Spatially Resolved Electronic Properties of Single-Layer WS$_2$ on Transition Metal Oxides

Søren Ulstrup,*‡⊥ Jyoti Katoch,‡⊥ Roland J. Koch,† Daniel Schwarz,‡ Simranjeet Singh,‡ Kathleen M. McCreary,§ Hyang Keun Yoo,‡ Jinsong Xu,‡ Berend T. Jonker,§ Roland K. Kawakami,‡ Aaron Bostwick,† Eli Rotenberg,† and Chris Jozwiak*†

†Advanced Light Source, E.O. Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
‡Department of Physics, The Ohio State University, Columbus, Ohio 43210, United States
§Naval Research Laboratory, Washington, D.C. 20375, United States

ABSTRACT: There is a substantial interest in the heterostructures of semiconducting transition metal dichalcogenides (TMDCs) among each other or with arbitrary materials, through which the control of the chemical, structural, electronic, spintronic, and optical properties can lead to a change in device paradigms. A critical need is to understand the interface between TMDCs and insulating substrates, for example, high-κ dielectrics, which can strongly impact the electronic properties such as the optical gap. Here, we show that the chemical and electronic properties of the single-layer (SL) TMDC, WS$_2$, can be transferred onto high-κ transition metal oxide substrates TiO$_2$ and SrTiO$_3$. The resulting samples are much more suitable for measuring their electronic and chemical structures with angle-resolved photoemission than their native-grown SiO$_2$ substrates. We probe the WS$_2$ on the micron scale across 100 μm flakes and find that the occupied electronic structure is exactly as predicted for free-standing SL WS$_2$ with a strong spin–orbit splitting of 420 meV and a direct band gap at the valence band maximum. Our results suggest that TMDCs can be combined with arbitrary multifunctional oxides, which may introduce alternative means of controlling the optoelectronic properties of such materials.

KEYWORDS: spatially resolved photoemission, PEEM, ARPES, transition metal dichalcogenides, WS$_2$, high-κ oxides

The isolation of single-layer (SL) semiconducting transition metal dichalcogenides (TMDCs) has enabled truly two-dimensional (2D) transistors and optoelectronic devices as well as artificial heterostructures with interesting physical properties. Among this family of TMDCs, which encompasses the 2H-polytypes of the four materials MoS$_2$, MoSe$_2$, WS$_2$, and WSe$_2$, the electronic properties of SL WS$_2$ are considered the most promising due to a combination of particularly strong spin–orbit coupling, a small effective mass of the upper valence band maximum (VBM), and a relatively high mobility limited by electron–phonon coupling. Additionally, luminescence measurements of the pronounced A and B excitons indicate that WS$_2$ transforms into a direct gap semiconductor in the SL limit with the position of its VBM shifting to the K-point in the corner of the Brillouin zone (BZ) of the material, similarly as for MoS$_2$, MoSe$_2$, and WSe$_2$. Consequently, SL WS$_2$ supports strong light–matter interactions that lead to improved light absorption compared to standard photovoltaic devices and exotic many-body effects such as dark excitons.

The electronic properties of SL TMDCs are known to be extremely sensitive toward the properties of the supporting substrate or contact materials. Depending on the dielectric screening by the substrate and the number of free carriers induced either via electrical or optical doping, the quasiparticle band gap and the exciton binding energies can be strongly renormalized, effectively changing the optoelectronic properties of the material. Moreover, the structural properties of the SL TMDCs can have an important impact on their electronic structure, for example, via strain-induced changes of the band structure or by enhancing the interaction with the substrate by introducing an interlayer twist angle. In the case of SL WS$_2$, it is possible to synthesize single-crystal flakes reaching dimensions on the order of \approx100 μm using chemical vapor deposition (CVD) growth techniques, involving molecular growth promoters and standard weakly interacting substrates such as SiO$_2$/Si. Since such flakes are...
routinely picked up from SiO2 for transfer to other substrates,32 one can freely choose the type of interface for the 2D material and thereby investigate its properties in a wide variety of device or substrate environments.

Given the interplay of the effects on the electronic properties mentioned above and the potential of assembling diverse sample−substrate systems, direct methods that can spatially resolve the electronic structure of the SL TMDCs are needed in addition to the available luminescence measurements. So far, the thickness-dependent electronic structures of exfoliated MoS2 and WSe2 on SiO2 have been investigated with spatially resolved angle-resolved photoemission spectroscopy (ARPES).33,34 In these studies, both the low-energy electron diffraction spots and angle-dependent photoemission features were significantly broadened for SL compared to thicker films. This is caused by the mechanical compliance of the SL films, which conform to the known rough surface of SiO2,35 spoiling the momentum resolution of electron scattering and emission probes. Low-energy electronic parameters such as effective mass and spin−orbit splitting are therefore not reliably quantifiable from samples on such substrates. Therefore, a secondary motivation of our work is to find sufficiently flat substrates so that the ARPES technique can be applied without loss of momentum resolution, in order to access the true low-energy excitations.

It has been theoretically predicted that by encapsulating SL TMDCs in high-κ dielectric materials such as HfO2 in a transistor configuration, the enhanced dielectric screening can lead to renormalization of the electron−hole interaction and the band gap in these materials,36,37 in addition to enhanced screening of charged Coulomb impurities and thereby a reduction of the overall carrier scattering rate.38,39 In order to directly study the effect of high-κ support materials on the electronic structure of SL WS2 with photoemission, we utilize the transition metal oxides TiO2 and SrTiO3 as model systems. We focus our study on SL WS2 transferred on rutile TiO2(100), which is one of the more simple and stable transition metal oxide surfaces. It has a wide band gap of 3.0 eV and a dielectric constant given by κ = 113.40,41 We compare to the case of SrTiO3(100) where κ = 310 at room temperature and where both TiO2 and SrO surface terminations are possible.42 We endeavor to determine the electronic structure of these systems using the spatially resolved photoemission techniques of X-ray photoemission electron microscopy (XPEEM) and ARPES with the synchrotron beam focused on the order of 30−50 μm. The TiO2 and SrTiO3 substrates have a smooth surface, which is needed in ARPES experiments where a well-defined surface normal vector is a basic requirement to preserve the momentum resolution. Finally, by combining 2D and bulk semiconductors, it is possible to increase the efficiency of photocatalytic devices43,44 and to control the separation of charge carriers via engineered band offsets.11,45

Figure 1. Transfer of WS2 on rutile TiO2(100). (a) Scheme of the growth of WS2 on 275 nm SiO2/Si and transfer onto a TiO2(100) surface using a polycarbonate (PC) film. (b) Side view of a model of the sample−substrate system. (c) Optical microscope image of the transferred SL WS2 crystal. Dashed lines outline the edges of the crystal. The contrast has been strongly enhanced. (d) Raman spectrum of the crystal in (c) obtained with a 633 nm laser. Characteristic modes are labeled. (e) Photoluminescence spectrum of WS2 on TiO2 obtained with a 488 nm laser excitation. (f−h) PEEM images of the area in (c) obtained with a Hg arc discharge lamp for photoexcitation. The images were acquired (f) before and (g,h) after 25 min of annealing to 600 K. The close-up view of the WS2 crystal in (h) was obtained within the area marked by a green square in (f,g). (i) Photoemission intensity integrated within the boxed regions in (f,g) as a function of time during annealing. (j) Line profile of the photoemission intensity taken across the white dashed line shown in (h). The nucleation site of the WS2 is marked with an arrow in (c) and (f).
RESULTS AND DISCUSSION

A sketch of the entire sample processing route from growth of SL WS2 on 275 nm SiO2/Si using CVD to transfer of SL WS2 on rutile 0.5 wt % Nb-doped TiO2(100) is presented in Figure 1a. Further details on the growth and transfer are given in the Materials and Methods section and in refs 46 and 47. The simplified model in Figure 1b summarizes the crystal structures present in the WS2/TiO2 sample. The 2H-stacking type of WS2 with tungsten atoms sandwiched between sulfur layers is supported on the "sawtooth"-shaped rutile TiO2(100) surface, such that the bottom sulfur layer in WS2 faces rows of oxygen atoms in TiO2. While the (100) and (110) surfaces of rutile TiO2 have been considered to be the most stable,48 a(1×3) surface reconstruction with a complex structure is known to occur once oxygen vacancies are induced.49 These vacancies appear at the top of the sawtooth profile in close proximity to the WS2 layer.

We used an optical microscope to locate and inspect the transferred WS2 on TiO2, as shown in Figure 1c. One immediately notices a bright cluster in the center of the image, which corresponds to the nucleation center of the crystal, and it likely consists of multilayered WS2. The silhouette of the triangular-shaped SL WS2 crystal around the nucleation site is barely visible as it only gives rise to a contrast enhancement of ≈1.5% with respect to the bare TiO2 surface. The dashed lines in Figure 1c have been added as a guide for the eye to locate the edges of the crystal. We observe that the majority of the single triangular WS2 crystal is intact on TiO2 and that it has lateral dimensions on the order of 250 μm. The Raman spectrum of the transferred WS2 crystal in Figure 1d reveals the characteristic modes of WS2. These include the in-plane and out-of-plane E1g and A1g modes as well as the second-order longitudinal acoustic mode 2LA(M) that gives rise to a broad shoulder on the E1g peak. We measure a separation of 62 cm⁻¹ between the E1g and A1g peaks, which is consistent with Raman data from SL WS2 on other substrates.46,50 The broad peak centered around 450 cm⁻¹ is attributed to the E₂g mode in rutile TiO2.51 The photoluminescence measurement of WS2 on TiO2 in Figure 1e reveals a single sharp peak around 2.0 eV, which is characteristic of the neutral exciton in transferred WS2 and is typically interpreted as a strong indication of the direct band gap transition at K in SL WS2.52

The SL WS2/TiO2 crystal is inserted in an ultrahigh vacuum (UHV) chamber for PEEM measurements in order to investigate the spatially resolved electronic properties of the material system. The PEEM images shown in Figure 1f–h were obtained before and after 25 min annealing to 600 K, respectively. The image in Figure 1f presents the WS2/TiO2 directly inserted in the UHV chamber from air after the transfer process outlined in Figure 1a. The anneal time dependence of the photoemission intensity on the WS2 and bare TiO2 areas is tracked in Figure 1i. The initial decrease in intensity in both WS2 and TiO2 is caused by desorption of adsorbates, which increases Φ. The complex shape of these curves and the rise of intensity on the TiO2 part after ≈15 min are associated with annealing-induced oxygen...
vacancy formation in the substrate, which decreases \(\Phi \). The behavior is seen to saturate after 20 min.

Figure 1h presents a closer view of the annealed WS\(_2\) crystal. We interpret the narrow vertical lines with a spacing on the order of 3.4 \(\mu m \) (see line profile in Figure 1j) as TiO\(_2\) intensity that is escaping through cracks in the WS\(_2\) film. These develop due to strain relief during annealing and cooling cycles in the transfer process. Moreover, slight intensity variations are visible between cracks, which could arise from very small changes in the coupling to the substrate and thereby work function, as observed for epitaxial graphene in low-energy electron microscopy (LEEM) experiments. Triangular pits in the WS\(_2\) crystal appear to be pinned at the cracks, as seen in Figure 1h. These are consistent with oxidatively etched triangular pits observed in MoS\(_2\), which have been speculated to occur from surface diffusion of chemisorbed oxygen that reacts with defect sites.

Spatially resolved X-ray absorption spectroscopy (XAS) measurements of the Ti L-edge are presented in Figure 2a–c. The XAS spectra are sensitive to the chemical composition of the TiO\(_6\) octahedral network in the substrate, thereby enabling us to investigate the influence of the WS\(_2\) flake on these. The data were acquired with XPEEM by recording the secondary electron signal as a function of photon energy from the sample in a region where the WS\(_2\) crystal edge is visible. The Ti L-edge spectrum shown in Figure 2a was obtained by integrating the photoemission intensity in the boxed regions shown in the XPEEM images in Figure 2b,c for each measured photon energy. We are thus able to extract the XAS spectrum from a specific area on the sample. The Ti L-edge shows the characteristic doublet of peaks arising from the crystal field splitting in TiO\(_2\). Within each doublet, we identify the so-called \(t_{2g} \) and \(e_{g} \) peaks, which correspond to the \(\pi \)- and \(\sigma \)-states formed by the Ti 3d and O 2p orbitals, respectively. We find an overall reduction of intensity within the Ti L-edge on the WS\(_2\) part due to absorption of secondary electrons in the WS\(_2\) crystal. This gives rise to a significant contrast difference between TiO\(_2\) and WS\(_2\), as seen in the comparison between the images obtained in the pre-edge region and at the \(t_{2g} \) peak energy in Figure 2b,c. The ratio between the \(e_{g} \) and \(t_{2g} \) peaks is nearly identical on the bare TiO\(_2\) substrate and on the WS\(_2\) part. This implies that the \(\sigma \)-interaction is uniform across bare TiO\(_2\) and under the WS\(_2\), such that the annealing- and beam-induced oxygen vacancy density is similar in the two parts of the sample, and there is no apparent chemical interaction between TiO\(_2\) and WS\(_2\).

Area selective X-ray photoelectron spectroscopy (XPS) data for the W 4f, S 2p, and Ti 2p core levels are presented in Figure 2d–f. The photoelectrons were measured in a field of view (FOV) of 15 \(\mu m \) on the sample using an aperture in the center of the energy-dispersive prism of the microscope. The spectra were acquired using an energy-filtering entrance slit and by projecting the back focal plane onto the detector. See the Materials and Methods section and refs 60 and 61 for further details of XPS and ARPES acquisition modes with XPEEM. The W 4f and S 2p binding energy regions in Figure 2e,f were measured in the interior part of the WS\(_2\) crystal. For both the W 4f and S 2p regions, we observe the expected peaks and no additional components due to, for example, tungsten oxides remaining from the CVD synthesis or due to an interaction with oxygen in the TiO\(_2\) substrate. The Ti 2p spectrum in Figure 2f was recorded with the aperture on the bare TiO\(_2\).
This also implies that our transferred SL WS2 has a cross into the TiO2 VB continuum around a binding energy of \(K \). The global VBM situated at WS2.59 does not observe any changes in the band structure derived from the W 5d and S 3p states that make up the VB of direct band gap at 1.43 eV. This is most clearly seen between the calculated bands of free-standing SL WS2 shown as XPEEM. In the dark-field image in Figure 3b, we restrict the measured electrons to originate from the local VBM at \(K \) in WS2 using a contrast aperture (see circled region in Figure 3a) and therefore obtain an intensity on the WS2 crystal higher than that on the substrate. However, the line scan of the dark-field intensity in Figure 3c reveals a decrease in VB intensity around the edge of the WS2 crystal. This behavior is studied in detail via the dispersion plots along the \(\Gamma - M - \Gamma' \) direction of the WS2 BZ in Figure 3d–g and the energy distribution curves (EDCs) binned \(\pm 0.1 \text{ Å}^{-1} \) around the \(\Gamma \)-point in Figure 3h. Such EDC cuts are vertical intensity profiles of the photoemission intensity, as shown by the dashed line in Figure 3g. These data were acquired with a selective area aperture corresponding to the circled regions in Figure 3b. We observe that the bare TiO2 electronic structure (see Figure 3d) with O 2p bands peaking around binding energies of 6 and 4 eV coexist with WS2 VB features in regions 2 and 3 near the edge of the flake (see EDCs 1–3 in Figure 3h). This is expected for the edge region probed in Figure 3e since both bare TiO2 and WS2 are included in the measured FOV. Since the O 2p bands of TiO2 are not completely attenuated by the WS2 in Figure 3f and EDC 3 in Figure 3h, the WS2 flake must contain nanosized pinholes, which could have been etched like the larger triangular holes seen in Figure 1h. Note that in the interior of the flake where EDC 4 in Figure 3h was acquired, we exclusively observe peaks that correspond to the W 5d and S 3p states seen in Figure 3a.

Small, rigid binding energy shifts on the order of 100 meV are observed between the WS2 related peaks in EDCs 2–4 in Figure 3h, which implies a spatial doping profile. This is likely caused by remaining polymer residue from the transfer process. Additionally, changes are known to occur in the structural and chemical composition around the edge of triangular synthetic 2D TMDCs, as the luminescence signal modulates strongly within a range of 0.5–5 \(\mu \text{m} \) from the \(\Gamma \)-point. The analysis in Figure 3e–h reveals that the WS2 related band structure in the edge region of our transferred flake has dispersion and line widths similar to those of the band structure measured in the interior part. For example, the full width at half-maximum (fwhm) of the Lorentzian line shape fitted to the topmost VB state remains on the order of 550 meV.
through EDCs 2–4 in Figure 3h. Thus, the actual band structure does not seem to vary strongly from the edge to the interior of the flake, at least not on the length scale probed here.

We have performed high-resolution ARPES measurements with a hemispherical electron analyzer in order to extract the effective masses and spin–orbit-induced splitting of the SL WS₂ flake. These measurements have significantly higher energy and angular resolution (<20 meV and <0.1°) but significantly worse spatial resolution (>30 μm) than the measurements discussed above that were acquired using XPEEM.

Well-defined pockets of intensity at Γ and Γ’ are seen in the constant energy surfaces across several BZs of the SL WS₂ in the ARPES data in Figure 4a. Contour plots are also discernible around K and K’. The observation of distinct WS₂ energy contours in multiple BZs ascertain that our flake is a single domain crystal. Cuts of the dispersion along the high-symmetry directions spanning two BZs are shown in Figure 4b,c. The dispersive features are fully consistent with those observed by XPEEM in Figure 3a and are attributed to the VB states of SL WS₂. The intensity of the bands varies strongly across the BZ, and the top of the VB at K seems to vanish. This modulation of intensity is a matrix element effect that originates from the change of the W 5d orbital character of the bands from out-of-plane orbitals at Γ to in-plane orbitals at K.66,67 We find that once we change the photon energy from the 90 eV used in Figure 4a–c to 30 eV, we are able to resolve the VBM at K along with the spin-split states along the Γ–K direction, as shown in Figure 4d. Note that the broad line widths observed in the bands in Figure 4b–d are partly attributable to averaging over areas with slightly different doping, which were observed with XPEEM in Figure 3h.

The detailed measurement of the dispersion in Figure 4d permits us to analyze EDCs of the VB near K as shown in Figure 4e,f. A single Lorentzian line shape describes the VB energy of 1.43 eV. The fit leads us to estimate an effective mass given by . We find that once we change the photon energy from the 90 eV used in Figure 4a–c to 30 eV, we are able to resolve the VBM at K along with the spin-split states along the Γ–K direction, as shown in Figure 4d. Note that the broad line widths observed in the bands in Figure 4b–d are partly attributable to averaging over areas with slightly different doping, which were observed with XPEEM in Figure 3h.

SrTiO₃ surface following the WS₂ transfer process is investigated using XPEEM measurements of the Sr 3d core level region, as shown in Figure 5b. The spectrum was recorded on the bare SrTiO₃ surface using a selective area aperture, which is shown with the orange circle in Figure 5a. We observe both surface (S) and bulk (B) components, which are indicative of both SrO and TiO₂ terminations.42 Figure 5c presents a XPEEM measurement of the WS₂ VB in the Γ–K direction, which was obtained using a selective area aperture corresponding to the blue circle in Figure 5a. There is a good agreement between the measured VB and the calculated bands of free-standing SL WS₂, although the WS₂ bands appear to be broader in the SrTiO₃ case. We quantify this line width broadening via EDCs at Γ, as shown in Figure 5d. The full width at half maximum of the fitted Lorentzian peak of the topmost VB state is 33% larger in the SrTiO₃ case, which is likely related to different pinning of the Fermi level in the two substrates.

![Figure 5. PEEM measurements of SL WS₂ transferred on SrTiO₃ (STO). (a) PEEM image of a transferred flake obtained with a Hg arc discharge lamp. The orange and blue circles demarcate the regions where the measurements in (b) and (c) were performed, respectively. (b) XPS spectrum (markers) from the Sr 3d core level region fitted (lines) with Doniach–Sunjic line shapes. The fitted bulk (B) and surface (S) components are shown by the shaded peaks. (c) ARPES spectrum of the SL WS₂ VB in the Γ–K direction. White dashed lines are calculated bands of free-standing SL WS₂ from ref 59. (d) EDC at Γ obtained along the vertical dashed black line in (c). The corresponding EDC for WS₂ on TiO₂ from Figure 3a is included for comparison. Fits to Lorentzian peaks are shown by the overlaid black curves, and the individual fitted peaks of the topmost VB state are presented by the dashed curves. A 0.43 eV shift of the VB between the two systems is shown by a double-headed arrow.](https://doi.org/10.1021/acsnano.6b04914)
CONCLUSION

In summary, we have interfaced SL WS₂ with the transition metal oxide substrate rutile TiO₂(100) and observed via XPEEM and ARPES measurements of the electronic structure that the substrate has a very minor influence on the SL WS₂ VB, which strongly resembles the VB of a free-standing layer. Previous ARPES studies have focused on epitaxial SL WS₂ grown on graphite or on metal surfaces. The topmost VB of SL WS₂ did not exhibit any interaction with the graphite substrate, but for SL WS₂ grown on Au(111), strong hybridization effects were observed between the VB at Γ and the bulk metal bands. The out-of-plane W 5d and S 3p orbitals that constitute the VB at Γ are particularly sensitive toward the environment. In our case, we do not observe any hybridization effects at Γ or in the WS₂ states that disperse into the VB continuum of the TiO₂. Additionally, we do not observe strong distortions of the VB bandwidth or the effective masses at K, which is in contrast to the related materials MoS₂ and WSe₂ exfoliated on SiO₂. In our case, the smooth substrate with a high dielectric constant ensures that distortions in the measured band structure from structural corrugations and charged impurities are minimized. Our results demonstrate that a large spin–orbit splitting, small effective masses, and a shift of the VBM to the K-point, which implies a direct quasiparticle band gap in the material, persist in CVD-grown SL WS₂ transferred on TiO₂. We have shown that SL WS₂ transferred on the more complex oxide SrTiO₃ is characterized by broader electronic states, which may be related to SrO and TiO₂ segregation at WS₂–SrTiO₃ interface. Furthermore, a large shift of the SL WS₂ VB of 0.43 eV on SrTiO₃ compared to TiO₂ shows that the choice of substrate strongly influences the band positions in SL TMDCs. Our results imply that the transfer of SL TMDCs on transition metal oxide substrates offers an alternative method for engineering the properties of 2D semiconductors, for example, by interfacing the 2D materials with different high-k materials and thereby introducing a means to control the screening and band alignments in such systems.

MATERIALS AND METHODS

WS₂ Synthesis on SiO₂. Synthesis of monolayer WS₂ is performed at ambient pressure in a 2 inch diameter quartz tube furnace on SiO₂/Si (275 nm) substrates. Prior to use, all SiO₂/Si substrates undergo a standard cleaning procedure consisting of (i) ultrasonication in acetone, (ii) ultrasonication in isopropyl alcohol, (iii) submersion in Piranha etch (3:1 mixture of H₂SO₄/H₂O₂) for approximately 2 h, and (iv) thorough rinsing in deionized water. A quartz boat containing 1 g of WO₃ powder was positioned at the center of the furnace. Two SiO₂/Si (275 nm) wafers are positioned face-down, directly above the oxide precursor. The upstream wafer contains perylene-3,4,9,10-tetracarboxylic acid tetrapotassium salt (PTAS) seeding molecules, while the downstream substrate is untreated. The hexagonal PTAS molecules are carried downstream to the untreated substrate and promote lateral growth of WS₂. A separate quartz boat containing sulfur powder is placed upstream, outside the furnace-heating zone. Pure argon (100 sccm) is used as the furnace gas to heat the sample. Upon reaching a target temperature of 825 °C, 10 sccm H₂ is added to the Ar flow and maintained throughout the 15 min soak and subsequent cooling.

WS₂ Transfer to Transition Metal Oxides. The CVD-grown SL WS₂ samples on SiO₂ are transferred onto 0.5 wt % Nb-doped rutile TiO₂(100) and 0.5 wt % Nb-doped SrTiO₃(100) substrates purchased from Shinkosha Co., Ltd. The average surface roughness of the substrates is better than 10 Å according to the vendor. TiO₂ was cleaned by ultrasonication in acetone and then ethanol, and SrTiO₃ was cleaned by buffered hydrofluoric acid etching followed by ultrasonication in acetone and then ethanol. A polymer-based pick-up technique was used for the transfer process. For this, a 5 × 5 × 1 mm piece of polydimethylsiloxane (PDMS) stamp is attached on a glass slide. Separately, a polycarbonate (PC) film is prepared on another glass slide by putting a few drops of PC solution and spreading it across the slide (by quickly sliding another glass slide over it). The PC film is peeled off from the glass slide using a clear tape and then attached onto the PDMS stamp. The prepared PC/PDMS glass slide is mounted facing down on a home-built transfer tool and carefully lowered onto the contact with the WS₂ on SiO₂ substrates, which is held by vacuum on a heating stage. The sample stage is heated to 90 °C to soften the PC polymer on the WS₂ flake, and then the polymer is retracted slowly by cooling the stage. On retracting, the polymer picks up the WS₂ flake from the SiO₂ substrate. Then, the PC film carrying the WS₂ flake is dropped onto TiO₂ or SrTiO₃ by melting the polymer at 150 °C. The PC polymer is removed by rinsing the substrate in chloroform for about 10–15 min. During transfer, the whole process is closely monitored through a microscope. After transfer of the WS₂ flake on TiO₂ or SrTiO₃, the sample is annealed in a UHV chamber at 320 °C for further cleaning.

Optical Microscopy and Raman and Photoluminescence Spectroscopy. A Nikon measuring microscope MM-40 was used for optical imaging of transferred WS₂. The Raman spectrum was acquired in ambient conditions with a Renishaw InVia Raman microscope using an excitation laser of 1.96 eV. The laser was focused on the WS₂ sample with a 50X objective, and a low laser power density (<100 μW) was used to avoid heating/creating defects in the sample. Photoluminescence spectroscopy measurements were acquired at room temperature in ambient conditions using a commercial Horiba LabRam confocal spectrometer. A 50X objective was used to focus the 488 nm laser beam to a spot of 2 μm diameter. The laser power at the sample was below 60 μW.

X-ray Photoemission Electron Microscopy. The XPEEM measurements were carried out using a SPECS PE-PEEM P90 system installed at the MAESTRO facility at beamline 7.0.2 of the Advanced Light Source (ALS) in Berkeley, CA, USA. An extraction voltage of −5 kV was applied to the sample while an objective lens 1.5 mm away from the sample was kept at ground potential in order to extract photoexcited electrons. Work function imaging was achieved using a Hg arc discharge lamp with an ultraviolet spectrum peaked at 4±4 eV. XPS core level data were acquired using synchrotron radiation with a photon energy of 45 eV. For ARPES and XPS measurements, we used a 15 μm FOV circular aperture in the electron beam path to select an area of interest in the sample. The energy filtering was achieved using a magnetic prism with a motorized entrance slit with variable slit sizes. For ARPES, the total energy and momentum resolution were on the order of 250 meV and 0.03 Å⁻¹, respectively. The binding energy scaling in the ARPES and XPS data were determined by acquiring the data at two different sample voltages offset by 5 V, and the absolute binding energies were determined by measuring the secondary electron cutoff. Microscopy in XAS mode was achieved by filtering the secondary electrons with a contrast aperture in the deflection plane of the microscope. Dark-field imaging on the WS₂ VB was done by placing the contrast aperture on the local VBM at Γ. During XPEEM measurements, the sample was kept at room temperature.

High-Resolution Angle-Resolved Photoemission Spectroscopy. High-resolution ARPES measurements were carried out using the μARPES end station equipped with a hemispherical VG Scienta R4000 analyzer at the MAESTRO facility. The lateral size of the synchrotron beam was estimated to be between 30 and 50 μm. We used photon energies of 90 eV for overview scans of the BZ and 30 eV for detailed scans of the WS₂ VB. The total energy and momentum resolution were better than 20 meV and 0.01 Å⁻¹, respectively. The sample was kept at 85 K during measurements.
Corresponding Authors
*E-mail: sulstrup@lbl.gov.
*E-mail: cmjozwiak@lbl.gov.

Author Contributions
S.U. and J.K. contributed equally to the work.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
S.U. acknowledges financial support from the Danish Council for Independent Research, Natural Sciences under the Sapere Aude program (Grant No. DFF-4090-00125). R.J.K. is supported by a fellowship within the Postdoc-Program of the German Academic Exchange Service (DAAD). D.S. acknowledges financial support from The Netherlands Organisation for Scientific Research under the Rubicon Program (Grant 680-50-1305). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This work was supported by IBS-R009-D1. The work at Ohio State was primarily supported by NSF-MRSEC (Grant DMR-1420451). Work at NRL was supported by core programs and the NRL Nanoscience Institute and by AFOSR under contract number AOARD 14OA018-134141.

REFERENCES
(6) Jariwala, D.; Sangwan, V. K.; Late, D. J.; Johns, J. E.; Dravid, V. P.; Marks, T. J.; Lauhon, L. J.; Hersam, M. C. Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides. ACS Nano 2014, 8, 1102.
