LeChatelier's Principle: Iron(III) Thiocyanate Equilibria Looks like Tang, tastes like going to the hospital to get your stomach pumped ### **Chemicals and Equipment Needed** - LeChatelier's Principle Kit O2 - o Dropper bottle of 0.10 M Fe(NO₃)₃ - o Dropper bottle of 0.10 M KSCN - o Dropper bottle of 0.10 M AgNO₃ - Small vial of NaF (s) - Small vial of Na₂SO₃ (s) - ~500 mL 0.001 M Fe(NO₃)₃ **H4** - If low, can be made from stock solution (0.1 M, also H4) - ~500 mL 0.001 M KSCN H4 - If low, can be made from stock solution (0.1 M, also H4) - 7-300 mL tall beakers Q2 - 6 stirring rods **U1** - 2 microspatulas U1 - Light box **A4** #### **Preparation** - MAKE SURE TO USE THE CORRECT CONCENTRATIONS! - Set up 7 beakers in a row. - Add 75 mL 0.001 M Fe(NO₃)₃ to the 1st beaker (colorless), cover with labeled petri dish - o Just use the marking on the beakers, no need to use graduated cylinders - Add 75 mL 0.001 M KSCN to the 2nd beaker (colorless), cover with labeled petri dish - Add 75 mL 0.001 M Fe(NO₃)₃ AND 75 mL 0.001 M KSCN to the last five beakers, producing the orange colored species FeSCN²⁺. Cover with petri dishes labeled FeSCN²⁺. - The solution should look like Tang or Kool-Aid. If it is dark or brown, you used the wrong concentration - Set the dropper bottles, vials of reagents, stirring rods, and microspatulas on top of the light box according to the diagram below: #### **Presentation** ### Before each beaker, ask the audience to predict how equilibrium will shift #### Beaker 1- reference color Add the 75 mL 0.001 M KSCN to the beaker containing only 0.001 M Fe(NO₃)₃ to show formation of the colored FeSCN²⁺ complex ion from two colorless solutions. $$SCN^{-}$$ (aq) + Fe^{3+} (aq) \rightarrow $FeSCN^{2+}$ (aq) colorless orange ### Beaker 2- Add a squirt or two of 0.10 M Fe(NO₃)₃ - Observation: The color intensifies - o Conclusion: There must have been free SCN⁻ available to react with the added Fe³⁺ #### Beaker 3- Add a squirt or two of 0.10 M KSCN - Observation: The color intensifies - o Conclusion: There must have been free Fe3+ available to react with the added SCN- #### Beaker 4- Add a small amount of solid Na₂SO₃ - Observation: The color fades - Conclusion: The equilibrium has shifted to the left, due to removal of Fe³⁺ by reduction with SO₃²⁻ $$2 \text{ Fe}^{3+}$$ (aq) + SO_3^{2-} (aq) + $H_2O \rightarrow 2 \text{ Fe}^{2+}$ (aq) + SO_4^{2-} (aq) + 2 H^+ (aq) #### Beaker 5- Add a small amount of solid NaF - Observation: The color fades - Conclusion: The equilibrium has shifted to the left, due to removal of Fe³⁺ by formation of a complex with F⁻ $$Fe^{3+}$$ (aq) + n F^{-} (aq) \rightarrow FeF_n^{3-n} (aq) #### Beaker 6- Add a squirt or two of 0.10 M AgNO₃ - o **Observation:** The color fades, and the solution turns cloudy - **Conclusion:** The equilibrium has shifted to the left, due to removal of SCN⁻ by precipitation $Ag^+(aq) + SCN^-(aq) \rightarrow AgSCN(s)$ #### Clean-Up All the solutions can go down the sink except the one containing AgSCN (the cloudy one), which should go in the WWC #### NOTES: - To make the stock solutions: - 0.100 M Fe(NO₃)₃ - 40.402g Fe(NO₃)₃•9 H₂O in 500 mL d-H₂O, add 63mL conc. HNO₃, dilute to 1L - 0.100 M KSCN - 9.718g KSCN in 500 mL d-H₂O, then dilute to 1L - To make the 0.0010 M solutions: - Take 10 mL of the appropriate solution, dilute to 1L # LeChatelier's Principle: Instructor Notes ### Beaker 1- reference color • Add the 75 mL 0.001 M KSCN to the beaker containing only 0.001 M Fe(NO₃)₃ to show formation of the colored FeSCN²⁺ complex ion from two colorless solutions. KSCN (aq) + Fe(NO₃)₃ (aq) $$\rightarrow$$ FeSCN²⁺ (aq) + K⁺ (aq) + 3 NO₃⁻ (aq) SCN⁻ (aq) + Fe³⁺ (aq) \rightarrow FeSCN²⁺ (aq) orange complex # Beaker 2- Add a squirt or two of 0.10 M Fe(NO₃)₃ - Observation: The color intensifies - **Conclusion:** There must have been free SCN⁻ available to react with the added Fe³⁺ ## Beaker 3- Add a squirt or two of 0.10 M KSCN - Observation: The color intensifies - **Conclusion:** There must have been free Fe³⁺ available to react with the added SCN⁻ ### Beaker 4- Add a small amount of solid Na₂SO₃ - Observation: The color fades - **Conclusion:** The equilibrium has shifted to the left, due to removal of Fe³⁺ by reduction with SO₃²⁻ $$2 \text{ Fe}^{3+} (aq) + SO_3^{2-} (aq) + H_2O \rightarrow 2 \text{ Fe}^{2+} (aq) + SO_4^{2-} (aq) + 2 H^+ (aq)$$ # Beaker 5- Add a small amount of solid NaF - Observation: The color fades - **Conclusion:** The equilibrium has shifted to the left, due to removal of Fe³⁺ by formation of a complex with F⁻ $$Fe^{3+}$$ (aq) + n F^{-} (aq) \rightleftharpoons FeF_n^{3-n} (aq) # Beaker 6- Add a squirt or two of 0.10 M AgNO₃ - Observation: The color fades, and the solution turns cloudy - **Conclusion:** The equilibrium has shifted to the left, due to removal of SCN⁻ by precipitation $$Ag^+$$ (aq) + SCN⁻ (aq) \rightarrow AgSCN (s)