Managing Insect Pests on Urban Farms

Jim Jasinski

OSU Extension

Integrated Pest Management Program

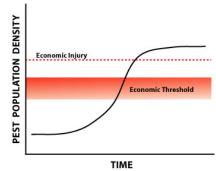
THE OHIO STATE UNIVERSITY

Objectives

- Discuss basics of pest management
 - Cultural, biological, & pesticide
- Show approaches to pest management in specific vegetables

Integrated Pest Management

- Combines the best control tactics to...
 - Keep pests at an acceptable level
 - Reduce pesticide use
 - Minimize environmental impacts
 - Minimize human exposure
- Does not rely on a single tactic more than others


Integrated Pest Management 5 basic steps

Information ased

- 1. Monitoring
- 2. Identification
- 3. Thresholds
- 4. Action Plan
- 5. Evaluation

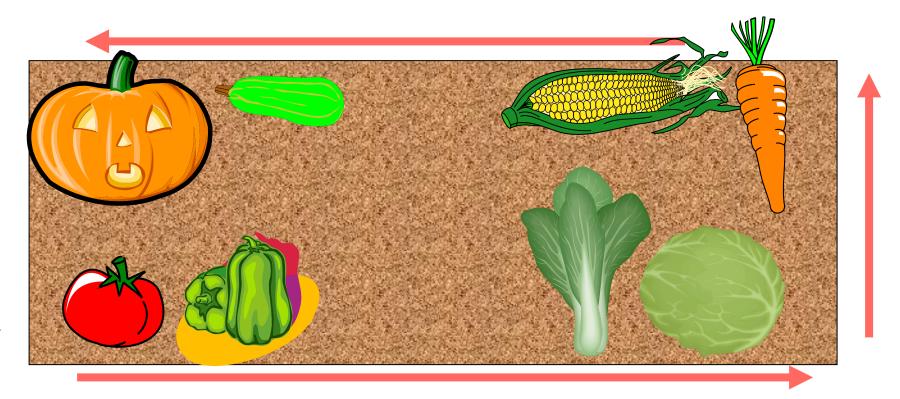
Integrated Pest Management Pillars

- 1. **Cultural control** Non-chemical tactics used to reduce pest pressure
- 2. **Biological control** Using natural enemies & diseases to reduce certain pests
- 3. Chemical control Use of pesticides (insecticides, herbicides, and fungicides) to reduce pests

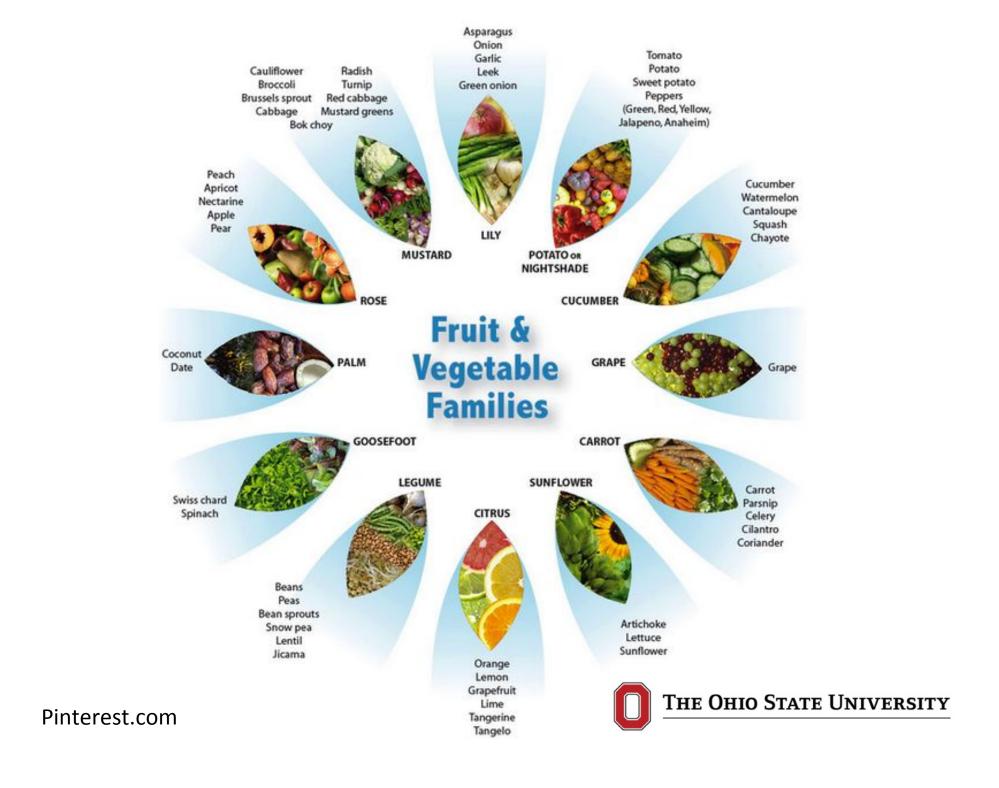
Cultural Controls

- Plant Genetics / Hybrids
- Rotation
- Sanitation
- Planting time
- Mechanical
- Exclusion (Row Covers)
- Mulches (Organic & Inorganic)
- Traps (sticky & pheromone)
- Trap crops

Genetic Resistance

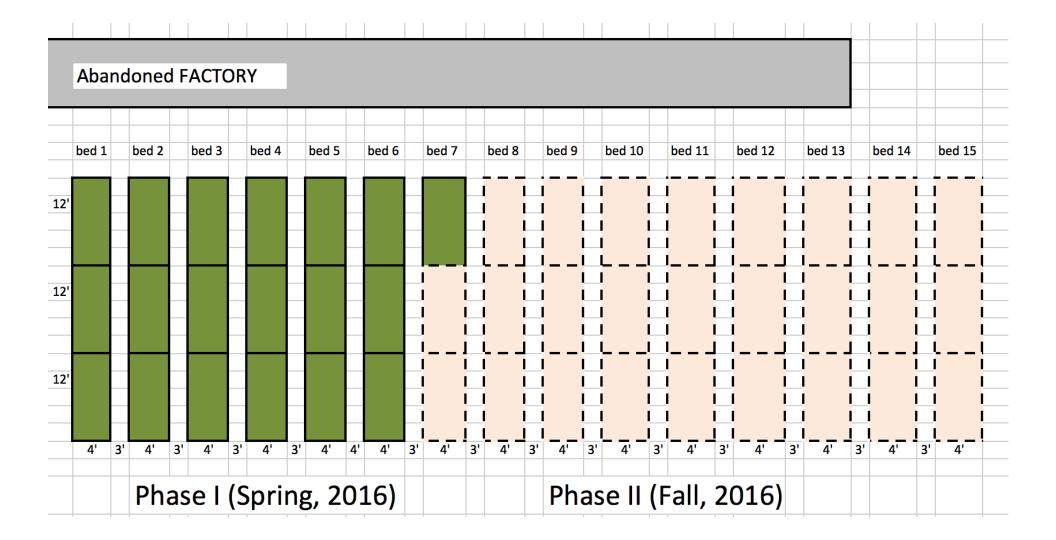

-Disease packages (genes) to withstand specific fungal, viral, bacterial, or nematode attack

Tomato I	Resistance Codes
(AB)	Early Blight
(AS)	Alternaria Stem Canker
(F)	Fusarium Wilt
(F2)	Fusarium Wilt (Races 1 & 2)
(F3)	Fusarium Wilt (Races 0, 1 & 2)
(FOR)	Fusarium Crown and Root Rot
(L)	Gray Leaf Spot
(LB)	Late Blight
(LM)	Leaf Mold
(N)	Nematodes
(PL)	Corky Root Rot
(PM)	Powdery Mildew
(PST)	Bacterial Speck
(TMV)	Tobaco Mosaic Virus
(TOANV)	Tomato Apex Necrosis Virus
(ToMV)	Tomato Mosaic Virus
(TYLCV)	Tomato Yellow Leaf Curl Virus
W	Verticillim Wilt
HR:	= High Resistance IR: = Intermediate Resistance


(DM)	Downy Mildew
(Cv)	Cladosporium Leaf Spot
HR: =	High Resistance IR: = Intermediate Resistance
Summer So	uash Resistance Codes
(CMV)	Cucumber Mosaic Virus
(PM)	Powdery Mildew
(PRV)	Papaya Ringspot Virus
(WMV)	Watermelon Mosaic Virus
(ZYMV)	Zucchini Yellow Mosaic VIrus
	HR: = High Resistance IR: = Inter

Rotation

- Break up Disease & Insect life cycles
- Move crops around, be aware of families
 - ■Cole, Solanaceous, Cucurbits, Legumes, etc.



Abandoned FACTORY bed 1 bed 2 bed 3 bed 5 bed 6 bed 7 bed 4 12' 12' 12' 3' 4' 4' 3' 4' 4' 3' 4' 4' 4' 3 Phase I (Spring, 2016)

Rotation

Break up Disease & Insect life cycles

- Cabbage, Greens in 2016. What were the major pests?
 - ■Flea beetles and cabbage aphid
 - ■What beds were these crops planted in?
- Eggplant in 2016. What was the major pest?
 - ■Flea beetles
 - ■What beds was this crop planted in?

Row Covers

- -Exclude insect pests
- Increase plant growth (heat), protect from frost

Weed control can be a major issue **inside RC**

- Choose fields w/ reduced weed pressure
- Black plastic
- Card board, Newspaper
- Weed screen/fabric

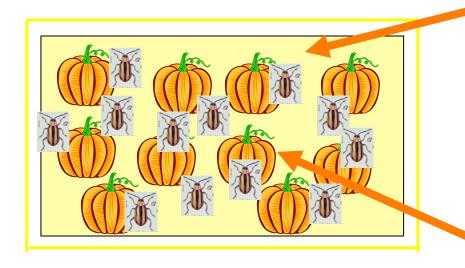
Row Covers

Row Cover and Weed Control

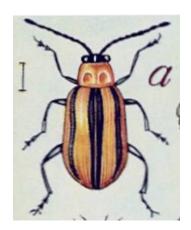
No Row Cover or Weed Control

No Row Cover, but Weed Control

Trap crops

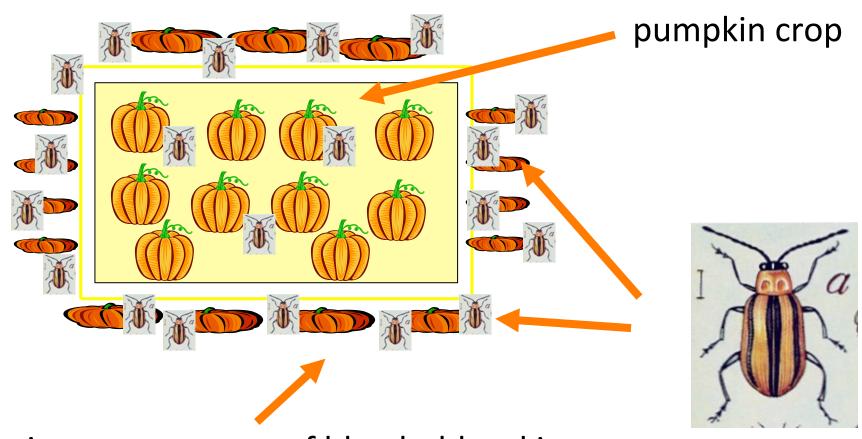

Using plants to manipulate insect behavior

- ■Lure insects away from main crop
- ■Concentrate insects in an area to be treated
- ■Reduces the need to spray whole field
- ■Reduces impact on beneficial arthropods
- ■Can have mixed results



NO Trap Crop

pumpkin crop



SCB like pumpkin, can vector Bacterial wilt to seedlings...bad

With Trap Crop

THE OHIO STATE UNIVERSITY

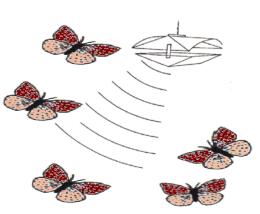
perimeter trap crop of blue hubbard is highly attractive to beetles...

Traps

In general...

- ■Work 24/7
- ■Good early warning system for some insects

Sticky Traps


- ■Used for monitoring
- ■Trap beneficial and pest insects

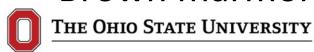
Pheromone Traps

- ■Used for monitoring specific insects
- ■Trigger more intense scouting

Pheromone Trap Pests

Fall armyworm – late
True armyworm – early
Corn earworm – mid to late
European corn borer – early to late

- *Cabbage looper mid to late
- *Diamondback moth mid to late


Black cutworm – early

Beet armyworm – mid to late

Variegated cutworm – mid to late

Western bean cutworm – mid to late

*Brown marmorated stink bugs — early to late

Biological Control

■ Using a pest's natural enemies to control it

Natural Enemy

Pest

Biological Control

Conservation

- Recognize beneficial insects & arthropods
- ■Use targeted insecticides when possible

Encouragement

■ Plant flowers as a nectar & pollen source

Augmentation

- ■Lacewings, Praying Mantids, Parasitic Wasps, etc.
- Best in enclosed areas

Refuge planting for natural enemies

Phacelia

nasturtium

sweet alyssum

cilantro

dill

Natural Enemies?

Natural Enemies Ladybugs

Iowa State University

Natural Enemies More Ladybugs

Natural Enemies Green lacewings

Natural Enemies Praying mantids

Natural Enemies Ground beetles

Natural Enemies Parasitoid Wasps

Attack aphids

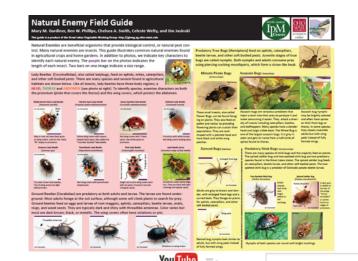
Natural Enemies Spiders

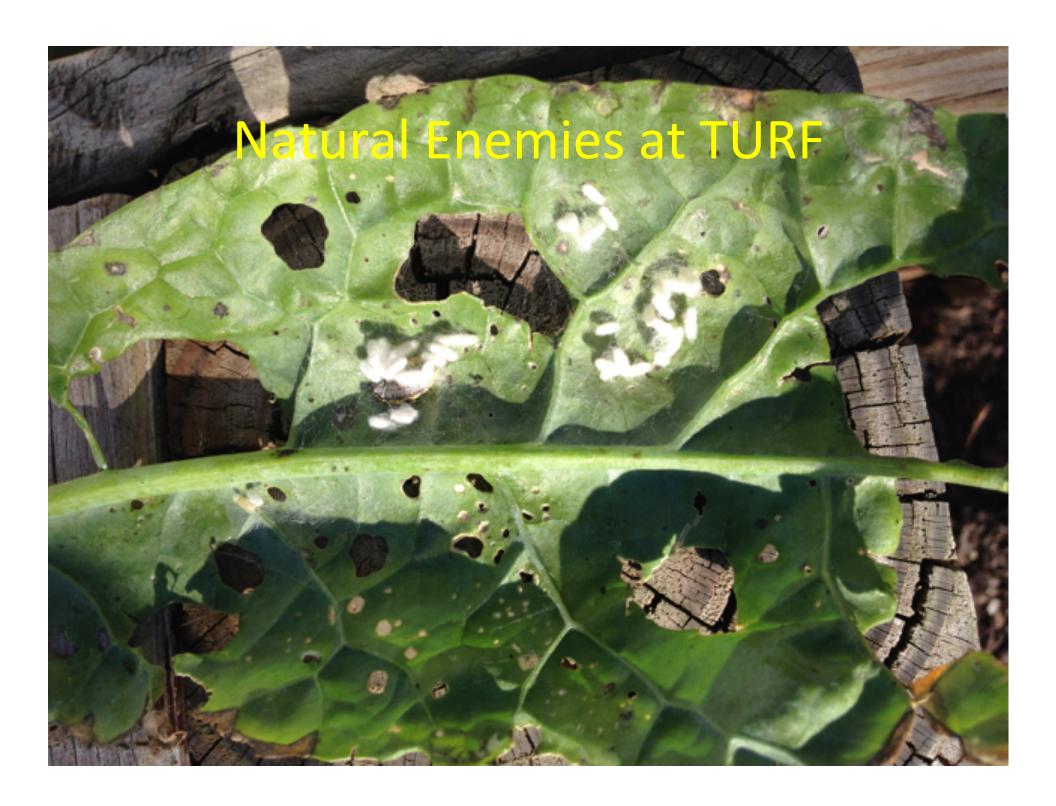
Natural Enemies Parasitoid Flies

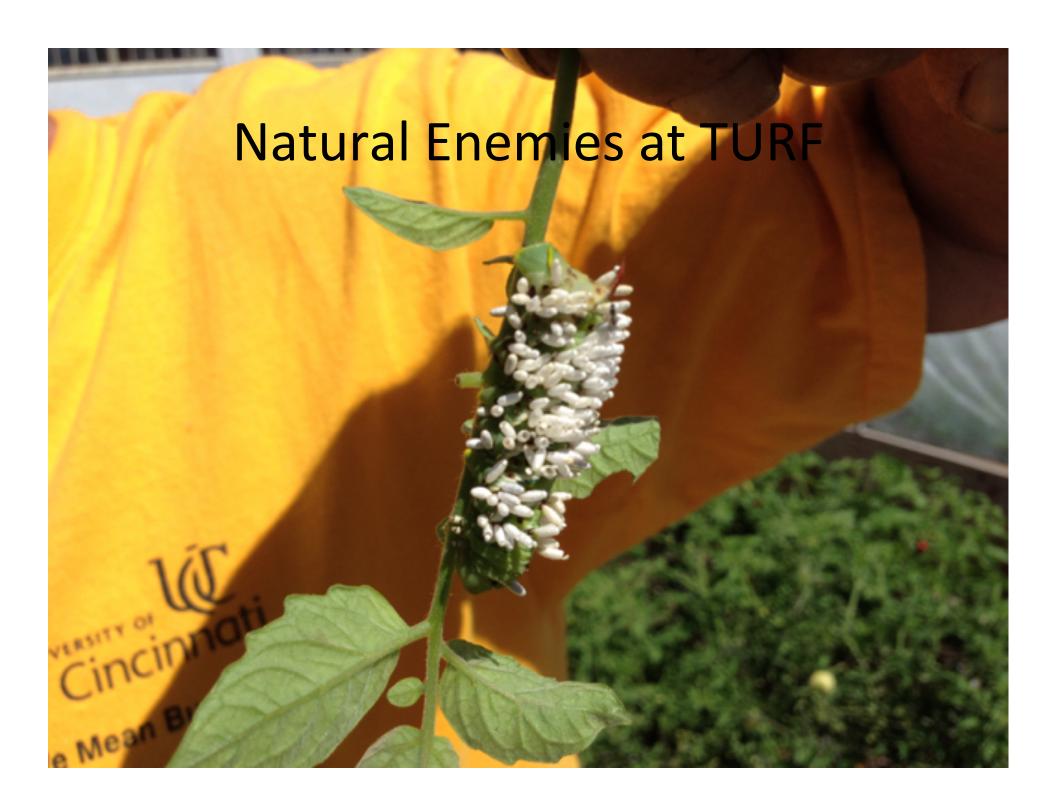
Attack eggs & caterpillars

NCR pub 471

Natural Enemies Fungi, Bacteria, Viruses




Natural Enemies Resources


ID Factsheet

- YouTube video (25 min)
 - OARDC natural enemies

Chemical Control Insecticides for Garden Food Crops

Class (Chemical names / Products)

- Carbamates (Sevin)
- Organophosphates (Malathion)
- Pyrethroids (Permethrin, Bifenthrin)
- Neonicotinoids (Imidicloprid, Acetamiprid)
- Microbials (Bt, Spinosad)
- Botanical (Neem, Azadirachtin, Pyrethrum)
- ■Soaps & Oils
- Elemental (S, Cu)

Pesticide License = RUP

Pyrethrums, ins, and oids

- Pyrethrum raw, unrefined insect killing active ingredient extracted from chrysanthemum flower heads
- Pyrethrin refined Pyrethrum
- PBO Piperonyl butoxide, synergist
- **Pyrethroid** synthetic pyrethrums or pyrethrins, longer lasting, higher activity

Pyrethroids: now 5 for food crops

Multi-Insect Killer

bifenthrin

ORTHO

new

permethrin

Esfenvalerate*

cyfluthrin

lambdacyhalothrin

Insecticides of natural origin

Microbials (from micro-organisms)

- B.t. (bacteria)
- ■Spinosad (bacteria)
- Beauveria (fungus)

What is Bt?

Bacillus thuringiensis (Bt)

- Common Soil Bacterium
- Used by organic growers for decades
- Harmless to Vertebrates
- Harmful to Certain Insect Groups
 - Moths, Beetles, Mosquitoes & Flies
- Insects Killed by ICP
 - **■**(Insecticidal Crystal Protein)

Bt's Mode of Action

- ■Bt insecticide sprayed on plant
- ■Insect Ingests Bt
- ■ICP Released into Insect's Midgut
- ■ICP Causes "Ulcers" in Midgut
- ■Insect Stops Feeding
- ■Internal Bleeding Results in Death

Which set of ears would you buy at the market?

Which set of ears were sprayed w/ insecticide?

Neither, sweet corn on left is transgenic (Bt)

Key Pests on Vegetable Crops

			(
	Cuc	urbits	•
Tomato	Squ	ash bugs	1
Tomato fruit worm	Aph	ids	
Variegated cutworm	Stri	oed cucumber	beetle :
Hornworms	Spo	tted cucumbei	r beetle <i>i</i>
Stink bugs	Squ	ash vine borer	
Aphids	-		
CO potato beetle		Pepper	(
Slugs		Eur. Corn bor	er
O		Stink bugs	
Cole Crops		Aphids	
Imported cabbagewo	orm	Flea beetle	
Cabbage looper	,,,,,		Potato
Diamondback moth			CO pot
Aphids/Leaf miners			Cutwo
Stink huge			Potato

Sweet Corn Salad Greens Fur. Corn borer **Aphids** Fall armyworm Slugs Corn earworm Leaf miners Stink bugs Black cutworm **Aphids** Variegated cutworm Flea beetles Cabbage loopers Japanese beetles Flea beetles Corn rootworms Leafhoppers

Cole Crops Imported cabbageworm Cabbage looper Diamondback moth Aphids/Leaf miners Stink bugs Flea beetle Thrips Swede midge Aphids Flea beetle CO potato beetles Cutworms Potato leaf hoppers Wireworms Aphids Flea beetle

Sweet Potato CO potato beetles Potato leaf hoppers Wireworms Aphids Flea beetle

General Pests: Slugs

Monitor – jagged leaf feeding, fruit feeding, slime trails

ID - Soft bodied, slimy creature

Dept. of Entomology, OSU, IPM image library

General Pests: Slugs

Cultural

•BEER filled pie plates ...sometimes

Copper Strips – A shocking experience...sometimes

http://www.gardenmyths.com/

General Pests: Slugs

Cultural

• Dry out area – add sand?

- Diatomaceous Earth- reapply after rain
- •Alternative remedies: cedar chips, egg shells, coffee grounds, and pine needles??

General Pest: Slugs

Biological

•Ground beetles, song thrushes, toads, frogs, insects...

Chemical

Slug baits (Metaldehyde), Iron phosphate (Sluggo)

Monitor

- On stems, branches, & underside of leaves
- Feed on all types of plants
- Can cause growing tip to curl

ID

- Small soft bodied insects w/ sucking mouth parts
- Suck plant juices, excrete honeydew, may cause black sooty mold
- Vector viruses

Cultural Controls

- Choose virus resistant varieties if possible
- Consider syringing or wiping off with glove
- Row covers
- Early Planting

Bio-controlsLady Beetles
Parasitoid Wasps

Bio-controls: Lacewings

Iowa State University / Minnesota Dept. of Agriculture

Chemicals

- Acetamiprid systemic
- Soap and oil products
- Conserves beneficial insects

Pest Management for Tomato

Pest: Hornworms

Monitor

- Chewed foliage, fruit, and frass
- Look for missing canopy and fresh frass

ID

 Large green worm w/ slashes or chevrons

THE OHIO STATE UNIVERSITY

Pest: Hornworms

Cultural: Pick mature caterpillars off of plant

Biological: Don't kill if parasitoid pupal cases are found on caterpillar (*Cotesia* sp.)

-bird & hornet predators

Chemical: Bt (if small), Spinosad, Pyrethroids,

Pest: Other Caterpillars

yellow striped armyworm, tomato fruit worm, variegated cutworm

Monitor

- Larvae in fruit, sides and bottom
- Pheromone traps TFM, VCW

Identify

■ Which worm is it?
Doesn't really matter,
all treated the same

Cultural Control

■ Pick worms out / cull fruit

Pest: Other Caterpillars

yellow striped armyworm, tomato fruit worm, variegated cutworm

Bio-control

■ Ground beetles, parasitoids, birds

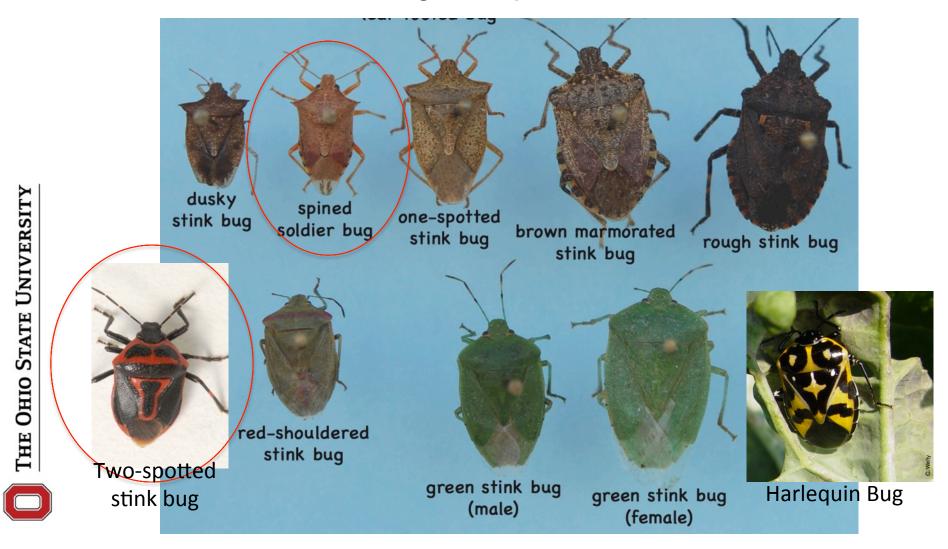
Chemical

■Pyrethrin + PBO, Pyrethroids, Bt

Pest: Stink Bugs

Monitor

Foliage, Green and Red fruit



Pest: Stink Bugs

Identification – Most bugs are pests. Two are beneficial.

Brown marmorated stink bug pepper corn G. Brust beans tomato

Pest: Stink Bugs

Cultural Control

- Pick bugs off
- Cull fruit if damage really significant
- Use traps to monitor

Biological Control

-stink bugs, parasitoid wasps, spiders

Chemical control

-Pyrethroids, Acetamiprid, Spinosid for nymphs

Pheromone trapping study

Pyramid vs pipe; Black vs yellow; Plain vs netted

Action thresholds: Tomato

Pest	Threshold	<i>Insecticide</i> updated		
		Natural	Synthetic	
aphids	>1 colony/leaflet & no natural enemies	Soap, oil, pyrethrins+PBO	acetamiprid (Ortho Bug-B-Gone), imidacloprid (Bayer Fruit, Citrus, Vegetable)	
hornworms	>10% defoliation	B.t. (Dipel)	Spinosad (Bonide Capt. Jack), L-cyhalothrin (Bonide Caterpillar killer)	
Fruitworm	Any larvae in fruit		Spinosad (Bonide Capt. Jack), L-cyhalothrin (Bonide Caterpillar killer)	
stink bug	Damage on >10% or fruit	pyrethrins + PBO	L-cyhalothrin (Bonide Beetle/Caterpillar killer)	

Pest Management in Cole Crops

Cabbage

Broccoli

Brussel sprouts

Cauliflower

Collards

Pests: Cole Caterpillar Complex


Monitoring: Look at leaves and heads
Feeding on leaves bad;
feeding on heads bad

Cross striped cabbageworm [Picture by D. Matthew]

Pest: Imported Cabbageworm butterfly

ID: Small fuzzy green worm

Pest: Cabbage looper

Pest: Diamondback moth

ID: Small very active green caterpillars

Pests: Cole Worm Complex

Cultural Controls

- Floating row covers excludes butterflies;
 leave on whole season
- Hand picking inspect for natural predators / disease
- Destroy plants soon after harvest

Biological Controls of Complex

Many natural predators and parasitoids in Ohio

Pest: Cabbage Worm Biocontrols and Natural Enemies

Pteromalus spp.- Pupa Trichogramma spp. – Eggs Cotesia sp. - Larva

Pest: Cabbage Looper Biocontrol & Natural Enemies

Copidosoma sp. – Egg parasite

Copidosoma sp. egg divides inside host, resulting in 1000's parasitoids

Pest: Cabbage Looper Biocontrol & Natural Enemies

- Voria sp., tachinid fly
 - Larva
- Cotesia sp., parasitoid wasp
 - Larva
- Predators
 - Wasps, lacewings, syrphid larva, ground beetles

Pest: Diamondback moth Biocontrol & Natural Enemies

University of Florida

Diadegma insulare – Larva Cotesia sp. & Microplitis sp. - Larva

Pest: Diamondback moth - Biocontrol

Diadegma insulare – Larva

Pest: Imported Cabbageworm - Biocontrol

Pest: Cole Caterpillar Complex

Chemical Controls

- Use Bt first works best on small caterpillars
 - Less disruptive to other beneficial arthropods
- Spinosad, pyrethrins + PBO, pyrethroids, carbaryl

THE OHIO STATE UNIVERSITY

DBM may be resistant to synthetic insecticides

Monitoring

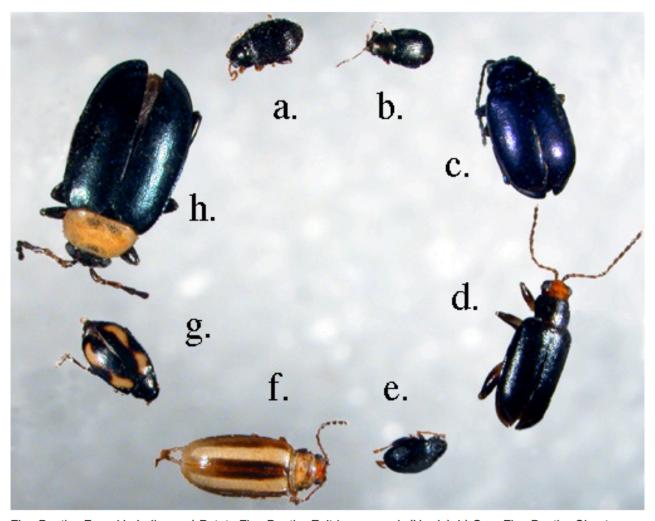
-adults emerge in spring, feed on cole, solanaceous & other veggie seedlings

-damage resembles small holes or gouges in leaf tissue

-monitor using sticky traps

Whitney Cranshaw, Colorado State University, Bugwood.org

Typical flea beetle damage (Photo Credit: John Obermeyer)



Identification

-small black beetles that "jump" when

-1/16th inch

distrurbed

Flea Beetles Found in Indiana. a) Potato Flea Beetle: *Epitrix cucumeris* (Harris); b) Corn Flea Beetle: *Chaetocne-ma pulicaria* (Melsheimer); c) Grape Flea Beetle: *Altica chalybea* (Illiger); d) Red-Headed Flea Beetle: *Systena frontalis* (Fabricius); e) Sweet Potato Flea Beetle: *Chaetocnema confinis* (Crotch); f) Palestriped Flea Beetle: *Systena blanda* (Melsheimer); g) Striped Flea Beetle: *Phyllotreta striolata* (Fabricius); h) Spinach Flea Beetle *Disonycha xanthomelas* (Dalman) (*Photo Credit: John Obermeyer*)

Table 1. The most common Brassica feeding flea beetles found in North America.

Brassica Feeders	Scientific Name	Reported to Damage	Distribution
Crucifer flea beetle	Phyllotreta cruciferae	Brassicaceae family	Northern US
Horseradish flea beetle	Phyllotreta armoraciae	Horseradish, occasionally damages cabbage, radish and turnip	Northern US and usually east of the Rockies
Striped flea beetle	Phyllotreta striolata	Brassicaceae family	Eastern and Pacific regions of the US
Western black flea beetle	Phyllotreta pusilla	Brassicaceae family, occasionally damages beet, lettuce and potato	Western US

http://articles.extension.org/pages/72972/managing-cruciferous-and-solanaceous-fleabeetles-in-organic-farming-systems

Table 2. The most common solanaceous feeding flea beetles found in North America.

Solanaceous Feeders	Scientific Name	Reported to Damage	Distribution
Eggplant flea beetle	Epitrix fuscula	Eggplant and potato	Eastern US
Palestriped flea beetle*	Systena blanda	Very wide host range	Primarily a pest in warmer areas of the US
Potato flea beetle	Epitrix cucumeris	Potato, tomato and other members of Solanaceae family	East of the Rockies
Tobacco flea beetle	Epitrix hirtipennis	Eggplant, pepper, potato, tomato and other members of Solanaceae family	Warmer areas of the US
Tuber flea beetle	Epitrix tuberis	Potato, especially potato tubers	Pacific Northwest
Western potato flea beetle	Epitrix subcrinita	Potato and other members of Solanaceae family	Western US

Thresholds

- Typical flea beetle damage (Photo Credit: John Obermeyer
- Crucifers—crucifer and striped flea beetles: treat if at seedling stage (up to six true leaves) and >1 flea beetles/ plant
- Leafy vegetables in seedling stage—crucifer, spinach, and striped flea beetles: treat if beetles are common on most plants and defoliation >30%
- Pepper and eggplant—eggplant, tobacco, palestriped, and potato flea beetles: treat if plant <3 inches tall and two flea beetles/plant; treat if 3-6 inches tall and four flea beetles/ plant; treat if >6 inches tall and eight flea beetles/plant

Typical flea beetle damage (Photo Credit: John Obermeye

Thresholds

- Potato—potato flea beetle: treat if >50 flea beetles/25 sweeps
- Tomato—palestriped and potato flea beetles: treat if >30% defoliation
- Sweet corn (Stewart's wilt-susceptible varieties, less than "knee high")—corn flea beetles: treat if 6 or more corn flea beetles/
 100 plants.

Pest: Flea Beetle Complex Cultural

Typical flea beetle damage (Photo Credit: John Obermeyer

-Trap cropping (Italian or Japanese eggplant, or Chinese giant mustard) – match flea beetle to trap crop

Rotation, Row covers, Delay early planting, Yellow sticky cards

Biological –low levels

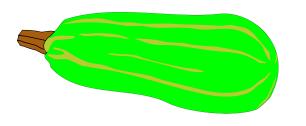
- native parasitoid, Microctonus vittatae, adult flea beetles
- -Lacewing larvae, big eyed bugs (*Geocoris* spp.), and damsel bugs (*Nabis* spp.), Steinernematid and Heterorhabditid nematodes, *Beauvaria bassiana*

Typical flea beetle damage (Photo Credit: John Obermeyer

Chemicals

- Systemic seed treatment (imidacloprid)
- Carbaryl, Cyfluthrin, Esfenvalerate, Permethrin, Spinosad

Flea Beetle Resources


- http://articles.extension.org/pages/72972/managingcruciferous-and-solanaceous-flea-beetles-in-organicfarming-systems
- http://extension.entm.purdue.edu/publications/ E-74.pdf
- http://extension.entm.purdue.edu/publications/
 E-21.pdf
- http://entomology.osu.edu/welty/ppt%20pdf/ PepperPestMgmtFeb05.pdf
- https://u.osu.edu/pestmanagement/files/2014/12/ OhioPepper2013FinalReport-2ademy7.pdf
- http://www.nysipm.cornell.edu/factsheets/
 vegetables/misc/fb.pdf
 THE OHIO STATE UNIVERSITY

Action thresholds: Cole Crops

Pest	Threshold	Insecticide updated	
		Natural	Synthetic
Flea beetles	(Variable) >5 beetle holes per leaf & >5 beetles per plant	pyrethrins + PBO	carbaryl (Sevin), L-cyhalothrin (Bonide Beetle killer)
Caterpillars:		B.t. (DiPel)	L-cyhalothrin
Imported cabbageworm	>1 larva/plant		(Bonide Caterpillar
Diamondback moth			killer), Spinosad (Bonide Capt.
Cabbage	>2 larvae/plant		Jack)
looper			
	>0.5 larva/plant		
Aphids	>1 colony/leaf	soap	Acetamiprid (Bug-B-Gone)

Pest Management in Cucurbits

Cucumbers
Zucchini
Melons
Pumpkin
Squash

Pest: Squash Vine Borer

Monitor

- Look for moth flying around crop
- Wilting vines, frass at plant base

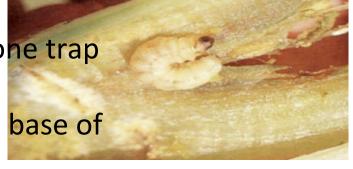
ID

- Moth looks like a wasp mimic
- Larva looks like a white caterpillar/grub

Pest: Squash Vine Borer

Cultural controls

- Use row covers
- Set pheromone traps for adults around mid June
- •If vines are wilting, split vine to remove borer, rebury



Chemical control

Pyrethroids

- •Treat when adult flight peaks in pheromone trap (late June)
- •Spray 2-4 times for the next 4-6 weeks at base of plants

Pest: Squash bugs

Pest: Squash bugs

Monitoring

 Tops and bottoms of leaves, stems, petioles, fruit

Identification

- Rusty colored eggs laid in clumps of 15-25
- Grayish nymphs, clumped
- Brownish Gray adults

Pest: Squash bugs

Cultural

- Row Covers
- Crush and removed eggs/nymphs/adults
- Destroy plant material after harvest

Biocontrol

- Trichopoda tachinid fly
- Attacks adults

Chemical Control

Spinosad, Pyrethrins + PBO, Imidicloprid

Pest: Cucumber beetles

Spotted

Striped

Pests: Cucumber beetles & Rootworms

Monitoring

- •Inspect the plant protect seedlings from leaf feeding & bacterial wilt (cotyledon to 4th leaf)
- Protect fruit rind

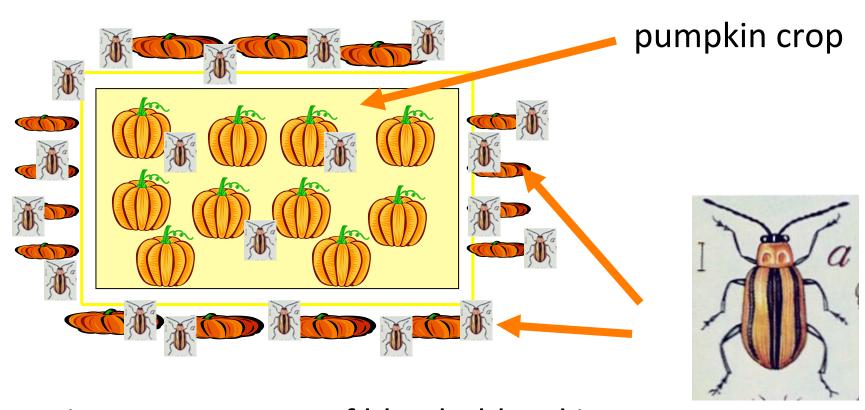
Identification - yellow and black beetles

Striped

Spotted

Western CR

Northern CR


Pest: Cucumber beetles

Cultural Control

- Consider transplants around mid June to avoid early season defoliation
- Consider direct seeding around 2nd to 3rd week of June
- Use row covers to protect seedlings
- •Trap crop early using blue hubbard squash

Perimeter Trap Crop

perimeter trap crop of blue hubbard is highly attractive to beetles...treat perimeter

Pest: Cucumber beetles

Biological Control

• Fly parasitoid (*Celatoria*)

Spiders

Audubon's Insects & Spiders

Chemical

Pyrethroids, pyrethrins + PBO, imidicloprid, carbaryl

Pest: Aphids

Vector viruses – WMV, CMV Secrete honeydew Food Contaminant

Pest: Aphids

Monitoring

-arrive mostly in mid-late July

-tough to control prior to vectoring virus

Cultural

-Row covers, Early planting

Biological

Ladybugs, Lacewings, Parasitoid Wasps

Chemicals

Soap, Acetamiprid, pyrethroids + PBO

THE OHIO STATE UNIVERSITY

Action thresholds: Pumpkin, Cukes, Zukes, Squash, Melons

Pest	Threshold	Insecticide updated	
		Natural	Synthetic
Squash vine borer	Preventive sprays as soon as moths active using pheromone trap (1 spray/wk for 4 wks)	pyrethrins + PBO	L-cyhalothrin (Bonide Caterpillar killer)
Cucumber beetles	>0.5 beetle/leaf (cotyl-1st) >1 beetle/leaf (2 nd -4 th) Feeding on maturing rind	pyrethrins + PBO	carbaryl (Sevin), imidacloprid (Bayer Fruit, Citrus, Vegetable)
Squash bug	>1 egg mass/plant (treat nymphs)	pyrethrins + PBO	L-cyhalothrin (Bonide Beetle killer) imidacloprid (Bayer Fruit, Citrus, Vegetable)

Pest Management in Potatoes

Pest: Colorado Potato Beetle

Monitor – for adult emergence in late spring

- egg laying and larvae on leaf tissue late spring / early summer
- 2 generations per year

ID — striped adults, orange eggs and slug like larvae feeding on leaves
THE OHIO STATE UNIVERSITY

Pest: Colorado Potato Beetle

Threshold – up to 30% defoliation in vegetative stage OK; 10% defoliation during flowering reduces yield, some defoliation (10-30%) after flowering OK

Pest: Colorado Potato Beetle

Cultural – pick larvae and adults off and toss into bucket soapy water

- Plant early avoid 2nd generation larvae feeding, digging potatoes at time of emergence
- Plant late short photoperiod stimulates reproductive diapause, few eggs and larvae
- Don't plant both early and late
- Rotate planted area as far as possible
- Plant alternate years to reduce pressure
- Flame beetles off plants

Pest: Colorado Potato Beetle

- Biocontrol ladybugs feeding on CPB eggs
- Two spotted stink bugs feeding on larvae
- Chemical options-treat seed pieces with neonic in-furrow
- larvae with Bt var. tenebrionis and spinosad
- adults with Asana, permethrin, other pyrethroids may not be effective

J. Ogrodnik

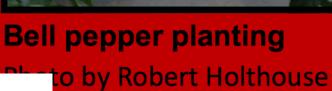
Other Potato Pests

Wireworms

- Larvae of click beetles
- Attracted to lay eggs in grass
- Live in soil for several years
- Feed on potato tubers; bait in field

Frank Peairs, Colorado State University, Bugwood.org

Aphids


- Vector Poty viruses (Y) & other viruses
- Cause Necrotic Ringspot
- Virus transferred in seconds of bite
- Plant early? Genetics

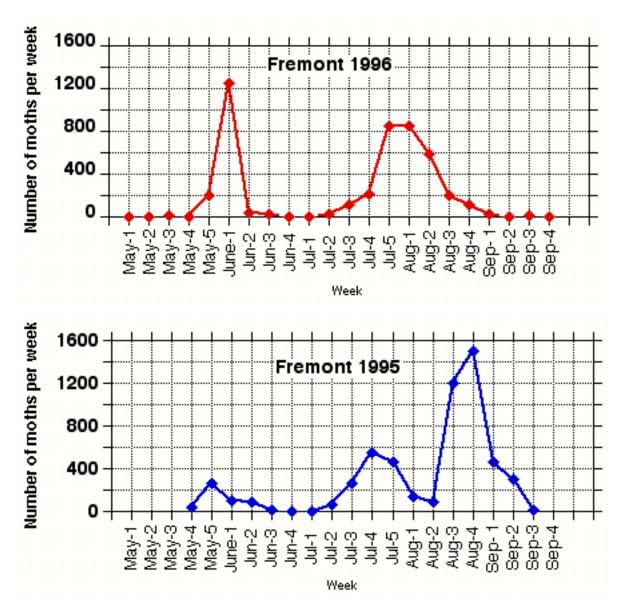
Pest Management in Peppers

THE OHIO STATE UNIVERSITY

Pest: European Corn Borer

Monitoring (fruit present)

- -Pheromone traps for 2nd / 3rd generation
- -Damage near cap, hard to see
- -Usually detected when fruit is cut open
- -Mostly an issue with Bell's, but hot peppers too



in sweet red bell pepper.

THE OHIO STATE UNIVERSITY

ECB: 2 vs 3 generations

Pest: European Corn Borer

Identification

-moths for pheromone traps

Female

Male

-tan/cream colored

larvae

- < 3/4"

Pest: European Corn Borer

Cultural

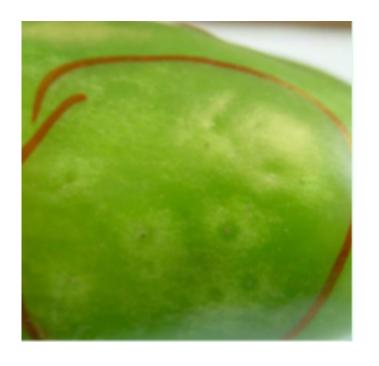
- -Early planting to avoid 2nd/3rd generation
- -bell's more preferred than other peppers
- -Fruit are present, what else is green in the area?

Biological

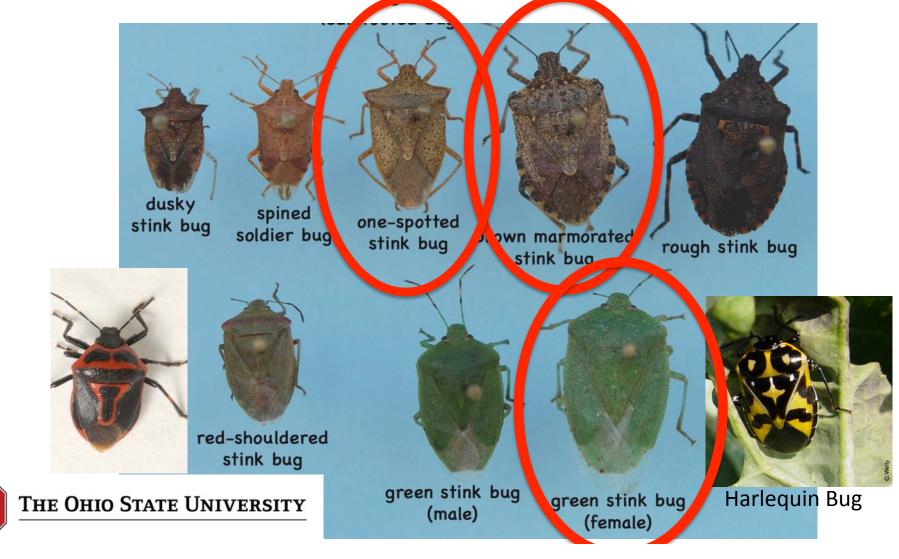
- -Egg Masses: Pink and Multi-colored ladybugs (adult & larvae), also Trichogramma parasitoids
- -Larvae once protected inside fruit, none

Chemicals

- Javelin & Dipel (2x/wk), Esfenvalerate, Mustang, Spintor, etc.


Trichogramma nubilale wasp (C. E. Mason).

Pest: Stink Bugs


Monitoring

- -Visual scouting foliage
- -Look for cloudy spot on green or red fruit
- -Mostly an issue with Bell's

Pest: Stink Bugs

Identification - Which bug is it? Some are beneficial.

Pest: Stink Bugs

Cultural Control

- -Pick bugs off
- -Cull fruit if damage is significant

Biological Control

-stink bugs, parasitoid wasp, spiders

Chemical control

-Pyrethroids, Acetamiprid, Spinosid for nymphs

Action thresholds: Peppers

Pest	Threshold	Insecticide updated	
		Natural	Synthetic
aphids	>1 colony/leaflet & no natural enemies	Soap, oil, pyrethrins+PBO	acetamiprid (Ortho Bug-B- Gone), imidacloprid (Bayer Fruit, Citrus, Vegetable)
potato flea beetle Whitney Cranshaw, colorado state University, Bugwood.org	(variable) If defoliation is severe to small plants; plant <3 inches tall and two flea beetles/plant	pyrethrin+PBO	acetamiprid (Ortho Bug-B- Gone) Bayer Fruit, Citrus, Vegetable Spinosad (Bonide Capt. Jack)
Eur. corn borer Phil Sloderbeck, Ka Bugwood.org	7 moths / week pheromone trap (Aug-Sep)	B.t. (Dipel)	acetamiprid (Ortho Bug-B- Gone) Permethrin (Eight Vegetable, Fruit & Flower Conc.) Spintor & Entrust
stink bug	First sighting or Damage on >10% or fruit	pyrethrins + PBO	acetamiprid (Ortho Bug-B- Gone) Venom, Danitol