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Introduction

• G a Lie group

• Γ a lattice in G

• X is the homogeneous space G/Γ

• Example: G = SLn(R), Γ = SLn(Z)

G/Γ = SLn(R)/SLn(Z)

• µ the G -invariant probability measure on X .
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Introduction

• For a subset F of G and a non-empty open subset U of X
define the set

E (F ,U) := {x ∈ X : gx /∈ U ∀ g ∈ F}

of points in X whose F -trajectory stays away from U.

Shahriar Mirzadeh
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Introduction

• If F is a subgroup or a subsemigroup of G acting
ergodically on (X , µ), then the set {gx : g ∈ F} is dense
for µ-almost all x ∈ X , in particular µ

(
E (F ,U)

)
= 0.

• Let F+ :=(gt)t≥0 be a one-parameter subsemigroup of G .

Example: G = SL2(R), gt =

[
et 0
0 e−t

]
, ut =

[
1 t
0 1

]
.
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Introduction

• Question (Mirzakhani): If E (F ,U) has measure zero,
does it necessarily have less than full Hausdorff dimension?

• Dimension drop conjecture: If F ⊂ G is a subsemigroup
and U is an open subset of X , then either E (F ,U) has
positive measure, or its dimension is less than the
dimension of X .
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Known results

• F consists of quasiunipotemt elements, that is, for each
g ∈ F all eigenvalues of Ad g have absolute value 1. This
follows from Ratner’s Measure Classification Theorem and
the work of Dani and Margulis.

{utx} = Hx ,

where H is a closed subgroup of G .

dimE (F ,U) ≤ dimX − 1

• (Einseidler–Kadyrov–Pohl): G is a simple Lie group of
real rank 1.

• (Kleinbock–Weiss, Kleinbock–M): G is semisimple
without compact factors, Γ is irreducible, F is a
one-parameter Ad-diagonalizable subsemigroup of G , and
the complement of U is compact.
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Main results

•
G = SLm+n(R), Γ = SLm+n(Z), X = G/Γ

gΓ→ gZm+n

•
F+ := {gt : t ≥ 0},

gt := diag(ent , . . . , ent , e−mt , . . . , e−mt).

• Choose a > 0 and consider

F+
a :=

{
diag(eant , . . . , eant , e−amt , . . . , e−amt) : t ∈ Z+

}
.
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Main results

• Fix a right-invariant Riemannian structure on G , and
denote by d the corresponding Riemannian metric, using
the same notation for the induced metric on X .

•
d(g1Γ, g2Γ) = inf

λ∈Γ
d(g1λ, g2)
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• For an open subset U of X and r > 0 denote by σrU the
inner r -core of U, defined as

σrU := {x ∈ X : d(x ,Uc) > r}.

Shahriar Mirzadeh
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•
θU := sup

{
0 < θ ≤ 1 : µ(σ2

√
mnθU) ≥ 1

2
µ(U)

}

• The notation A� B, where A and B are quantities
depending on certain parameters, will mean A ≥ CB, with
C being a constant dependent only on m and n.
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Main results

• Kleinbock–M: There exist positive constants
c , r1, p1, p2, p3 such that for any a > 0 and for any open
subset U of X one has

codimE (F+
a ,U)� µ(U)

log 1
r(U,a)

,

where

r(U, a) := min
(
µ(U)p1 , θp2

U , ce
−p3a, r1

)
.

In particular, if U is non-empty we always have
dimE (F+

a ,U) < dimX .
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•
∂rS := {x ∈ X : dist(x ,S) < r}

• Corollary: If S ⊂ X is a k-dimensional embedded smooth
submanifold, then there exist εS , cS , pS ,CS > 0 such that
for any a > 0 and any positive ε < min(εS , cSe

−apS ) one
has

codimE (F+
a , ∂εS)≥ CS

εdimX−k

log(1/ε)

• Corollary:

codimE
(
F+
a ,B(z , ε)

)
�

µ
(
B(z , ε)

)
log(1/ε)

Shahriar Mirzadeh
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• Unstable horospherical subgroup with respect to F+
a ,

defined as:

H = {g ∈ G : gtgg−t →∞ as t →∞}

•
H :=

{[
Im s
0 In

]
: s ∈ Mm,n

}
.

•

gt

[
Im s
0 In

]
g−t =

[
Im e(m+n)ts
0 In

]
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• Kleinbock–M: For any a > 0, any x ∈ X , and for any
open subset U of X one has

codim
(
{h ∈ H : hx ∈ E (F+

a ,U)}
)
� µ(U)

log 1
r(U,a)
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• (KKLM): The set of points in X whose orbit diverges
(leaves every compact subset of X ) has codimension at
least mn

m+n .

• There exists a nested family of compact subsets {Qt}t>0

of X and t0 > 0 such that for all k ∈ N and all t > t0

codim {h ∈ H : gNkthx ∈ Qc
t ∀N ∈ N} > 0

Shahriar Mirzadeh
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• (Eskin–Margulis–Mozes): A subspace L of Rm+n is
x-rational if L ∩ x is a lattice in L, and for any x-rational
subspace L, denote by dx(L) the volume of L/(L ∩ x).
Now for 1 ≤ i ≤ m + n define

αi (x) := sup

{
1

dx(L)
: L ∈ Fi (x)

}
,

where Fi (x) is the set of i-dimensional x-rational
subspaces of Rm+n.
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• (KKLM, EMM): There exists c0 ≥ 1 depending only on
m, n with the following property: for any t ≥ 1, any
x ∈ X , and for any i ∈ {1, . . . ,m + n − 1} one has∫
H

α
1/2
i (gthx) dρ1(h) ≤

c0

(
e−t/2αi (x)1/2 + emnt max

0<j≤min(m+n−i,i)

√
αi+j(x)1/2αi−j(x)1/2

)



On the
dimension

drop
conjecture for
diagonal flows
on the space

of lattices

Shahriar
Mirzadeh

Introduction

Known results

Main results

Sketch of
proof

Application to
Diophantine
approximation

Sketch of proof

• (EMM, KKLM): ‘Convexity trick’: For any t ≥ 1 there
exist positive constants ω0 = ω0(t), . . . , ωm+n = ωm+n(t)
and C0 such that the linear combination

α̃ :=
m+n∑
i=0

ωiαi
1/2

satisfies ∫
H
α̃(gthx) dρ1(h) ≤ 2c0e

−t/2α̃(x) + C0

for all x ∈ X .
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• (Kleinbock–M):

codim
(
{h ∈ H : hx ∈ E (F+

a ,U ∪ Qc
t )}
)
> 0

Shahriar Mirzadeh
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• Fix a basis {Y1, . . . ,Yn} for the Lie algebra g of G , and,

given a smooth function h ∈ C∞(X ) and ` ∈ Z+, define
the “Lp, order `” Sobolev norm ‖h‖`,p of h by

‖h‖`,p :=
∑
|α|≤`

‖Dαh‖p,

where α = (α1, . . . , αn) is a multiindex, |α| =
∑n

i=1 αi ,
and Dα is a differential operator of order |α| which is a
monomial in Y1, . . . ,Yn, namely Dα = Y α1

1 · · ·Y αn
n .

•

C∞2 (X ) = {h ∈ C∞(X ) : ‖h‖`,2 <∞ for any ` = Z+}.

•
‖f ‖C ` := sup

x∈X , |α|≤`
|Dαf (x)|.
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• BP(r): Ball of radius r centered at identity in P.

•

r0(x) = sup{r > 0 : the map , g 7→ gx is injective on BG (r)}
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• Definition: Say that a subgroup P of G has Effective
Equidistribution Property (EEP) with respect to the flow
(X ,F+) if P is normalized by F+, and there exists λ > 0
and ` ∈ N such that for any x ∈ X and t > 0 with

t � log
1

r0(x)
,

any f ∈ C∞comp(P) with supp f ⊂ BP(1) and any
ψ ∈ C∞2 (X ) it holds that∣∣∣∣If ,ψ(gt , x)− ∫

P

f dν

∫
X

ψ dµ

∣∣∣∣� max(‖ψ‖C1 , ‖ψ‖`,2) · ‖f ‖C` · e−λt ,

where

If ,ψ(gt , x) :=

∫
P
f (p)ψ(gtpx) dν(p) .
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• (Kleinbock–Margulis, Kleinbock–M): H satisfies
(EEP).
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•
ν
({

h ∈ BH(r) : gthx ∈ Uc
})

=

∫
H

1BH(r)(h)1Uc (gthx) dν(h)

≈
∫
H
f (h)ψ(gthx) dν(h)

≈
∫
H
f dν

∫
X
ψ dµ + C (f , ψ)e−λt

≈ ν
(
BH(r)

)
µ(Uc) + C ′e−λ

′t
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• If gNkthx ∈ Uc , then gNkthx ∈ Uc ∩ Qt or gNkthx ∈ Qc
t

Shahriar Mirzadeh
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•
gkthx ∈ Uc ∩ Qt , g2kthx ∈ Uc ∩ Qt

g3kthx ∈ Qc
t , g4kthx ∈ Qc

t , g5kthx ∈ Qc
t

g6kthx ∈ Uc ∩ Qt

...
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Application to Diophantine
approximation

• (Drichlet’s approximation theorem): For any s ∈ Mm,n

and any N > 0,

there exists p ∈ Zm and q ∈ Zn r {0} such that

‖sq− p‖ < 1

Nn/m
and 0 < ‖q‖ ≤ N.

• s ∈ Mm,n is Dirichlet improvable if there exists a constant
c < 1 such that, for all sufficiently large N

there exists p ∈ Zm and q ∈ Zn r {0} such that

‖sq− p‖ < c

Nn/m
and 0 < ‖q‖ ≤ N.
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• DIm,n: The set of Dirichlet improvable matrices s ∈ Mm,n

• (Davenport and Schmidt): DIm,n has zero Lebesgue
measure and has full Hausdorff dimension.

• DIm,n =
⋃

c<1 DIm,n(c)

•
dim DIm,n(c)?
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• s ∈ DIm,n if and only if there exists ε > 0 such that for
large enough t > 0 the lattice gthsZm+n has a vector of

(supremum) norm less than 1− ε, where hs =

[
Im s
0 In

]
.

• s ∈ DIm,n(c), if and only if for large enough t there exists

v =

(
−p
q

)
∈ Zm+n r {0} such that the vector

gthsv =

(
ent(sq− p)

e−mtq

)
belongs to

Rc :=

{(
x
y

)
∈ Rm+n : ‖x‖ < c , ‖y‖ ≤ 1

}
.
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•
Uc = {x ∈ X : x ∩Rc = {0}}

• hsZm+n ∈ E (F+,Uc).

• (Kleinbock–M): dim
(
DIm,n(c)

)
< mn for any c < 1.
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