A relational account of low power: The role of the attachment system in reduced proactivity

Jieun Pai a,*, Jennifer Whitson b, Junha Kim c, Sujin Lee d

a Frank Batten School of Leadership and Public Policy, University of Virginia, 235 McCormick Road, Charlottesville, VA 22904, United States
b The UCLA Anderson School of Management, 110 Westwood Plaza, Los Angeles, CA 90095, United States
c College of Business, The Ohio State University, 2100 Neil Ave, Columbus, OH 43210, United States
d College of Business, School of Business and Technology Management, KAIST, 291 Daehak-ri, Yuseong-gu, Daejeon 305-701, Republic of Korea

ARTICLE INFO

Keywords:
Attachment theory
Proactivity
Power

ABSTRACT

Although the literature provides widespread evidence for the effect of power on action, a systematic understanding of why low power individuals are less prone to action is still lacking. We focus on proactive behavior as a particular form of action and propose a relational underpinning of the link between low power and reduced proactive behavior through the framework of attachment theory. We predict that the experience of low power will increase attachment anxiety, and that this increase in attachment anxiety will reduce proactive behavior. We test the proposed theory in a series of four pre-registered experiments and one quasi-experimental field study. In Study 1, 2, and 3, we test the mediating role of attachment anxiety on the relationship between low power and proactivity. In Study 4 and 5, we test theoretically driven attachment security interventions to mitigate the link between low power and reduced proactivity. We demonstrate that attachment security interventions help low power individuals to be more proactive in an organizational field quasi-experiment (Study 4) and in an experiment (Study 5). Overall, we find support for attachment anxiety as an important factor in the experience of low power individuals which inhibits proactive behavior; we further offer a powerful intervention grounded in attachment theory to ameliorate this effect.

1. Introduction

Organizations are rife with differences in power (i.e., the capacity to influence or control resources, rewards, punishments, and other people; Magee & Galinsky, 2008). Power is the basis of hierarchical differentiation and is inherently relational. That is, power determines and is determined by bonds between people who distribute resources (whether tangible or intangible) and those who need them (De Waal, 2007; Magee & Galinsky, 2008). Given the pyramid-shaped nature of hierarchies, the majority of organizational members will report to someone who has power over them, thus putting them in the position to think, feel, and behave as low power individuals. For example, even departmental directors will feel low power when interacting with C-suite executives. The experience of low power can create challenges for the organization by inhibiting the very behaviors that are useful in driving organizational success – i.e., the self-initiated exploratory actions that constitute proactive behavior.

Exploratory actions function as a method via which individuals can proactively explore, learn about, and influence their environment (Elliot & Reis, 2003; Feeney & Thrush, 2010; Grant & Ashford, 2008; Hazan & Shaver, 1990; Noe, 1986). The need of modern organizations to decentralize and innovate requires proactive behaviors from their employees (i.e., self-directed engagement with the environment; Campbell, 2000; Frese & Fay, 2001; Frohman, 1997; Parker, 2000; Wu, 2019). When employees do so, it can lead to improved sales performance (Grant, 1995), entrepreneurship (Becherer & Maurer, 1999), and innovation at the individual and firm level (Kickul & Gundry, 2002; Seibert, Kraimer, & Grant, 2001). High power individuals’ capacity to control valued resources reduces their dependence on others and affords more proactive behaviors (Keltner, Gruenfeld, & Anderson, 2003), such as initiating the first offer in negotiations (Magee, Galinsky, & Gruenfeld, 2007), changing their surroundings to fit their needs (Galinsky, Gruenfeld, & Magee, 2003), and displaying risk- and pressure-tolerance which allows them to persistently pursue beneficial outcomes even
under less than ideal conditions (Anderson & Galinsky, 2006). In contrast, low power individuals’ limited resources increase their dependence on those who do have power and inhibit them from displaying proactive behaviors (Anderson & Galinsky, 2006; Galinsky et al., 2003).

For organizations to thrive, low power members often need to behave proactively, by pointing out organizational problems (Fang, Kim, & Miliken, 2014; Kim & Kim, 2020; Miliken, Morrison, & Hewlin, 2003; Vuori & Huy, 2016), taking initiative in pursuing goals (Frese & Fay, 2001; Roberson, 1990), and actively adapting to new environments (Ashford & Black, 1996). However, low power members are less likely to propose new ideas (Kim & Kim, 2020), to share negative, yet accurate information with top managers (Deter & Burris, 2007; Fang et al., 2014; Miliken et al., 2003; Vuori & Huy, 2016), to be innovative (Zhang & Bartol, 2010), and to learn new skills, all of which risk leading to major organizational failure (Vuori & Huy, 2016). These findings highlight the importance of understanding the underlying mechanisms of why low power employees are less prone to proactive behaviors when needed and what interventions can encourage them to behave proactively.

Nevertheless, much research has largely focused on the experience of high power (Anderson & Galinsky, 2006; Anderson & Thompson, 2004; Galinsky et al., 2003; Galinsky, Ku, & Wang, 2005; Galinsky, Magee, Inesi, & Gruenfeld, 2006; Magee et al., 2007). This focus on high power implies, by the lack of attention to low power, that low power might be thought of as simply the absence of power. However, Schaerer, du Plessis, Yap, and Thau (2018) have demonstrated that while low power individuals sometimes behave in opposite ways than high power individuals (e.g., they exhibit less exploratory proactive behaviors), at other times, they behave similarly (e.g., they objectify others to a similar extent). Congruently, Smith and Hofmann (2016) found that low power and high power often had different, and not just opposite effects. This suggests that unique phenomena come into play only during the experience of low power and that it is inappropriate to infer the psychological processes of low power individuals from those of high power individuals. The current research investigates the experience of low power individuals, providing a relational lens through which to interpret and predict their proactive behaviors (and lack thereof), as well as offering potential interventions to increase low power individuals’ proactive behaviors within organizations. Because power exists within social relationships, we use attachment theory to elucidate a relational underpinning for the link between low power and reduced proactive behaviors.

In this research, we put forth that the inherently relational nature of power suggests another system, composed of learned patterns of responses built on individuals’ past relationships with others (BretHerton & Munholland, 2008). This attachment system is a regulatory system which evolved to achieve the goal of felt-security (Bowlby, 1969, 1982; BretHerton, 1985). We suggest the attachment system provides important mechanisms that illuminate the experiences of low power, and integrate theories of power and attachment theory to offer a novel and cogent relational underpinning for the link between low power and reduced proactive behavior. We propose and discuss below that the vulnerability of being in a low power position invokes the attachment system as a coping strategy, specifically, attachment anxiety. Consequently, the increase in attachment anxiety distorts from engaging in exploratory actions (e.g., proactive workplace behaviors). Thus, attachment anxiety helps explain the link between low power and reduced action (i.e., reduced proactivity). We further explore whether the effect of low power on proactive behavior is mitigated when attachment anxiety is reduced.

It is worth noting that our approach is not intended to supplant those grounded in the approach/inhibition theory of power (Keltner et al., 2003), but rather to complement them. Keltner et al. (2003) have theorized that low power individuals are less active due to the behavioral inhibition system (BIS; Carver & White, 1994). Yet, it is still an open question whether the BIS accounts for all the effects of low power. In this paper, we specifically focus on proactive behavior, as its exploratory nature allows us to utilize the lens of attachment theory to understand power dynamics (Wu, 2019; Wu, Parker, Wu, & Lee, 2018). We propose and demonstrate that the attachment system does indeed function as an underlying mechanism of the relationship between low power and reduced proactive action, and that interventions based on attachment theory mitigate this effect, insulating individuals from the action-discouraging effects of low power.

We seek to make several contributions to theories of power. First, our study builds on recent explorations of individuals at the bottom of the hierarchy (e.g., Hays & Bendersky, 2015; Schaerer et al., 2018). As demonstrated by Schaerer et al. (2018), extant theories, study designs, and attributions of results in social power research predominantly focus on high power individuals, leaving us an insufficient understanding of low power individuals. Our work extends this line of research on the unique system of responses of low power individuals and introduces the attachment system as a key explanatory factor. Second, organizational research has long been interested in the proactive behaviors of organization members (see Grant & Ashford, 2008 for a review). Our research carries implications for the effect of low power on key organization-relevant measures of proactivity. Specifically, many of the behaviors that are often seen as desirable in employees may be muted during the experience of low power, for example, spontaneously pointing out errors, sharing innovative ideas, and employing voice. Third, we provide interventions based on our theoretical framework that attachment security can disinhibit low power employees and increase their ability to be proactive.

2. Theory and hypotheses

2.1. Low power and the behavioral inhibition system

A key paradigm of power research is based on the notion that the experience of low power motivates individuals to avoid negative outcomes (Keltner et al., 2003), and that this motivation is responsible for the behavioral inhibition which reduces action (Keltner et al., 2003). However, recent papers have suggested that low power individuals exhibit behaviors for which the BIS is an insufficient explanation (Case, Conlon, & Maner, 2015; Rucker & Galinsky, 2008, 2009; Schaerer et al., 2018; Waytz, Chou, Magee, & Galinsky, 2015). For example, the power framework based on the BIS (Keltner et al., 2003) suggests low power should increase inhibition and thus reduce objectification of others (Gruenfeld, Inesi, Magee, & Galinsky, 2008). However, a recent examination demonstrated that both high and low power individuals show greater objectification of others, compared to those in a baseline condition (Schaerer et al., 2018). There is also evidence that at times individuals with low power are actually more likely to act than those with high power, but only for certain behaviors. Interestingly, these actions are all related to gaining social approval and acceptance. For example, low power individuals were more interested in friendship-facilitating gatherings, and positioned their chair physically closer to their assigned partner’s than high power individuals (Case et al., 2015). Furthermore, low power consumers were more willing to pay for status-signaling products and preferred conspicuous logos on high-end clothing than high power consumers (Rucker & Galinsky, 2008, 2009; Rucker, Dubois, & Galinsky, 2010), all actions intended to increase social appeal to others.

2.2. Low power and the attachment system

We argue that a crucial window into the psychology of low power is to consider it in terms of its social aspects. We suggest that low power is a threatening state in a social relationship, which invokes a learned system of responses derived from past relationships with others. This learned system of responses, called the attachment system, focuses on how to achieve a greater felt-security (Pietromonaco & Barrett, 2000)
and provides an important relational mechanism to unpack the experience of low power.

Low power has been portrayed as an aversive, threatening state, compared to high power (Keltner et al., 2003; Magee & Galinsky, 2008). People with low power face a world of threats and uncertainty (Keltner et al., 2003), depend largely on the powerful to obtain rewards and avoid punishments (Emerson, 1962; Galinsky, Magee, Gruenfeld, Whitson, & Lilienquist, 2008), and are often under threat of losing the favor of powerful others (Chance, 1967; Keltner et al., 2003). Also, people in low power tend to perceive threats in ambiguous social interactions (Schwartz, Dodge, & Cole, 1993). Even physiological evidence suggests that experiencing low power is an aversive, threatening state (e.g., lower levels of serotonin; Munafo et al., 2003). Because low power only exists in the context of a relationship with someone who has the power to provide or withhold resources, low power is inherently relational.

As experiencing low power is an aversive and threatening state in a relational context, we propose it will involve the attachment system (Bowlby, 1969, 1982). Attachment theory (Bowlby, 1969, 1982) contends that humans are born with a system that, when they feel under threat or in danger, drives individuals to seek proximity, comfort, and assistance from caring and supportive others (i.e., attachment figures). This attachment system is a psychological regulatory system that governs the employment of behavioral sequences aimed at attaining the goal of felt-security, a state that occurs when individuals are confident that their attachment figures will respond to their needs (Bretherton, 1985). Even physiological evidence suggests that experiencing low power is an aversive, threatening state (e.g., lower levels of serotonin; Munafo et al., 2003). Because low power only exists in the context of a relationship with someone who has the power to provide or withhold resources, low power is inherently relational.

2.3. Attachment anxiety as mechanism

We predict that the threatening state of being low power will increase attachment anxiety. The attachment system has two orthogonal continuous dimensions—attachment anxiety and attachment avoidance—with low scores on both dimensions indicating attachment security (Ainsworth et al., 1978; Brennan, Clark, & Shaver, 1998; Simpson, Rholes, & Phillips, 1996). When individuals are threatened, qualities of the situation that are similar to past experiences invoke a particular attachment representation to shape a response to the threat (Hazan & Shaver, 1987; Hazan & Zeifman, 1999). We propose that experiencing low power will increase attachment anxiety, but not attachment avoidance. Attachment anxiety results from an attachment figure who is inconsistent or not prompt in responding to one’s bids for approval, proximity, protection, and support (Ainsworth et al., 1978; Brennan et al., 1998; Simpson et al., 1996). When state attachment anxiety increases, individuals become more preoccupied with uncertainty about whether their partner will accept versus reject them, worry about losing their current partner, and remain vigilant to signs that their partner could pull away (Mikulincer & Shaver, 2007).

We argue that the experience of low power is threatening, and qualities of that situation share similarities with experiences of anxious attachment, therefore increasing attachment anxiety as individuals seek to cope with that threat. For example, low power individuals are often unaware of the exact reason they are being rewarded or punished (Butterfield, Trevino, & Ball, 1996), meaning they are more likely to feel that responses to their needs will be equally inconsistent. In fact, low power individuals generally experience higher uncertainty, lower confidence, and greater dependence (Lammers, Dubois, Rucker, & Galinsky, 2013; Smith, Wibhuld, & Dijksterhuis, 2008), exaggerating for them both the need for approval, protection, and support, as well as the concern that they will not receive it. Low power individuals also tend to be more uncertain about whether they would receive social support when needed (Brion & Anderson, 2013). We therefore predict that the experience of low power will increase attachment anxiety, as it will drive uncertainty with regard to whether approval, proximity, protection, and support will be promptly and consistently attained.

In contrast, we expect the avoidance dimension of the attachment system to be less relevant to power relationships. Attachment avoidance results from an attachment figure who is consistently unavailable, rejects, and does not provide support, security, protection, and approval. When state attachment avoidance increases, individuals orient away from their partner and instead try to be self-reliant and independent to handle insecurity via social distancing (Mikulincer & Shaver, 2007). Low power individuals’ proximity-seeking efforts are unlikely to engender consistent rejection—the spur most relevant to the attachment system’s avoidance dimension. Rather, low power individuals seeking reassurance are likely to feel they receive or are denied it at unpredictable intervals. As classical conditioning shows, random reinforcement creates some of the most persistent behaviors in pursuit of rewards (Papini & Bitterman, 1990). Furthermore, a drive for independence is more relevant to attachment avoidance, and low power increases dependence on others as compared to baseline, rather than decreasing it (Rucker et al., 2010). The dependence of low power individuals on high power individuals likely also makes distancing attempts appear even riskier. Thus, we expect power relationships not to activate the attachment system’s avoidance dimension.

Hypothesis 1. Low power individuals exhibit a higher level of attachment anxiety than baseline or high power individuals.

We further predict that low power individuals will show reduced proactive behaviors because of increased attachment anxiety. Attachment theory involves both attachment and exploration systems, which act in complementary balance with one another (Ainsworth et al., 1978; Bowlby, 1969, 1982; Elliot & Reis, 2003). Individuals with a more secure sense of attachment use attachment figures as launching pads to
explore and learn about their environment as part of the exploration system (Ainsworth et al., 1978; Bowlby, 1969, 1982; Hazan & Shaver, 1990). As threat increases, so too does the influence of the relevant attachment system, which suppresses the exploration system as individuals shift their focus to regaining felt-security. In other words, the anxious attachment system distracts the individual from exploration as they become preoccupied with uncertainty with regard to the availability of an attachment figure, which saps their confidence about venturing out to engage with their environment (Fraley, Garner, & Shaver, 2000; Hazan & Shaver, 1994).

A widespread form of adulthood exploratory behavior involves work and the workplace (Hazan & Shaver, 1990), particularly proactive behaviors (Wu & Parker, 2012, 2017; Wu et al., 2018). Proactive behaviors are often defined as “action that employees take to impact themselves and/or their environments” (Grant & Ashford, 2008, p. 8), motivated by the desire to actively control their environment (Bateman & Crant, 1993). Congruently, Elliot and Reis (2003) tie exploration behaviors in adulthood specifically to the, “desire for effective, competent interactions with the environment,” which drives individuals to, “investigate, manipulate, and master the environment” (p. 318). When employees engage in proactive behaviors such as seeking feedback (Ashford, Blatt, & VandeWalle, 2003; Ashford & Cummings, 1985) they are investigating their environment by actively pursuing more information. Employees seeking to manipulate and master their environment proactively take initiative in pursuing personal and organizational goals (Frese & Fay, 2001; Roberson, 1990), use their voice (LePine & Van Dyne, 1998, 2001), sell issues to colleagues (Dutton & Ashford, 1993), revise their tasks (Staw & Boettger, 1990), craft jobs (Wrezesniewski & Dutton, 2001), and manage their social networks to further their careers (Morrison, 2002; Ostroff & Kozlowski, 1992). In other words, because they involve employees seeking out information and influencing their environment, proactive behaviors are a form of adult exploratory behavior occurring in professional and organizational contexts.

Because proactive behaviors depend on the engagement of the exploration system, which is suppressed when attachment anxiety increases, they should also be reduced when attachment anxiety increases. Indeed, past research has shown that individuals with high attachment anxiety tend to be distracted in the workplace, where they frequently worry about rejection for poor performance and are mostly motivated by anxiety (Grossmann, Grossmann, Kindler, & Zimmernann, 2008). Thus, reducing attachment anxiety by providing attachment security should allow low power individuals to exhibit increased levels of proactive behaviors.

We also suggest that this sense of security can come from a number of sources, including leaders and managers. Indeed, empirical work shows that leaders can serve as a secure base for their followers (Davidovitz et al., 2007; Maysesless & Popper, 2007; Maysesless, 2010; Zanna & Maysesless, 2007). Specifically, certain types of leaders seem to foster attachment security among their employees (Molerio, Moriano, & Shaver, 2013), and good leader-member exchange relations are positively related to attachment security (Richards & Hackett, 2012). Employees who reported attachment security at work displayed less burnout (Simmons et al., 2009) and more organizational citizenship behaviors (Richards & Schat, 2011). Accordingly, we suggest that secure support from a manager or supervisor will reduce state attachment anxiety for low power individuals, increasing their proactive behaviors:

Hypothesis 3. Low power individuals will be more proactive when attachment security is made salient as opposed to not.

3. Overview of studies

In a series of four pre-registered experiments and one quasi-experimental field study, we examine our hypothesized relationships. First, to provide evidence that low power individuals are less proactive, and that this relationship is mediated by attachment anxiety, we manipulate each chain of the proposed mediation (Spencer, Zanna, & Fong, 2005). Specifically, in Study 1, we experimentally test the effects of low power on attachment anxiety, and in Study 2, we experimentally test the effects of attachment anxiety on proactivity. Next, in Study 3, we integrate Study 1 and 2 and manipulate low power to examine its effects on proactivity as mediated by attachment anxiety. Study 4 and 5 then explore possible interventions to weaken the low power-reduced proactivity link through state attachment security. In Study 4, we conduct a quasi-experiment in a company field setting with low power employees (i.e., those with managers but without subordinates) and examine the effects of a secure attachment intervention on proactive behavior. Study 5 employs an interaction paradigm in which all participants are low power and interact with a high power counterpart who behaves in a fashion congruent with either attachment-security- or anxiety-inducing figures. To lend support for the robustness of the effects, we used multiple methods to manipulate power (i.e., recalling experiences of power and simulating power via a subordinate role in a task), multiple measures of proactive behaviors (i.e., providing feedback on task design, voicing opinions to high power counterparts, and sharing innovative ideas), and explore two forms of intervention (i.e., making a secure relationship with a manager salient, and interacting with an attachment-security-inducing figure). The study materials and data without identifiable information for Study 1, 2, 3, and 5 are posted as a supplement online at the Open Science Framework (https://osf.io/abz7/?view_only=8be0d1bbedc64e95a984fadcd3fe836).
4. Study 1

Study 1 set out to experimentally test Hypothesis 1, that individuals with low power will exhibit greater state attachment anxiety than those with high power. To rule out the possibility that high power is driving the results, we conducted a pre-registered study (https://aspredicted.org/4zi57.pdf), in which we compared low power to both high power and a baseline condition. To do so, we employed a power recall task (Galinsky et al., 2003) and expected that low power participants, as opposed to high power and baseline participants, would experience greater state attachment anxiety. We also measured state attachment avoidance to test whether it was indeed less relevant to the experience of power.

4.1. Participants and design

We recruited 905 participants from Prolific Academic. As in the pre-registration, we excluded participants who incorrectly answered our attention check, leaving 787 participants (396 men, 13 non-binary people, 4 prefer not to say; M_{age} = 31.38, SD_{age} = 11.18). Participants were randomly assigned to a high power, low power, or baseline condition.

4.2. Procedure

Power manipulation. We instructed participants in the high power condition to recall and write about an experience in which they had power over others, while those in the low power condition recalled and wrote about an experience in which someone else had power over them (e.g., Anderson & Galinsky, 2006; Galinsky et al., 2003). In the baseline condition, we asked participants to recall and write about the most recent bird they saw.

State attachment measure. After completing the recall task, participants reported their state attachment anxiety and state attachment avoidance using the modified Experiences in Close Relationship Scale-Short Form (ECR-S; Wei, Russell, Mallinckrodt, & Vogel, 2007) with regard to how they felt “at the moment.” Example items for state attachment anxiety included “At this moment, I worry that other people do not really care for me.” (3 items; α = 0.89). Example items for state attachment avoidance included “At this moment, I would talk things over with people.” (reversed; 6 items; α = 0.79). All items used a 7-point response scale ranging from 1 (strongly disagree) to 7 (strongly agree).

4.3. Results and discussion

As pre-registered, a one-way between-subjects ANOVA was conducted to compare the effect of power on state attachment anxiety in the low power, high power, and baseline conditions. There was a significant effect of power on attachment anxiety, F(2, 784) = 5.10, p = 0.006. Post hoc comparisons using the Tukey HSD test indicated that attachment anxiety for participants in the low power condition (M = 3.96, SD = 1.66) was significantly higher than the baseline (M = 3.59, SD = 1.72; 95% CI = [0.098,0.080], p = .008) or the high power condition (M = 3.64, SD = 1.75; 95% CI = [0.021,0.751], p = .035). State attachment anxiety for participants in the high power condition was not significantly different from those in the baseline condition (95% CI = [-0.288, 0.422], p = .898). Power had no significant effect on attachment avoidance, F(2,784) = 1.40, p = .247 (M_{low power} = 3.74, SD = 1.11; M_{high power} = 3.64, SD = 1.13; M_{baseline} = 3.59, SD = 1.18).

These results support Hypothesis 1, in that low power individuals experience greater attachment anxiety than both high power and baseline individuals. Furthermore, low power was only associated with increased state attachment anxiety, not attachment avoidance, suggesting the latter is less relevant to the experience of power.

5. Study 2

Study 1 demonstrated a causal relationship between low power and state attachment anxiety. Next, we conducted a pre-registered study (https://aspredicted.org/wf6ti.pdf) to test whether heightened state anxiety would reduce proactivity. To do so, we manipulated state attachment anxiety using a priming task (Chugh et al., 2014) and measured participants’ proactivity (Grant & Rothbard, 2013), predicting that participants primed with attachment anxiety would be less proactive compared to a baseline condition. Study 2 also intentionally primed attachment anxiety in the context of a relationship with someone who had power over the participants to help confirm the organizational relevance of the findings.

5.1. Participants and design

We recruited 595 participants from Amazon Mechanical Turk (243 men, 10 non-binary people, 3 prefer not to say; M_{age} = 38.19, SD_{age} = 12.64) randomly assigning them to the attachment anxiety or baseline condition.

5.2. Procedure

State attachment manipulation. Participants read a paragraph priming attachment anxiety (Chugh et al., 2014), which asked them to recall a situation in which their relationship with their manager or supervisor reflected attachment anxiety at the workplace. They read:

In the workplace, people frequently interact with their boss (i.e., their manager or supervisor). Try to recall a particular situation in which you were anxious because you found your boss was reluctant to get as close as you would like and to depend on you. You wanted to know them more, but you somehow felt that they didn’t want you. You were unsure whether they liked you. You often worried that they didn’t really accept you.

The baseline condition, as in Study 1, asked participants to recall and write about the last time they saw a bird.

Proactive behavior measure. Participants were told we were planning to conduct another study in the future to understand employee proactivity. They were asked to write up to five statements defining proactivity. They were then told they would be shown seven statements, ostensibly written by previous participants who had completed the same task, that the experimenters were planning to use in future studies. Following Grant and Rothbard (2013), each of the seven statements had definitional and grammatical errors (e.g., “waiting for things to unfold before responding” is not a definition of proactivity; similarly, “Proactivity is very important!” is an irrelevant response to a request for a definition). Participants had the option—though they were not required—to comment on each sentence. Following the pre-registration, we operationalized proactivity as the number of statements participants commented on, as well as the length of those comments (given that lengthier comments indicate more effort made in voicing corrections; Detert & Burris, 2007). Both of these factors constitute change-oriented action directed toward improving the task, consistent with research on proactive behaviors such as task revision (Grant & Rothbard, 2013; Staw & Boettger, 1990) and suggestion voicing (Grant, Gino, & Hofmann, 2011).

1 We also ran an analysis including participants who failed the attention check and the effect of power on attachment anxiety remained significant, F (2,902) = 4.20, p = .015, and its effects on attachment avoidance were again not significant, F(2,902) = 1.42, p = .242.
5.3. Results and discussion

We examined the number of errors corrected using Poisson regression (as the number of errors is a count) with conditions (attachment anxiety coded 1, baseline coded 0) as a predictor. As expected, we found that participants in the attachment anxiety condition (M = 3.74, SD = 2.94) corrected fewer errors compared to those in the baseline condition (M = 4.32, SD = 2.91), $b = -0.144, SE = 0.041, z = -3.48, 95\% CI = [-0.225, -0.063], p = .001$. Likewise, regressing the length of written corrections on condition, as predicted, showed that participants in the attachment anxiety condition (M = 137.00, SD = 158.41) made significantly shorter corrections than those in the baseline condition (M = 165.62, SD = 186.25), $b = -28.61, SE = 14.43, t = -1.98, 95\% CI = [-56.962, -0.267], p = .048$.

Study 2 found that attachment anxiety reduced proactivity in the form of task revision, for both number of errors participants corrected and the length of their written corrections.

6. Study 3

Study 1 demonstrated a causal relationship between low power and state attachment anxiety, with low power increasing state attachment anxiety, and Study 2 demonstrated a causal relationship between state attachment anxiety and proactivity, with heightened attachment anxiety reducing proactivity. In Study 3, which we pre-registered (https://aspre.cit.org/4mt24.pdf), we integrate the full model and test both Hypothesis 1 (that low power increases state attachment anxiety), and Hypothesis 2 (that state attachment anxiety mediates the relationship between low power and reduced proactivity). To explore the proposed relationship, we manipulated power and measured attachment anxiety as in Study 1 and measured proactive behavior as in Study 2.

6.1. Participants and design

We recruited 600 participants (278 men, 7 non-binary people, 4 prefer not to say; $M_{age} = 37.87, SD_{age} = 11.82$) from Amazon Mechanical Turk, randomly assigning them to a low power or baseline condition.

6.2. Procedure

Power manipulation. We manipulated low power by asking participants to recall a time someone had power over them at the workplace. In the baseline condition, we asked participants to recall and write about the last bird they saw.

State attachment measure. We used the same attachment measure as in Study 1 ($\alpha = 0.91$ for attachment anxiety, $\alpha = 0.86$ for attachment avoidance).

Proactive behavior measure. We used the same proactivity task as in Study 2.

6.3. Results and discussion

First, we examined the effect of power (low power coded 1, baseline coded 0) on state attachment. A one-way between-subjects ANOVA found a significant effect of power on attachment anxiety, $F(1, 598) = 3.93, p = .048$. Participants in the low power condition reported significantly more attachment anxiety ($M = 3.13, SD = 1.75$) than those in the baseline condition ($M = 2.85, SD = 1.69; 95\% CI = [0.063, 0.556], p = .048, n^2 = 0.007$, supporting Hypothesis 1. As expected, we did not find a significant effect of power on attachment avoidance, replicating Study 1, $F(1, 198) = 2.49, p = .115$ ($M_{low\ power} = 3.51, SD = 1.32$; $M_{baseline} = 3.34, SD = 1.35$).

Next, to replicate previous findings in power research (e.g., Karremans & Smith, 2010; Keltner et al., 2003; Lammers et al., 2013), we examined the effect of power on proactivity. As in Study 2, we examined both the number of errors corrected as well as the length of written corrections. For the number of errors corrected, a Poisson regression found a significant effect for power ($M_{low\ power} = 3.60, SD = 3.03$; $M_{baseline} = 4.41, SD = 2.86$), $b = -0.202, SE = 0.043, z = -4.88, 95\% CI = [-0.283, -0.121], p < .001$. For the length of written corrections, a regression also found a significant effect for power ($M_{low\ power} = 128.59, SD = 144.90; M_{baseline} = 161.72, SD = 150.29$), $b = -33.131, SE = 12.126, t = -2.73, 95\% CI = [-56.95, -9.32], p = .006$. Low power reduced proactive activity as compared to baseline.

We then examined the effect of power and attachment anxiety on proactivity. For the number of errors corrected, a Poisson regression found a significant negative association by condition (low power compared to baseline), $b = -0.194, SE = 0.042, z = -4.67, 95\% CI = [-0.275, -0.113], p < .001$, and a significant negative association with attachment anxiety, $b = -0.029, SE = 0.012, z = -2.44, 95\% CI = [-0.053, -0.006], p = .015$. Bootstrapped 95% bias-corrected confidence intervals with 1,000 iterations included zero (−0.029, 0.0004), but at 90% confidence intervals excluded zero (−0.025, −0.0004), indicating a marginally significant indirect effect. We also examined the length of written corrections as a function of condition and attachment anxiety. As expected, a regression on length of written corrections found a significant negative association by condition (low power condition compared to baseline), $b = -31.378, SE = 12.11, t(597) = -2.58, 95\% CI = [-51.385, -11.372], p = .010$, and a marginally significant negative association with attachment anxiety, $b = -6.275, SE = 3.52, t = -1.78, 90\% CI = [-12.066, -0.483], p = .075$. Bootstrapped 95% bias-corrected intervals with 1,000 iterations excluded zero (−6.396, −0.027), indicating that state attachment anxiety mediated the relationship between low power and low proactivity, in support of Hypothesis 2.

We ran the same analyses with attachment avoidance as a mediator for the effects of power on both the number of errors corrected (−0.021, 0.003) as well as the length of written corrections (−4.637, 0.339) and both included zero, showing that attachment anxiety, but not attachment avoidance, is related low power’s effects on proactive behaviors.

In Study 3, we integrated results from Study 1 and 2 and demonstrated that heightened attachment anxiety indeed mediated the relationship between low power and reduced proactivity. While the results of Study 1, 2, and 3 support the proposed theory, with a significant indirect effect when proactivity was measured as a continuous variable (i.e., the length of written corrections), there was only a marginal indirect effect when measured as a count variable (i.e., the number of errors corrected), despite the study being well-powered. To explore how generalizable the effects were, different operationalizations of proactivity were used in Study 4 and 5.

7. Study 4

Study 1 through 3 provided support for both Hypotheses 1 and 2 using experimental manipulations of power and state attachment anxiety, finding a causal relationship between power, state attachment anxiety, and reduced proactivity. Study 4 and 5 focus on the moderating effects of attachment security, with the expectation that low power participants will be more proactive when attachment security is salient as opposed to not.

Study 4 had two goals: (1) To manipulate state attachment security to further establish causality; (2) To show that state attachment security

2 We asked coders to examine the participant responses and conservatively count whether the responses were truly proactive in nature. With the coded data, we find a significant indirect effect at the 95% level for the count measure [−0.073, −0.001] as well as the length measure [−3.738, −0.072]. Given that Study 2 used the same paradigm, we also submitted Study 2’s participant responses to the same process, and the results remain significant. The coding schema and additional analyses have been uploaded to the OSF repository associated with this project.
gained from sources within a workplace context would be effective. As discussed above, leaders and managers can provide attachment security (Davidovitz et al., 2007; Mayseless & Popper, 2007; Mayseless, 2010; Popper & Mayseless, 2007). Following this logic, we ran a field experiment and manipulated state attachment security in the workplace among low power employees. We predicted that state attachment security would moderate the link between low power and reduced proactivity, such that the link will be weaker when attachment security is salient compared to when it is not. In this study we focused on innovation (Grant, 2000) as a form of proactivity in the workplace which contributes to the identification of a problem, the generation of novel ideas, and their implementation (Seibert et al., 2001). Innovative behavior (e.g., coming up with new ideas), is considered an extra-role behavior, as it involves the development of new ideas, processes, and routines at organizations (Welbourne, Johnson, & Erez, 1998). Innovative behaviors can also drive bottom-up change via the voicing of constructive ideas (Grant et al., 2011; Van Dyne & LePine, 1998). We examined innovative behaviors among low power employees (defined as those who do not have supervisory responsibilities and therefore do not have control over any subordinates’ outcomes).

7.1. Context and design

A Fortune 500 manufacturing company implemented a tool aimed at gathering ideas from technicians. The technician role in this company involved frontline employees without managerial or supervisory responsibilities but with supervisors they reported to (i.e., the technicians are low power in this context). The total number of technicians in the organization numbered 3823 (3489 men; 20% of the workforce). Of the total number of technicians, 2499 (65%) were low power employees. In the past six months, recognize the employees who submitted the potential idea contributors. In the first six months following the launch of the tool, 55 technicians submitted ideas.

The field study occurred in the context of a company relaunch of the idea gathering tool. The company planned to select two ideas submitted in the past six months, recognize the employees who submitted the ideas, and make salient the existence of the idea gathering tool via posters hung in break rooms across all branches of the organization encouraging technicians to submit their ideas via the idea gathering tool.

In the planned intervention, one of two different posters announcing the relaunch of the idea gathering tool was to be distributed to each of the different branches in the company, one attachment security poster making salient attachment security with one’s managers, and one baseline poster which did not make salient attachment security with one’s managers. The number of technicians submitting ideas to the idea gathering tool from each branch would be counted, with the expectation that more technicians would submit ideas from the branches in which attachment security had been made salient as opposed to those in which it had not.

7.2. Procedure

Intervention design. The company selected two successful ideas submitted during the first six months of the idea generation tool’s existence with the intent of recognizing the ideas and their submitters throughout the company.

Interviews were conducted with both technicians for the poster content. Two posters were designed, each featuring both technicians with a quote from the interviews (see Appendix A for anonymized versions of these posters). In the attachment security condition, the quotes emphasized having a secure attachment with one’s supervisor (e.g., “It makes you feel like you can depend on them and have them depend on you,” “you feel that you are being valued as much as you value them”). The poster concluded with, “Research shows that effective thinkers often have strong bonds with their managers – think about times you and your manager had each other’s backs. Then share your ideas to make [company name] better by visiting [website] or by scanning this QR code!”

In the baseline condition, the stories did not involve any elements of attachment security, instead emphasizing each employee’s uniqueness (e.g., “My knowledge of military methods and procedures helped,” “My familiarity with and passion for graphic arts are an important part of my idea”). The poster concluded with, “Research shows that effective thinkers often have a unique perspective – think about what makes you different. Then share your ideas to make [company name] better by visiting [website] or by scanning this QR code!” For both posters the QR code and website address both led to the idea gathering tool.

Assignment to condition. The company grouped its branches into five different regions, consisting of four different geographical regions (Canada, Western US, Northern US, and Southern US) and warehouses and corporate offices (Others). For each region there were different numbers of branches, which themselves differed in size and amount of technicians participating in the first six months of the idea generation tool’s existence. To control for these three differences (region, branch size, past participation in the tool), we employed non-bipartite matching (Gerber & Green, 2012) with region as block, and branch as cluster with a matched pair design. Within each of the four regions, we sorted branches by a) total number of technicians, and b) number of technicians participating in the idea generation tool thus far. Then (using R package ‘nbpMatching’), the branches were compared, matched based on total number of technicians and number of technicians participating in the idea generation tool thus far, then randomized such that one member of each pair was assigned to each of the two conditions (see Appendix B). Because this method of assignment to condition balances out the relative number of technicians and number of past participants, our dependent measure of innovation behavior would consist of the number of technicians submitting ideas by branch to the idea generation tool after the posters were put up in the break rooms of each branch. The poster was distributed on a Monday to be hung in the breakroom the following day. The number of technicians submitting ideas to the idea generation tool were tracked from Tuesday through Friday on the week of the poster’s distribution.3

The expectation was that the number of technicians submitting ideas from branches exposed to the attachment security poster would be greater than the number of technicians submitting ideas from branches exposed to baseline poster.

Attrition. Staff at each branch were asked to confirm that they had received the poster and hung it on the breakroom wall. Of 198 posters delivered, 97 confirmations were received. No differences in confirmations emerged between the attachment security and baseline conditions in the regions of Canada (12 each), Others (13 attachment security posters and 12 baseline posters), and the Northern US region (30 each). However, confirmations were distributed unevenly across conditions in the Southern US region (7 attachment security posters and 13 baseline posters) and the Western US region (5 attachment security posters and 10 baseline posters). Furthermore, in both the Southern US region and in the Western US region branches were closed due to COVID-19 in the attachment security condition (2 in each region) but not in the baseline condition. Due to these problems with distribution in the Southern US and Western US regions, both were excluded from the analysis.4

3 Data from the following week was not collected, as that week constituted the US Thanksgiving holiday, with differing patterns of which branches were open across the company regions.

4 At the time of distribution, the administrative staff was advised to work from home in these regions (e.g., Texas, California), both of which reported high numbers of COVID-19 cases, and this may have been a factor in the uneven distribution of the posters. Including these regions in the analysis decreased the difference between conditions (number of technicians submitting ideas in the attachment security condition, 90, number submitting ideas in the baseline condition, 71, \(\chi^2 (1) = 2.248, p = .134 \)).
7.3. Results and discussion

Because the posters were displayed in the context of an overall relaunch of the idea gathering tool, overall participation increased significantly across all regions as expected: for branches receiving the attachment security poster, compared to 18 technicians participating in the first 6 months, 71 technicians submitted ideas during the data collection period, $\chi^2(1) = 33.76, p < .001$; for branches receiving the baseline poster, compared to 17 technicians participating in the first 6 months, 45 technicians submitted ideas during the data collection period, $\chi^2(1) = 13.11, p < .001$. Central to our hypothesis, when comparing the number of technicians submitting ideas in each condition during the data collection period, a greater number of technicians submitted ideas in the attachment security condition as compared to in the baseline condition, $\chi^2(1) = 5.83, p = .016$, supporting Hypothesis 3.

The results support Hypothesis 3 that low power individuals behave more proactively when attachment security is made salient as opposed to not, and further, that attachment security moderates the link between low power and low proactivity, such that the link will be weaker when attachment security is high compared to low. As participants engaged in real workplace behaviors without knowing that they were participating in a research study and that an experimental manipulation had occurred, the results provide external validity. Yet it is worth noting that the study design did not allow for the measurement of subjective feelings of power, and there is evidence that regardless of the positional power individuals hold (e.g., if they are subordinates), their feelings of power fluctuate throughout the day (Smith & Hofmann, 2016), suggesting the study results should be interpreted with some caution. Nonetheless, individuals’ positional power is strongly related to their subjective feelings of power (Smith & Hofmann, 2016), and it is likely that situational factors (such as the poster which itself constituted the study intervention, and other physical and social aspects of employees’ workplace context) acted as cues which brought to mind their low power position (Tost, 2015).

This study illustrates in a multi-regional company context that when attachment security is made salient, the link between low power and reduced proactive behavior in the form of innovative idea sharing is weakened. Study 5 goes on to test an attachment security intervention in a more controlled experimental context.

8. Study 5

Study 4 demonstrated that low power individuals behave more proactively when attachment security is made salient as opposed to not, supporting Hypothesis 3. Study 5 also tests Hypothesis 3, this time in a more controlled experiment.

Study 1 through 3 utilized a recall task, asking participants to recall a time when someone else had power over them or when they experienced attachment anxiety. Although vividly recalling past experiences is a powerful way to induce a sense of power (Galinsky et al., 2003) or sense of attachment anxiety (Chugh et al., 2014), it is important for generalizability to induce power in multiple ways. To do so, we ran a pre-registered study (https://aspredicted.org/m798e.pdf) in which all participants were put in a low power position with an ostensible interaction partner whose task it was to evaluate the participants’ performance. To ensure a standardized series of communications, the interaction partner was not a real participant, but a pre-programmed set of responses within the survey that participants believed to be another individual; these ostensible interaction partners behaved in a fashion congruent with attachment security- or attachment-anxiety-inducing figures. Participants were then given an opportunity for proactivity. To capture proactivity in this study we used voice (Burris, 2012), a proactive workplace behavior (LePine & Van Dyne, 2001; Van Dyne & LePine, 1998) which involves speaking up on important issues and problems in organizations. Voice is thus a measure of employee action (Grant & Ashford, 2008) that is highly relevant to organizational contexts.

We predicted that interacting with the attachment-security-inducing figure would increase proactivity as compared to interacting with an attachment-anxiety-inducing figure.

8.1. Participants and design

We recruited 602 participants from Amazon Mechanical Turk (293 men, 3 non-binary people; $M_{age} = 46.63, SD_{age} = 13.43$) randomly assigning them to the attachment anxiety condition or the attachment security condition.

8.1.1. Procedure

Interactive paradigm. The study was advertised as an interactive study which specified that participants would be assigned to a team with another individual participating in the study at the same time. To increase believability, the advertisement also noted that participants who were ill-mannered, rude, and/or impolite would be subject to rejection. Upon arrival, participants were told that the study focused on how people interact and make decisions in online environments because non-in-person communications are increasingly common. Participants were told that direct communication would be limited but that they and their counterpart would be given opportunities to share messages with one another. We asked participants’ initials and how long they had been employed throughout their life. Participants waited for about 30 s while the survey told them they were being assigned to a team with another participant. They were then told they had been assigned to a team with another participant whose initials were JMH and that they would be working on a series of tasks.

Low power induction. Most importantly, participants were told their team would be working on an idea generation task. Participants were shown a table with their and JMH’s initials, work experience, and assigned role for the idea generation task. In all cases, JMH always had five more years of work experience than participants did and was assigned the role of idea evaluator. All participants were assigned to the role of idea worker.

Participants were told that the idea worker would generate ideas while the idea evaluator answered a series of questions independently. They were told they would then switch tasks, with the idea evaluator evaluating the ideas the participant had just generated, while the idea worker went on to answer a series of questions independently.

Participants were told that a bonus of 50 cents would be divided between them and their idea evaluator, and that the idea evaluator’s scoring of their performance would determine how the bonus money would be divided. Thus the idea evaluators had power over the evaluations the participants received, and their outcomes.

Secure attachment intervention. Participants were given a chance to write a message to the idea evaluator to introduce themselves and receive a message from JMH in turn. As noted in our theorizing, low power increases attachment anxiety because low power individuals’ dependence on high power individuals leads them to desire a feeling of security and acceptance, while also increasing their perception that the relationship is more variable and less reliable; therefore, in the attachment anxiety condition the high power individual behaved in a way which did not provide reassurance that the relationship would be secure – showing variability in responses, and not explicitly affirming support. In the attachment anxiety condition, participants received the following message:

Hello I’m Jake and I guess I’ll be evaluating you. Let’s see how you do at this. Let’s stay professional so I can evaluate you objectively on this task.

In contrast, attachment security is invoked when an individual feels accepted and supported by an attachment figure, or in other words feels comfortable depending on and being depended on by them (Baldwin et al., 1996; Chugh et al., 2014). Thus, in the attachment security condition, the ostensible counterpart explicitly affirmed the dependability of
the relationship, in that participants received the following message:

Hello, I’m Jake and I guess I’ll be evaluating you. You’ll be great at this.
Let’s support each other on this task so we can have each other’s backs.

Participants then engaged in a task where they were asked to generate as many original and creative ideas they could for how to use a brick (Christensen, Guilford, & Wilson, 1957). After completing the task, participants in the attachment security condition received another message from JMH:

I’m about to see your answers - I’m sure you did great.

In the attachment anxiety condition, they did not receive another message from JMH.

Voice measure. Participants were told that while they had been completing the idea generation task, the idea evaluator was given a word puzzle, and asked to rewrite the puzzle in their own words. Participants were then presented with the word puzzle ostensibly written by JMH, which had a number of grammatical errors and typos, and asked to solve it. After solving the word puzzle, participants were given an option to send a message to JMH, in which they could tell him about any errors in what they wrote or how to improve their writing in the future. By sending a message, participants could provide information to improve JMH’s work but which might also displease JMH, who had the authority to control their outcomes; we considered this to constitute voice (Detert & Burris, 2007). Choosing to send a message to JMH was coded as voice, a 1. Not sending a message was coded as 0.

8.2. Results and discussion

First, to verify that our manipulation indeed induced low power and attachment security, we conducted a pre-test of the paradigm with 118 MTurkers (60 men; Mage = 37.96, SD = 11.96). We administered the same process as above; however after receiving their role description and before they introduce themselves to the interaction partner, we asked participants to indicate to what extent they felt powerful using three items (powerful, dominant, and in control; α = .96; 1 = not at all, 7 = a great deal). As expected, participants experienced low power (M = 3.24, SD = 1.59), which is significantly below the midpoint, t(117) = −5.20, 95% CI [−1.053, −0.472], p < .001. In addition, after their interaction, instead of measuring voice, we measured participants’ state attachment security using an attachment security measure drawn from the work of Gillath, Hart, Noftle, and Stockdale (2009; on a scale from 1 = not at all to 7 = very much; 7 items, α = .96). As expected, participants interacting with the attachment-security-inducing figure (M = 5.24, SD = 1.14) reported significantly greater levels of attachment security than participants interacting with the attachment-anxiety-inducing figure (M = 4.70, SD = 1.72), t(116) = −2.01, 95% CI [−1.075, −0.007], p = .047.

Following the pre-registration, we examined voice (in terms of sending a message to JMH) using logistic regression by condition (attachment security coded 1, attachment anxiety coded 0) as a predictor. As expected, we found that participants interacting with the attachment-security-inducing figure had 2.06 times the odds of using voice compared to participants interacting with the attachment-anxiety-inducing figure, b = 0.723, SE = 0.170, z = 4.25, 95% CI [0.389, 0.105], p < .001. In addition, because people differ in how they interact in online studies, we also ran the same logistic regression controlling for whether participants’ sent an initial message to JMH (coded 1 for yes, 0 for no). In this analysis participants interacting with the attachment-security-inducing figure had 2.22 times the odds of using voice compared to participants interacting with the attachment-anxiety-inducing figure, over and above their initial messaging pattern, b = 0.799, SE = 0.177, z = 4.51, 95% CI [0.451, 1.146], p < .001.

The results support Hypothesis 3 that low power individuals behave more proactively when attachment security is made salient as opposed to not. This study illustrates in an interactive setting that when attachment security is made salient, the link between low power and reduced proactive behavior in the form of voicing opinions is weakened.

8.3. General discussion

Across five studies we explored the relationship between low power and reduced proactivity through the lens of attachment theory. Specifically, we found that low power individuals show greater attachment anxiety (Study 1 and 3) and that attachment anxiety decreases proactivity (Study 2 and 3). We illustrated that attachment anxiety was increased in low power (as opposed to decreased in high power) via the use of baseline and high power conditions (Study 1 and 3), and that power did not consistently predict attachment avoidance (Study 1 and 3). Interventions which induced attachment security weakened the relationship between low power and reduced proactivity in both a quasi-experiment (Study 4) and interactive experimental design (Study 5). In all, we replicated the effect using multiple methods to manipulate power, operationalizing proactivity in a variety of ways, and exploring interventions in multiple contexts; all speaking to the robustness of the effects. Overall, we consistently find support for attachment anxiety as an important factor in the experience of low power individuals which inhibits them from being proactive. We also offer a powerful intervention that facilitates the proactivity of those with low power.

8.4. Theoretical contributions

The present research expands the power-related literature by illuminating a new consequence of low power: attachment anxiety. Power is a relational construct existing only within social relationships (Emerson, 1962; Fiske, 1993; Salancik & Pfeffer, 1974; Thibaut & Kelley, 1959). However, in spite of its grounding in interpersonal connections, there has been a lack of systematic examination of how power, especially low power, is interlaced with mental representations of relationships. We argue that, via attachment theory, we are able to introduce the construct of attachment anxiety as a key link between the experience of low power and reduced proactivity. Previously, Smith, Jostmann, Galinsky, and van Dijk (2008) demonstrated that low power diminishes people’s executive functions, as they have difficulty maintaining focus on their goal. Our findings have implications for this phenomenon, as attachment anxiety has been reported to distract people from focusing on tasks because they place increased attention on seeking reassurance of support and acceptance (Lee & Ling, 2007; Shaver, Schachner, & Mikulincer, 2005). Our studies suggest that the experience of low power creates relational concerns that reduce action-taking, and this increased need for reassurance, support, and acceptance is also consistent with the increased motivation of low power individuals to seek social affiliation (Case et al., 2015).

Our research also complements work on the impact of power on hierarchy (Anderson & Galinsky, 2006; Galinsky et al., 2003, 2006; Magee et al., 2007), particularly findings that people lower in a power hierarchy exhibit less competitive behavior (Hays & Bendersky, 2015). Our findings not only offer a mechanism for the reduced action associated with low power but also suggest a reason why those with low power may perceive more challenges related to moving up a hierarchy. The attachment literature suggests that individuals with high attachment anxiety have a more negative view of the self and are vigilant for rejection cues (Mikulincer, 1998); they will thus be less likely to engage in security-risking activities such as attempts to ascend within a hierarchy. This research provides an additional perspective, suggesting that low power downwards can be driven by attachment anxiety.

Lastly, we provide a unique intervention grounded in an understanding of how attachment theory helps to explain the relationship between low power and reduced action. Previous research has theorized and tested that low power (compared to high power) individuals take...
less action (Anderson & Berdahl, 2002; Galinsky et al., 2003). Compared to the high power to action link, which can be explained by multiple factors (e.g., via freedom from social interference, the behavioral approach system, and reduced deliberation; Croizet & Claire, 1998; Guinote, 2007; Keltner et al., 2003; Whitson et al., 2013), research on power has paid little attention to the question of how to weaken or break the low power-inaction link. Our work provides one mechanism and a related intervention to illuminate—and ameliorate—the link between low power and reduced proactivity.

8.5. Limitations and future research

While these findings illustrate that attachment anxiety is one mechanism driving the effects of low power on reduced action (and therefore proactivity), it is important to acknowledge some limitations of our findings. Specifically, while Study 5 focused on how low power individuals would be influenced by interactions with a secure versus a baseline leader, there are some reasons to interpret the results with caution. Attachment security depends on instilling positive associations with interdependence and trust (Arriaga & Kumashiro, 2019). Because attachment security is defined as low on both attachment anxiety and avoidance, we incorporated language on mutual dependence in our attachment-security-inducing figure manipulation. However, it is possible that the wording used to induce attachment security may have also prompted participant perceptions of the leader as more friendly or of their power relationship as more equal (given the inter-dependencies), which may have affected their behaviors. The perception of the leader as more friendly may have made participants more willing to engage in voicing behavior, and it would be beneficial for future work to test how leader friendliness influences or interacts with their ability to induce a sense of security. Similarly, while a pre-test confirmed the effects on participants’ sense of power and attachment security, it is possible that the statements made by the secure leader may have resulted in a sense of a more equal power relationship, also making participants more willing to engage in voicing behavior. While Study 4, in using an intervention around attachment security in a quasi-field-experimental context, lends confidence to effects found, future research would still benefit from continuing to disentangle these phenomena.

Future work should also continue to explore mechanisms relevant to low rather than high power states. Theorizing by Tost (2015) is particularly relevant here, wherein a delineation is made between the effects of structural power (i.e., actual control over valuable resources) as opposed to psychological sense of power (i.e., feeling powerful). Indeed, we examined the effects of the experience of low power via both structural (Study 4 and 5) and psychological (Study 1 and 3) approaches. We argue that the effects were the same across all of these inductions of power because they all relied on low power individuals’ awareness of being in a relationship with someone who had power over them. Tost does argue that differing effects in the literature, particularly with regard to sense of responsibility, can be traced back to whether participants experienced structural power or a psychological sense of power. Indeed, further work by Tost and Johnson (2019) find different effects on prosocial orientation as a result of structural versus psychological power inductions. However, the theorizing here is focused on the state of high power, in particular how structural power over others may also prompt greater awareness of their dependence on oneself, and thus one’s responsibility for their well-being. It may be that this congruence of effects for low power goes beyond the activation of the attachment system, and that the structural experience of low power and the psychological experience of low power are more aligned, such that low power states have similar effects regardless of whether they come via structural or relational power inductions, and future research would benefit from exploring this possibility more thoroughly.

More broadly, further investigation is needed in order to understand the broader framework within which power’s effects on action operate. For instance, it has been theorized that powerlessness activates the behavioral inhibition system (BIS; Keltner et al., 2003), but it is unclear how much or under what context the BIS and the attachment system contribute to reduced action. In fact, research has shown that attachment dimensions, although weakly to moderately related to the BIS (Jiang & Tilipopoulos, 2014), predicted individuals’ response to relationship threats independently from the BIS (Meyer, Olivier, & Roth, 2005). It may be that differing contexts call up the BIS and the attachment system to different extents, and future research should look into these factors in the context of power dynamics.

Future research should also investigate (and potentially attempt to systematize) findings regarding the boundary conditions around power and action. For example, there is already some evidence that low power individuals may more actively pursue affiliative goals (which would satisfy their needs for felt-security) than high power individuals. As mentioned earlier, Case et al. (2015) showed increased action in low power individuals when action was operationalized as seeking social affiliation. Conversely, Durso, Briñol, and Petty (2016) have found that under certain conditions, high power individuals can be less active compared to low power individuals. An organized exploration on the circumstances under which low power leads to greater action than high power or vice versa would be a promising direction for future research.

Relatedly, there may be benefits from future research which explores the boundary between proactive and exploration behaviors. In this paper, we examined proactive behaviors, which we consider to be exploratory behavior occurring in professional and organizational contexts. Yet, it is worth examining exploratory behaviors which are not generally considered proactive in nature. For instance, reduced exploratory behavior has been shown empirically in non-organizational contexts, such as when participants show reduced interaction with a puzzle box (Main, 1983) or reduced exploration of relationships with peers (e.g., less time spent interacting with playmates and more time playing with toys). Studies in attachment theory have also investigated exploration in other domains such as curiosity (i.e., information search) and cognitive closure (i.e., openness to new information; Hazan & Shaver, 1990; Johnston, 1999; Mikulincer, 1997). While this paper focused on proactive behaviors due to their relevance for organizations, the potential exists to use attachment-related accounts to explain a variety of power-related phenomena in domains external to professional or organizational contexts.

8.6. Practical implications

Power hierarchies emerge spontaneously in all types of groups (Bales, Strodbeck, Mills, & Roseborough, 1951). Hierarchies are supposed to facilitate efficient decision-making and motivate group members lower in the hierarchy to perform well to move up it via rewards and promotions (McClelland, 1987). However, our research findings call into question the efficiency of having too many low powered individuals in a given hierarchy; when individuals are overly concerned about others’ acceptance, their proactivity maybe hampered.

It is worth noting that the messages we used in the attachment-anxiety condition in Study 5 are on their face objective and fair statements—indeed, it seems reasonable for managers to communicate that they are interested in seeing how their subordinates perform on a task. While past research has shown that negative feedback can reduce employees’ proactive behavior (e.g., creativity; Kim & Kim, 2020), our results suggest that when followers received even seemingly objective and fair communications they still did not feel secure and did not increase their proactive behaviors. This, in combination with the fact that many managers feel more effective as leaders when criticizing and providing negative feedback (Zenger & Folkman, 2017), likely means that managers who wish to encourage proactive behaviors of their subordinates will need to do more than reduce the negativity of their statements to provide feelings of security.

Another way to mitigate this problem is to empower those in the
lower part of the hierarchy. A manager may empower each member in the lower domain of the hierarchy using multiple sources of power (for instance, expertise, referent; French & Raven, 1959, social versus personal power; Greer, 2014; Lammers, Stoker, & Stapel, 2009), giving each individual a sense of reduced dependence on their superior, thus protecting them from increases in anxious attachment. In a group with a more balanced power distribution—where one member excels in expertise power and another in referent power, for example—the amelioration of low power may facilitate each member’s action; their hierarchical power remains largely constant. That is, even if each member holds the same hierarchical rank, empowering each member with relevant, different sources of power may prevent the activation of attachment anxiety and further inhibition of action.

In addition, organizational members might consider how to implement the logic proposed by the interventions in this paper. An effective manager can encourage proactive behavior from their subordinates by building a secure environment. The activation of attachment anxiety stems primarily from the threat low power poses for security. At work, anxiously attached individuals often spend too much of their attention on worrying about failure and trying to please others (Hazan & Shaver, 1990). A manager, should they observe a subordinate spending their attention in this way, might respond by consistently signaling that the subordinate is accepted and valued, which would contribute to the activation of the exploration system, and thus increase the likelihood the subordinate would engage more confidently with their environment. Congruently, employees for whom proactive behaviors are an important part of the job should seek out individuals with whom they can establish a secure relationship. If their own managers cannot be a source of this security, they might interact with other potential attachment figures in the organization (e.g., peers, leaders, mentors), thus building a network of support that will make it easier for them to behave proactively. However, an important caveat is relevant here—an organization may not, ceteris paribus, desire that individuals lower in the hierarchy engage unexaminedly in widespread proactive behaviors. For instance, some proactive behaviors, such as unexpectedly taking charge, may disrupt effective group functioning by introducing coordination problems (Bunderson, Van Der Vegt, Cantimur, & Rink, 2016) and task-distracting conflicts (Bendersky & Hays, 2012). Similarly, given that hierarchies may remain stable in part because those lower in the hierarchy exhibit less competitive behavior (Hays & Bendersky, 2015), widespread proactivity may contribute to the destabilization of existing power hierarchies, making organizational coordination more difficult.

9. Conclusion

The dynamic nature of contemporary organizations requires employees to be more proactive in the workplace. At the same time, organizational hierarchy and the resultant power relationships can be a deterrent for employees to behave proactively. Because of the centrality of power relationships in organizational contexts, understanding how the nature of those relationships refracts the experience of power illuminates how and why its downstream effects, such as reduced proactivity, come about. The experience of lacking power changes not only one’s affect, cognition, and behavior, but also one’s attachment representation. It is thus important to understand the relational underpinnings of low power, which can account for the inhibition of action for those in less powerful positions.

CRediT authorship contribution statement

Jieun Pai: Conceptualization, Methodology, Formal analysis, Writing - original draft. Jennifer Whitson: Conceptualization, Methodology, Resources, Writing - review & editing. Junha Kim: Conceptualization, Writing - original draft. Sujin Lee: Conceptualization, Writing - review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A

a. Attachment Security Poster

"I know what it’s like to have a boss who understands what you need and what problems you’re trying to solve. It makes you feel like you can depend on them and have them depend on you. You won’t be left alone. That experience inspired me to come up with an idea to help make sure people at [] got the answers they needed when they needed them."

— []

"It’s great working with a manager who you can depend on and who can depend on you. You feel that you are being valued as much as you value them. With such secure feelings, it is easy to share information and keep each other in the loop to work together to help the customer. Using this understanding, I came up with an idea which helps customers remember that [] is their service provider."

— []

These employees shared great ideas using the Ideation Tool. Research shows that effective thinkers often have strong bonds with their managers—think about times you and your manager had each others’ backs. Then share your ideas to make [] better using by visiting [] or by scanning this QR code!

38
b. Baseline Poster

"My knowledge of military methods and procedures helped prompt my idea; in the military it’s important to make sure questions get answered and messages go through clearly. Using this knowledge, I came up with an idea that would help make sure people at got the answers they needed when they needed them."

"My familiarity with and passion for graphic arts are an important part of my idea; I realized that people respond best to having a visual reminder on the generator itself. Knowing the generators, I knew where people would look when they needed something, and where we could put the information. That experience inspired me to come up with an idea which helps customers remember that is their service provider."

These employees shared great ideas using the Ideation Tool. Research shows that effective thinkers often have a unique perspective — think about what makes you different. Then share your ideas to make better by visiting or by scanning this QR code!

Appendix B

<table>
<thead>
<tr>
<th>Attachment Security Poster</th>
<th>Baseline Poster</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of branches</td>
<td>Participants in previous 6 months</td>
</tr>
<tr>
<td>Canada</td>
<td>12</td>
</tr>
<tr>
<td>Others</td>
<td>13</td>
</tr>
<tr>
<td>Northern US</td>
<td>30</td>
</tr>
<tr>
<td>US</td>
<td>24</td>
</tr>
<tr>
<td>Southern US</td>
<td>20</td>
</tr>
<tr>
<td>Western US</td>
<td>99</td>
</tr>
</tbody>
</table>

References

