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The Four-Number Game 
by Daniel Shapiro, 2005 

 
Choose four numbers and place them at the corners of a square.  At the midpoint of each 
edge, write the difference of the two adjacent numbers, subtracting the smaller one from 
the larger.  This produces a new list of four numbers, written on a smaller square.   
 What happens when this process is repeated?   
Here are a few steps, starting with the four numbers  1,  5,  3,  2  around the largest 

square, and proceeding inwards.  Once you see how 
it works, it’s easier to display the game more 
compactly as a table:  
 
 1 5 3 2 
 4 2 1 1 
 2 1 0 3 
 1 1 3 1 
 0 2 2 0 
 2 0 2 0 
 2 2 2 2 
 0 0 0 0 

 
 
After seven steps the numbers become all zeros.  Let’s try two more examples. 
 
 1 3 8 17 1 2 2 5 
 2 5 9 16 1 0 3 4 
 3 4 7 14 1 5 1 3 
 1 3 7 11 2 2 2 2 
 2 4 4 10 0 0 0 0 
 2 0 6 8 0 0 0 0 
 2 6 2 6  
 4 4 4 4  
 0 0 0 0  
 
Each example ends with a row of zeros after a few steps.  Take a couple of minutes to try 
out a few 4-number patterns for yourself. . .   
 Are there any examples that don’t end with a row of zeros? 
One way to investigate this question is to generate lots of examples.  We could ask 
everyone we know to work out fifty examples.  Or one of you could write a computer 
program to compute examples.  But lists of examples can never prove that the process 
will always end in a row of zeros.   
 
To find a proof we start by defining terms more carefully.  If  Q = (a, b, c, d), the derived 
row  Q′  is obtained by taking differences, ignoring minus signs.  The first entry of  Q′  
will be either  a – b  or  b – a,  whichever one is not negative.  That entry is the absolute 
value  |a – b|.  With this terminology, if  Q = (a, b, c, d),  the derived row is: 
 Q′  = ( |a – b|,  |b – c|,  |c – d|,  |d – a| ). 
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If we analyze the general situation directly, the cases and sub-cases proliferate:  Which of 
the numbers is largest?  Which of the differences is smallest?  We use a more indirect 
approach. 
 
OBSERVATION.  If  Q ≠ (0, 0, 0, 0),  then  Q′   seems to be smaller than  Q.   
 
If this is always true, we can prove that our game must end in a row of zeros.  For 
suppose  Q = (a, b, c, d)  is given with non-negative integer entries.  Repeat the process 
several times, obtaining rows  Q′,   Q′′,   Q′′′,   Q′′′′, . . .  By the Observation the entries 
in those derived rows get smaller and smaller.  Eventually they become zero, since a 
decreasing sequence of non-negative integers cannot go on forever.   
 
But is that Observation true?  In the examples the numbers get smaller as the game is 
played, but what exactly does it mean for one row to be “smaller” than another?  For 
instance, is  (1, 0, 4, 12)  smaller than  (3, 3, 5, 4)?  Here’s another example:   
If  Q = (4, 0, 0, 0)  then  Q′ = (4, 0, 0, 4).  Here the size did NOT decrease (whatever 
measure of size we use).   
 
To clarify the “size” of a row, let’s consider the maximal entry: 
 If  Q = (a, b, c, d),  let  max(Q)  be the largest of the four numbers in Q. 
Since our process uses subtraction, the largest number in  Q  cannot increase.  In 
mathematical terms, this says: 
 If  Q′  is derived from  Q  then:  max( Q′ )  ≤  max( Q ). 
Those maximal values might be equal (as seen when  Q = (4, 0, 0, 0) ).  That can happen 
only when there is a zero in the row  Q.  Since equality of maximal entries can happen we 
have to work a little more, running the game a few steps. 
 
CLAIM:  For any row  R,  at least one of the rows   
 R  or  R′  or R′ ′  or  R′ ′′   or  R′′ ′′    has all entries even. 
 
This Claim is proved by considering a few cases.  Write  “e”  for an even number and  
“o”  for an odd number, to track different cases.  For instance the row  Q = (4, 2, 1, 1)  
becomes  (e, e, o, o)  and we find the derived row must be:  Q′ ≈ (e, o, e, o).  (Why?) 
Similarly,  Q′′ ≈ (o, o, o, o),  and  Q′′′ ≈ (e, e, e, e),  which is all even.  There are several 
more  e & o  cases to work out, but we leave them for you to investigate. 
 
Now we can prove that the game must eventually stop at  (0, 0, 0, 0)  for any initial row  
Q,  no matter how large the entries of  Q  are.  To start, run the game for a few steps until 
reaching some derived row  S  which is all even.  (Using the Claim.)  That row can be 
written as  S = (2w, 2x, 2y, 2z)  for some whole numbers  w, x, y, z.  Let  T = (w, x, y, z)  
which is just  ½S.  The steps of the game applied to  S  exactly match the steps applied to  
T.  (Why?)  Then to analyze the game we can replace  S  by  T.  Note that  max(T)  is 
definitely smaller than  max(S),  at least if  S  was non-zero.  Then the previous idea 
works:  Continue the game, but each time we reach an all even row, factor out another 2.  
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If a row of zeros never appears, the maximal entries of the factored rows provide a 
decreasing list of positive integers that never ends.  That’s impossible!       QED 
 
That proves that every 4-number game of whole numbers must eventually stop.  But there 
are still many questions to investigate.  Here are a few for you to think about: 
 
1.  How many steps are needed?  Is there some row that needs 20 steps to get to zeros?   
Is there one that needs 100 steps?   
What’s the longest number of steps needed for a row whose entries are all < 100 ? 
 
2.  What about other row sizes?  For instance, what happens with rows of three numbers?  
Or with rows of five or six?  What sorts of patterns occur as those game continue? 
 
3.  What happens when more general numbers are used in the four-number game?  For 
instance, work out the game for  (0, 1, 6, π).  Surprisingly this one goes to zeros in only 
four steps.  Investigate some other non-integer examples.  What happens? 
For those cases our proof that the game ends in zeros no longer works. (Dang!)  Are there 
any cases when the four-number game is infinite?   
 
 
Note:  Dozens of technical papers have been written about the four-number game.  Those 
patterns are also called “Ducci sequences” after the mathematician who invented this 
game in the 1930s.   
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