World Without Waste: Energy Rebound

Harry Saunders

Visiting Investigator
Carnegie Institution for Science
Stanford CA

May 10, 2021
AGENDA

- Basic Idea of Energy Rebound
- Key Quantities
- Our Understanding of Rebound Magnitudes
- Rebound and Stage of Economic Development
- Link to Resource/Waste Rebound Generally
- Literature and Expert Contacts
Basic Idea of “energy efficiency”
Rebound

Simplest concept:

• When a new technology enables more energy services to be provided per unit of physical energy, it looks to the user like a price reduction.

• A price reduction typically causes a demand increase
 • Energy services demand goes up, and the physical energy to supply it follows.
 • This is offset by a reduction in physical energy use owing to the efficiency gain.
 • The resulting physical energy use depends on the balance, but will be higher than projected assuming only the % efficiency gain portion.
Basic Idea of “energy efficiency”
Rebound (continued)

“A price reduction typically causes a demand increase“:

• How much? You ask.

• It depends primarily on two things:
 • The extent to which the physical (productive) economy is flexible enough to take advantage of the cheaper energy services to substitute for other inputs to production (capital, labor). *Embodied formally in the “elasticities of factor substitution.”*
 • The extent to which households substitute, as a result of cheaper energy services, in a way so as to alter their consumption baskets toward more energy-intensive goods and services. *Embodied formally in the “price elasticities.”*
Energy efficiency gains do not operate as intuition might suggest.

Consider a new technology whose engineering efficiency gain is 50% (i.e. produces the same energy services with half the physical energy input):
AGENDA

- Basic Idea of Energy Rebound
- Key Quantities
 - Our Understanding of Rebound Magnitudes
 - Rebound and Stage of Economic Development
 - Link to Resource/Waste Rebound Generally
- Literature and Expert Contacts
Distribution of Energy Use

Production:

Industry, Commerce, Commercial Transportation

Households:

- Households’ Consumption of Goods and Services
- “Embedded” Energy

Physical Energy

- 2/3

- 1/3

- Personal Transportation
- Direct Household Use
AGENDA

- Basic Idea of Energy Rebound
- Key Quantities
- Our Understanding of Rebound Magnitudes
- Rebound and Stage of Economic Development
- Link to Resource/Waste Rebound Generally
- Literature and Expert Contacts
Rebound magnitudes are uncertain, but increase with system scale and complexity.
AGENDA

- Basic Idea of Energy Rebound
- Key Quantities
- Our Understanding of Rebound Magnitudes
- Rebound and Stage of Economic Development
- Link to Resource/Waste Rebound Generally
- Literature and Expert Contacts
Energy Intensity

“Energy Intensity” is a crude, imperfect, but useful proxy for tracking energy efficiency

• Energy Intensity $I = \frac{E}{Y}$
 • where E is physical energy use and Y is useful output, often GDP

• The rate of decline of energy intensity is often treated as the rate of energy efficiency improvement

• However, many things besides energy efficiency affect both the numerator and denominator of energy intensity.

• When used as a metric of energy efficiency gain, forecasts of intensity have been well off the mark (e.g., IEA). Probably because they ignore rebound effects.
Energy Intensity is larger in earlier stages of development

(a)

Energy Intensity (b)

Energy per Capita (c)
There are ethical tradeoffs with respect to rebound

...arising in discussions about policy measures to suppress rebound

• Rebound means energy efficiency gains do not reduce physical energy use – and associated emissions – as much as might be hoped for

• HOWEVER, rebound *increases* economic welfare

• Countries in the early stages of development need more physical energy per unit output, as they build out the infrastructure of modernity.

• “Rebound suppressing” policies come at the cost of reduced welfare, especially for those in energy poverty

• Developing countries will likely make the tradeoff in favor of increased welfare rather than reduced energy use.
AGENDA

- Basic Idea of Energy Rebound
- Key Quantities
- Our Understanding of Rebound Magnitudes
- Rebound and Stage of Economic Development
- Link to Resource/Waste Rebound Generally
- Literature and Expert Contacts
The Eco-economy, simplified

\[N = N(R, R, W, A) \]

- \(N \) is the prevailing stock of natural capital
- \(R \) is the current natural resource draw
- \(R \) is Replenishment of natural capital
- \(W \) is the waste inflicted on natural capital
- \(A \) is the waste absorbed by natural capital
From this comes a simple (simplistic!) equation

\[N_t = N_{t-1} + (R_t - R_t) + (A_t - W_t) \]

- When \(R \) (resource use) is substituted to replace \(E \) (energy) in a neoclassical model, \(R \) experiences rebound
 - So there is *general* resource rebound
- There are early indications that waste \(W \) likewise exhibits rebound behavior
 - When waste reduction/disposal efficiency increases, the quantity of waste inflicted on natural capital is greater than intuition would suggest.
AGENDA

- Basic Idea of Energy Rebound
- Key Quantities
- Our Understanding of Rebound Magnitudes
- Rebound and Stage of Economic Development
- Link to Resource/Waste Rebound Generally

- Literature and Expert Contacts
Waste Rebound Experts

<table>
<thead>
<tr>
<th>Affiliation</th>
<th>Steven J Davis</th>
<th>Matthew G Burgess</th>
<th>Margaret Hegwood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact</td>
<td>(650) 704-5975 http://ess.uci.edu/~sjdavis http://carbonmonitor.org</td>
<td>www.mattburgess.ca 303-492-0594</td>
<td>Margaret.Hegwood@colorado.edu (937) 901-5629</td>
</tr>
<tr>
<td>Affiliation</td>
<td>Professor Dept. of Earth System Science University of California, Irvine</td>
<td>Assistant Professor Environmental Studies Program Fellow, Cooperative Institute for Research in Environmental Sciences Affiliated Faculty, Department of Economics University of Colorado Boulder</td>
<td>Doctoral Student Environmental Studies Program USDA Fellow for Food Technology and Food Security University of Colorado Boulder</td>
</tr>
</tbody>
</table>
General Reference: Waste Rebound

https://doi.org/10.1111/jiec.12545
Energy Rebound Experts

<table>
<thead>
<tr>
<th>Affiliation</th>
<th>Contact</th>
<th>Key Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andrea Hicks</td>
<td>hicks5@wisc.edu</td>
<td></td>
</tr>
</tbody>
</table>

Gutgsell Professor in the Department of Finance at the University of Illinois at Urbana-Champaign; Professor, Agricultural and Consumer Economics; faculty associate at both the Institute of Government and Public Affairs and the Center for Business and Public Policy.

A research associate in CAMA and CCER, and a participant in the Energy Change Institute.

Associate Professor of Economics, University of Arizona, Eller College of Management.

Director Institute for Environmental Science and Policy University of Illinois at Chicago.

Assistant Professor, University of Wisconsin, Madison, College of Engineering.
"Energy Efficiency: what has research delivered in the last 40 years?"

Annual Review of Environment and Resources, 2021 (accepted, in press)

Link to Working Paper: https://www.fcn.eonerc.rwth-aachen.de/cms/E-ON-ERC-FCN/Forschung/~emvl/Arbeitspapiere/lidx/1/

11 different countries represented; 19 co-authors; multiple disciplines
QUESTIONS/COMMENTS/DISCUSSION
BACKUP SLIDES
Overall Structure

Household Choices
Consumption (C); Savings (S); Leisure Time (l); Natural Capital (₦)

Producers
Capital (K), Labor (L)

Goods/Services Investment Labor

Resources Waste

Natural Capital
Absorption (A); Replenishment (₦)