to the effects of exposure.
The comparison is therefore at the root of frequentist statis-
tical methods and inferences from them. When the exposure
is not assigned by randomization, as is the case for observa-
tional epidemiologic research, the comparison provides a
probability that the observed association is attributable to
chance as opposed to the combined effects of exposure and
systematic errors. Given an association with a low probabil-
ity, a causal inference would then require an educated guess
about the strength of the systematic errors compared with the
strength of the exposure effects.

These educated guesses can be accomplished quantita-
tively by likelihood methods,2 Bayesian methods,3 regression
calibration,4 missing data methods,5,6 or Monte Carlo simu-
lation,7–9 (see Greenland10 for a review and comparison of
methods). The conventional approach, however, is to make
the guess qualitatively by describing the study’s limitations.
An assessment of the strength of systematic errors, compared
with the strength of exposure effects, therefore becomes an
exercise in reasoning under uncertainty. Human ability to
reason under uncertainty has been well studied and shown to
be susceptible to systematic bias resulting in predictable
mistakes. A brief review of this literature, focused on situa-
tions analogous to epidemiologic inference, suggests that the
qualitative approach will frequently fail to safeguard against
tendencies to favor exposure effects over systematic errors as
an explanation for observed associations. The aforemen-
tioned quantitative methods have the potential to safeguard
against these failures.

Heuristics and Biases
The Dual Process Model of Cognition

A substantial literature from the field of cognitive
science has demonstrated that humans are frequently bi-
ased in their judgments about probabilities and at choosing
between alternative explanations for observed events11–14

such as an epidemiologic association. Some cognitive
scientists postulate that the mind uses dual processes to solve
problems that require such evaluations or choices.15,16 The first
system, labeled the “Associative System,” uses patterns to
draw inferences. We can think of this system as intuition,
although any pejorative connotation of that label should
not be applied to the associative system. The second
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system, labeled the “Rule-based System,” applies a logical
structure to a set of variables to draw inferences. We can
think of this system as reason, although the label alone
should not connote that this system is superior. The Asso-
ciative System is not necessarily less capable than the
Rule-based System. In fact, skills can migrate from the
Rule-based System to the Associative System with expe-
rience and the Associative System influences the Rule-
based System by affecting the choice of assumptions and
axioms used for deduction. The Associative System is in
constant action, whereas the Rule-based System is con-
stantly monitoring the Associative System to intervene
when necessary. This paradigm should be familiar; we
have all said “Wait a minute—let me think,” by which we
do not mean that we have not yet thought, but that we are
not satisfied with the solution our Associative System’s
thought has delivered. After the chance to implement the
Rule-based System, we might say, “On second thought, I
have changed my mind,” by which we mean that the
Rule-based System has overwritten the solution initially
delivered by the Associative System.

The process used by the Associative System to reach
a solution relies on heuristics. A heuristic reduces the
complex problem of assessing probabilities or predicting
uncertain values to simpler judgmental operations.17 An
example of a heuristic often encountered in epidemiologic
research is the notion that nondifferential misclassification
biases an association toward the null. Heuristics often
serve us well because their solutions correlate with the
truth, but they can sometimes lead to systematic and severe
errors, which are called biases.17 Nondifferential and in-
dependent misclassification of a dichotomous exposure
leads to the expectation that the measured association will
lie between the true association and the null, but many
exceptions to the general heuristic exist. Any particular
association influenced by nondifferential misclassification
may not be biased toward the null.18 Dependent errors in
classification can substantially bias an association away
from the null— even if classification errors are nondiffer-
ential.19 Nondifferential misclassification of disease may
not lead to any bias in some circumstances.20 Finally, a
true association may not provide stronger evidence against
the null hypothesis than the observed association based on
the misclassified data— even if the observed association is
biased toward the null.21 Application of the misclassifica-
tion heuristic without deliberation can lead to errors in an
estimate of the strength and direction of the bias,22 which
is also true of general cognitive heuristics.17

Cognitive scientists have identified several classes of
general heuristics and resulting biases, 3 of which I describe
because they may be most relevant to causal inference based
on observational epidemiologic results. These heuristics and
resulting biases have the following characteristics in com-
mon.23 First, the biases in judgments attributable to the
heuristic are systematic and directional; that is, they always
act in the same way and in the same direction. Second, they
are general and nontransferable; that is, all humans are
susceptible to the biases and knowledge of how they act does

not immunize us against them. Third, they are independent of
intelligence and education; that is, experts make the same
mistakes as novices, particularly with a problem that is a little
more difficult or a small distance outside of their expertise.
Although most studies of these heuristics and biases have
been conducted in settings that are not very analogous to
causal inference using epidemiologic data, one such study has
been conducted and its results corresponded to results elicited
in the cognitive science setting.24 In addition, these heuristics
and biases affect evidence-based forecasts of medical doc-
tors, meteorologists, attorneys, financiers, and sports prog-
nosticators.25 It seems unlikely that epidemiologists would be
immune.

Anchoring and Adjustment
The first heuristic relevant to causal inference based

on observational epidemiologic results is called “anchor-
ing and adjustment.”17 When asked to estimate an un-
known but familiar quantity, respondents use a heuristic
strategy to select (or receive) an anchor and then adjust
outward from that anchor in the direction of the expected
true value. Adjustments are typically insufficient. For
example, one might ask the year in which George Wash-
ington was elected as the first president of the United
States.26 Most respondents choose the anchor to be 1776,
the year that the United States declared independence.
Respondents then adjust upward to later years, because
they know the U.S. Constitution was not ratified in the
same year. The average response equals 1779 and the
correct value equals 1788. The predictably insufficient
adjustment arises because respondents adjust outward
from the anchor until their adjusted estimate enters a range
they deem plausible. The true value, more often, lies
toward the center of the plausible range. When the anchor
is below the true value, like in the year of Washington’s
first election, the estimate is predictably lower than the true
value. Conversely, when the anchor is above the true value, the
estimate is predictably higher than the true value. For example,
one might ask the temperature at which vodka freezes.26

Most respondents choose the anchor to be 32°F, the tem-
perature at which water freezes. Respondents adjust down-
ward to lower temperatures, because they know alcohol
freezes at a lower temperature than water. The average
response equals 1.75°F, and the correct value equals
�20°F. Importantly, the anchoring and adjustment heuris-
tic operates in the same manner regardless of whether the
anchor is self-generated or externally provided so long as
the respondent is aware of the anchor and it is on the same
scale as the target.27

The anchoring and adjustment heuristic may affect
inference from observational epidemiologic results. Consider
the point estimate associating an exposure with a disease,
derived from a study’s results, to be an anchor. Further
consider that stakeholders (the investigator, collaborators,
readers, and policymakers) may be aware of the direction of
an expected systematic error (eg, toward the null). The
anchoring and adjustment heuristic suggests that an adjust-
ment to the point estimate to account for the error will be
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predictably insufficient. Stakeholders will often adjust the
association to account for the error only so far as is plausible,
which adjustment will, on average, be insufficient.

Overconfidence
The second bias relevant to causal inference based on

observational epidemiologic results is called “overconfi-
dence,” which is a systematic error potentially generated by
several heuristics. When asked to estimate an unknown but
familiar quantity, respondents can be taught to provide a
median estimate (the estimate about which they feel it is as
likely that the true value is higher as it is that the true value
is lower) as well as an interquartile range. The interquartile
range is defined by the respondent’s estimate of the 25th
percentile (the estimate about which they feel it is 75% likely
that the true value is higher and 25% likely that the true value
is lower) and the respondent’s estimate of the 75th percentile.
For a well-calibrated respondent, it should be 50% likely that
the true value would fall into the interquartile range. For
example, one might ask the average annual temperature in
Boston, Massachusetts. A respondent might provide a median
estimate of 50°F, a 25th percentile estimate of 40°F, and a
75th percentile estimate of 60°F. The true average annual
temperature in Boston equals 51.3°F.28 Were one scoring this
respondent’s answers, she would receive one point because
her interquartile range contains the true value. A second
respondent might provide a median estimate of 45°F, a 25th
percentile estimate of 40°F, and a 75th percentile estimate of
50°F. Were one scoring this respondent’s answers, he or she
would receive no point because his or her interquartile range
does not contain the true value. Note that the difference in
respondents’ scores derives more from the narrow width of
the second respondent’s interquartile range than from the
distance of the median estimate from the truth. Were the
second respondent’s interquartile range as wide as the first
respondent’s (and centered on the same median estimate),
then the second respondent would also have received a
positive score. Setting the uncertainty range too narrowly is
the hallmark of the overconfidence bias.

In one experiment, a cognitive scientist asked 100
students to answer 10 questions such as the previous question
about the average temperature in Boston.29 For a well-
calibrated student, one would expect the true value to lie in
the interquartile range for 5 of the 10 questions. Using the
binomial distribution to set expectations, one would expect 5
or 6 of the 100 students to give answers such that 8, 9, or 10
of the true values fell into their interquartile ranges. None of
the students had scores of 8, 9, or 10. One would also expect
5 or 6 of the 100 students to give answers such that 2, 1, or
0 of the true values fell into their interquartile ranges. Thirty-
five of the students had scores of 2, 1, or 0. The skew toward
low scores arises because respondents provide too narrow a
range of uncertainty, so the true value lies outside the inter-
quartile range much more often than it lies inside it. The
overconfidence bias acts in the same way when respondents
are asked to give extreme percentiles such as the 1st and 99th
percentiles29 is most pronounced when tasks are most diffi-
cult30 has been observed to act in many different populations

and cultures31 and does not depend strongly on how well
respondents estimate the median.29 In fact, the discrepancy
between correctness of response and overconfidence in-
creases with the knowledge of the respondent. That is, when
a response requires considerable reasoning or specialized
knowledge, the answers of experts are more accurate (ie,
more often correct or nearer to correct) than the answers of
novices. However, the experts’ overconfidence—compared
with novices—increases faster than their accuracy.32

Overconfidence may affect inference from observa-
tional epidemiologic results. Consider the conventional fre-
quentist confidence interval about a point estimate associating
an exposure with a disease, derived from a study’s results, to
be an uncertainty range analogous to the interquartile range
described here. Further consider that stakeholders may be
aware that the interval fails to account for uncertainty beyond
random error and so should be considered a minimum de-
scription of the true uncertainty. The overconfidence bias
suggests that an intuitive inflation of the confidence interval
to account for sources of uncertainty aside from random error
will be predictably insufficient.

Failure to Account for the Base Rate
The final bias relevant to causal inference based on

observational epidemiologic results is called “failure to
account for the base rate,” a result of the representative-
ness heuristic.33 When asked to estimate the probability of
an event on the basis of the base rate frequency of the
event in a relevant reference population and specific evi-
dence about the case at hand, respondents systematically
focus on the specific evidence and largely ignore the base
rate information.34 For example, 60 medical students were
asked35: If a test to detect a disease whose prevalence is
one in 1000 has a false- positive rate of 5%, what is the
chance that a person found to have a positive result
actually has the disease assuming you know nothing about
the person’s symptoms or signs?

Almost half of the respondents answered 95%, which
takes account of only the specific evidence (the patient’s
positive test) and completely ignores the base rate informa-
tion (the prevalence of the disease in the population). Eleven
students gave the correct response (2%). Failure to account
for the base rate does not derive solely from innumeracy.36

Rather, the specific evidence is concrete and emotionally
interesting, thereby more readily inspiring a mental script to
explain its relevance. Base rate information is abstract and
emotionally uninteresting, so less likely to inspire an explan-
atory script that contradicts the specific evidence. In some
experiments, framing the problem in terms of frequencies
rather than probabilities reduces susceptibility to failure to
account for the base rate.37

Failure to account for the base rate may affect inference
from observational epidemiologic results. Consider a conven-
tional epidemiologic result, comprised of a point estimate
associating an exposure with a disease and its frequentist
confidence interval, to be specific evidence about a hypoth-
esis that the exposure causes the disease. Further consider
that stakeholders have devoted considerable effort to gener-
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ating and understanding the research results. The “failure to
account for the base rate” bias suggests that stakeholders are
not likely to adequately account for the base rate of “true”
hypotheses studied by epidemiologists despite exhortations to
use base rate information in epidemiologic inference.38–40

DISCUSSION
Epidemiologists are not alone among scientists in

their susceptibility to the systematic errors in inference
engendered by the heuristics and biases described here. For
example, a review of measurements of physical constants
reported consistent underestimation of uncertainty.41 Mea-
surements of the speed of light overestimated the currently
accepted value from 1876 to 1902 and then underestimated
it from 1905 to 1950. This pattern prompted one investi-
gator to hypothesize a linear trend in the speed of light as
a function of time and a second investigator to hypothesize
a sinusoidal relation. In reaction, Birge42 adjusted a set of
measurements for systematic errors, produced corrected
values and intervals that overstated—rather than understated—
the uncertainty, and concluded that the speed of light was
constant.42 Henrion and Fischoff41 attribute the consistent
underassessment of uncertainty in measurements of phys-
ical constants to investigators using the standard error as
the full expression of the uncertainty regarding their mea-
surements to the impact on their inferences of heuristics
and biases such as those described here and to “real-world”
pressures that discourage a candid expression of total
uncertainty. These same 3 forces likely affect inference
from observational epidemiology studies as well.

Henrion and Fischoff41 recommend 3 solutions. First,
those who measure physical constants should strive to ac-
count for systematic errors in their quantitative assessments
of uncertainty. Second, with an awareness of the cognitive
literature, those who measure physical constants should tem-
per their inference by subjecting it to tests that counter the
tendencies imposed by the heuristics and biases. For example,
overconfidence arises in part from a natural tendency to
overweigh confirming evidence and to underweigh discon-
firming evidence. Forcing oneself to write down hypotheses
and evidence that counter the preferred (ie, causal) hypothesis
can reduce overconfidence in that hypothesis. Last, students
should be taught how to obtain better measurements, includ-
ing how to better account for all sources of uncertainty and
how to counter the role of heuristics and biases in reaching an
inference. These same recommendations would well serve
those who measure epidemiologic associations.

Reducing our enthusiasm about the results we generate
may seem like a suitable alternative. In cognitive sciences
literature, this approach is called debiasing and sorts into 3
categories.43 These categories are: resistance—“a mental op-
eration that attempts to prevent a stimulus from having an
adverse effect,” remediation—“a mental operation that at-
tempts to undo the damage done by the stimulus,” and
behavior control—“an attempt to prevent the stimulus from
influencing behavior.” These strategies are ineffective solu-
tions to tempering the impact of the heuristics and biases
described here.43

Nonetheless, epidemiologists are taught to rely on debi-
asing when making inference. We are told to interpret our
results carefully and to claim causation only with trepidation.
Consider, for example, the disparity between randomized44

and nonrandomized45 studies of the association between
hormone replacement therapy and cardiovascular disease,
one of the most recent and high-profile examples of hypoth-
eses supposedly established by observational epidemiologic
research and subsequently reversed or discounted. Three
commentators offered advice tantamount to a warning to “be
careful out there.” One wrote that we should be “reasonably
cautious in the interpretation of our observations,”46 the
second wrote “we must remain vigilant and recognize the
limitations of research designs that do not control unobserved
effects,”47 and the third wrote “future challenges include
continued rigorous attention to the pitfalls of confounding in
observational studies.”48 Similar warnings are easy to find in
classroom lecture notes and textbooks.

The reality is that such trepidation, even if imple-
mented, is ineffective. Just as humans overstate their certainty
about uncertain events in the future, we also overstate the
certainty with which we believe that uncertain events could
have been predicted with the data that were available in
advance had they been more carefully examined. The
tendency to overstate retrospectively our own predictive
ability is colloquially known as “20 –20 hindsight.” Cog-
nitive scientists, however, label the tendency “creeping
determinism.”11

Creeping determinism can impair one’s ability to judge
the past or to learn from it. It seems that when a result such
as the trial of hormone therapy becomes available, we imme-
diately seek to make sense of the result by integrating it into
what we already know about the subject. In this example, the
trial result made sense only with the conclusion that the
nonrandomized studies must have been affected by unmea-
sured confounders, selection forces, and measurement errors,
and that the previous consensus must have been held only
because of poor vigilance against systematic errors that act on
nonrandomized studies. With this reinterpretation, the trial
results seem an inevitable outcome of the reinterpreted situ-
ation. Making sense of the past consensus is so natural that
we are unaware of the impact that the outcome knowledge
(the trial result) has had on the reinterpretation.49 Therefore,
merely warning people about the dangers apparent in hind-
sight such as the recommendations for heightened vigilance
quoted previously has little effect on future problems of the
same sort.11 A more effective strategy is to appreciate the
uncertainty surrounding the reinterpreted situation in its orig-
inal form. For example, several epidemiologists had ques-
tioned the preventive relation between hormone replacement
therapy and cardiovascular disease before the trials,50–53 so
the uncertainty engendered by their original criticisms should
now receive due attention. Better still is to appreciate the
uncertainty in current problems, applying lessons from the
past such as the concurrent questions raised by these epide-
miologists, to avoid similar problems in the future.

In fact, cataloging the uncertainty surrounding events is
the one method of removing bias that reliably reduces over-
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confidence. Simply weighing whether a hypothesis is true—
equivalent to the “vigilance” recommended by editorialists on
the putative cardioprotective effect of hormone replacement
therapy—actually increases belief of the validity of the hy-
pothesis because a person focuses more on explanations as to
why it could be true than why it could be false.43 To remove
bias, a person must consider the opposite. That is, one must
imagine alternative hypotheses, which should illuminate the
causal hypothesis as only one in a set of competing explana-
tions for the observed association. Viewing infrequent events
in their set structure improves probability judgments.54 These
general recommendations have been suggested to epidemiol-
ogists as constructive methods to reveal uncertainties.55

Conventional observational research treats nonrandom-
ized data as if it were randomized in the analysis phase. In the
inference phase, investigators usually offer a qualitative dis-
cussion of limitations, which are too often discounted without
quantification as important threats to validity. Alternatives
that quantify threats to validity do exist but have been
infrequently adopted. Instead, epidemiologists are warned to
make inference with trepidation because of the potential for
systematic error. This paradigm corresponds quite well with
circumstances known to be ripe for the impact of the heuris-
tics and biases described here. In the presence of sparse
evidence and a low base rate of true hypotheses, those who
assess the probability of an event—such as the truth of the
hypothesis—are overconfident, on average.25

Epidemiologists could explicitly specify alternatives to
the causal hypothesis and quantify the uncertainty about the
causal association induced by each alternative hypothesis.
This alternative paradigm removes the guesswork about sizes
of systematic errors, compared with the size of exposure
effects, from the Associative System and places it under the
purview of the Rule-based System. The second paradigm
prompts investigators to list explanations for results that
counter their preferred hypothesis and requires that they
incorporate these hypotheses into their assessments of uncer-
tainty. Were such a list and quantification to become the
norm, then confidence in the causal explanation would be
appropriately reduced compared with the status quo, even if
the list was not exhaustive or the quantification was not
accurate. The result would be a more complete description of
total uncertainty and an effective counter to the impact of the
heuristics and biases described here.
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