LeChatelier's Principle: Iron(III) Thiocyanate Equilibria

Looks like Tang, tastes like going to the hospital to get your stomach pumped

Chemicals and Equipment Needed

- LeChatelier's Principle Kit O2
 - o Dropper bottle of 0.10 M Fe(NO₃)₃
 - o Dropper bottle of 0.10 M KSCN
 - o Dropper bottle of 0.10 M AgNO₃
 - Small vial of NaF (s)
 - Small vial of Na₂SO₃ (s)
- ~500 mL 0.001 M Fe(NO₃)₃ **H4**
 - If low, can be made from stock solution (0.1 M, also H4)
- ~500 mL 0.001 M KSCN H4
 - If low, can be made from stock solution (0.1 M, also H4)

- 7-300 mL tall beakers Q2
- 6 stirring rods **U1**
- 2 microspatulas U1
- Light box **A4**

Preparation

- MAKE SURE TO USE THE CORRECT CONCENTRATIONS!
- Set up 7 beakers in a row.
- Add 75 mL 0.001 M Fe(NO₃)₃ to the 1st beaker (colorless), cover with labeled petri dish
 - o Just use the marking on the beakers, no need to use graduated cylinders
- Add 75 mL 0.001 M KSCN to the 2nd beaker (colorless), cover with labeled petri dish
- Add 75 mL 0.001 M Fe(NO₃)₃ AND 75 mL 0.001 M KSCN to the last five beakers, producing the orange colored species FeSCN²⁺. Cover with petri dishes labeled FeSCN²⁺.
 - The solution should look like Tang or Kool-Aid. If it is dark or brown, you used the wrong concentration
- Set the dropper bottles, vials of reagents, stirring rods, and microspatulas on top of the light box according to the diagram below:

Presentation

Before each beaker, ask the audience to predict how equilibrium will shift

Beaker 1- reference color

 Add the 75 mL 0.001 M KSCN to the beaker containing only 0.001 M Fe(NO₃)₃ to show formation of the colored FeSCN²⁺ complex ion from two colorless solutions.

$$SCN^{-}$$
 (aq) + Fe^{3+} (aq) \rightarrow $FeSCN^{2+}$ (aq) colorless orange

Beaker 2- Add a squirt or two of 0.10 M Fe(NO₃)₃

- Observation: The color intensifies
- o Conclusion: There must have been free SCN⁻ available to react with the added Fe³⁺

Beaker 3- Add a squirt or two of 0.10 M KSCN

- Observation: The color intensifies
- o Conclusion: There must have been free Fe3+ available to react with the added SCN-

Beaker 4- Add a small amount of solid Na₂SO₃

- Observation: The color fades
- Conclusion: The equilibrium has shifted to the left, due to removal of Fe³⁺ by reduction with SO₃²⁻

$$2 \text{ Fe}^{3+}$$
 (aq) + SO_3^{2-} (aq) + $H_2O \rightarrow 2 \text{ Fe}^{2+}$ (aq) + SO_4^{2-} (aq) + 2 H^+ (aq)

Beaker 5- Add a small amount of solid NaF

- Observation: The color fades
- Conclusion: The equilibrium has shifted to the left, due to removal of Fe³⁺ by formation of a complex with F⁻

$$Fe^{3+}$$
 (aq) + n F^{-} (aq) \rightarrow FeF_n^{3-n} (aq)

Beaker 6- Add a squirt or two of 0.10 M AgNO₃

- o **Observation:** The color fades, and the solution turns cloudy
- **Conclusion:** The equilibrium has shifted to the left, due to removal of SCN⁻ by precipitation $Ag^+(aq) + SCN^-(aq) \rightarrow AgSCN(s)$

Clean-Up

 All the solutions can go down the sink except the one containing AgSCN (the cloudy one), which should go in the WWC

NOTES:

- To make the stock solutions:
 - 0.100 M Fe(NO₃)₃
 - 40.402g Fe(NO₃)₃•9 H₂O in 500 mL d-H₂O, add 63mL conc. HNO₃, dilute to 1L
 - 0.100 M KSCN
 - 9.718g KSCN in 500 mL d-H₂O, then dilute to 1L
- To make the 0.0010 M solutions:
 - Take 10 mL of the appropriate solution, dilute to 1L

LeChatelier's Principle: Instructor Notes

Beaker 1- reference color

• Add the 75 mL 0.001 M KSCN to the beaker containing only 0.001 M Fe(NO₃)₃ to show formation of the colored FeSCN²⁺ complex ion from two colorless solutions.

KSCN (aq) + Fe(NO₃)₃ (aq)
$$\rightarrow$$
 FeSCN²⁺ (aq) + K⁺ (aq) + 3 NO₃⁻ (aq) SCN⁻ (aq) + Fe³⁺ (aq) \rightarrow FeSCN²⁺ (aq) orange complex

Beaker 2- Add a squirt or two of 0.10 M Fe(NO₃)₃

- Observation: The color intensifies
- **Conclusion:** There must have been free SCN⁻ available to react with the added Fe³⁺

Beaker 3- Add a squirt or two of 0.10 M KSCN

- Observation: The color intensifies
- **Conclusion:** There must have been free Fe³⁺ available to react with the added SCN⁻

Beaker 4- Add a small amount of solid Na₂SO₃

- Observation: The color fades
- **Conclusion:** The equilibrium has shifted to the left, due to removal of Fe³⁺ by reduction with SO₃²⁻

$$2 \text{ Fe}^{3+} (aq) + SO_3^{2-} (aq) + H_2O \rightarrow 2 \text{ Fe}^{2+} (aq) + SO_4^{2-} (aq) + 2 H^+ (aq)$$

Beaker 5- Add a small amount of solid NaF

- Observation: The color fades
- **Conclusion:** The equilibrium has shifted to the left, due to removal of Fe³⁺ by formation of a complex with F⁻

$$Fe^{3+}$$
 (aq) + n F^{-} (aq) \rightleftharpoons FeF_n^{3-n} (aq)

Beaker 6- Add a squirt or two of 0.10 M AgNO₃

- Observation: The color fades, and the solution turns cloudy
- **Conclusion:** The equilibrium has shifted to the left, due to removal of SCN⁻ by precipitation

$$Ag^+$$
 (aq) + SCN⁻ (aq) \rightarrow AgSCN (s)